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Abstract

We present a Bayesian approach for modeling a time series for a cumulative record that takes the form of the maximum or
minimum of a sequence of attempts, in the absence of data for the underlying attempts. We discuss the derivation of the
likelihood function, sampling of the posterior via PyMC3, and forecasting the distribution of future records.

How often and by how much are Olympic records beat? What score do we expect future machine learning
systems to attain for classification tasks in the absence of new breakthroughs? With what probability will
the fasted speed run for our favorite videogame be beaten within the next year?

This article is a tutorial on how to use the probabilistic programming language (PPL) PyMC3 to model how
records are set over time. While in many cases one may be able to make inferences about a record indirectly
by first fitting a model for attempts at breaking this record and calculating statistics for the record after the
fact, we specifically consider the case that the only data available is the time series for the record itself.

The article is structured as follows:

1. First, we generate some artificial data for a running maximum.
2. Second, we derive the mathematical formula for the likelihood function of our model.
3. Third, we demonstrate how to fit our model to data using PyMC3.
4. To check our fitted model, we show how to compute the posterior predictive distribution of the cumu-

lative maximum.
5. Finally, we show how to generate probabilistic forecasts of the record in future periods.

A companion Google Colab notebook for this article can be found here. It contains all the code you would
need to fit your model to a dataset. Feel free to reuse our code for your own projects!

The Model

Suppose we would like to model a time series for the cumulative record for some task, where the record is the
maximum or minimum over some sequence of attempts. In this article, we’ll only consider the case where the
record is a maximum since the approach for the minimum requires only a slight modification. Let {Xt}t ∈N
denote a discrete-time stochastic process representing the results from some sequence of attempts at a task.
We assume that the Xi are i.i.d. according to some random variable X with a common CDF given by FX
and PDF given by fX . We refer to FX as the attempt distribution for our record.

We assume our observed data takes the form of a time series {r1, r2, . . . , rn} where ri is the record as of
the ith period and n is the number of periods for which the record has been observed. In the case the record
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is of a maximum, note that we must have ri ≤ rj whenever i ≤ j. To match our observed data, we define a
sequence {Yt}t ∈N where

Yi := max {X1, . . . , Xi } .

We treat {r1, r2, . . . , rn} as noiseless, truncated observations along some sample path ω =
{r1, r2, . . . , rn, . . .}.

1. Synthetic Data for a Running Maximum

To generate some artificial data, let us take our attempt distribution to be a Gaussian with

X ∼ N (µ, σ2)

and generate a time series of length n = 100. We note that this approach can be applied to scenarios
with arbitrary attempt distributions and not just that of our particular case of a Gaussian. To produce a
sample path from the record process, we begin by simulating an attempt a1 from the attempt distribution
and set r1 = a1. The second attempt a2 is simulated in the same manner, and following ?? we set our record
as of the second period as r2 = max{a1, a2}. We generate the rest of the sample path in the same manner,
where ri+1 = ri unless ai+1 > ri, in which case the record is broken and ri+1 = ai+1.

Our goal is to infer the posterior distribution on µ and σ given only the sequence of the cumulative
records {r1, r2, . . . , rn}, blind to the sequence of attempts {a1, a2, . . . , an}. Let us fix

µ = 10, σ = 1,

and simulate a sample path for the record.

import numpy as np
import matplotlib.pyplot as plt

# Parameters
n_periods = 100 # Number of periods to observe
mu_true = 10.0 # Mean of the underlying distribution
sigma_true = 1.0 # Standard deviation of the underlying distribution
np.random.seed(4) # Fix the seed to reproduce our plots

# Sample generation
index = np.arange(n_periods)
sample_path = []
record = -np.math.inf
for i in index:

attempt_new = mu_true + sigma_true*np.random.randn() # Draw a new sample
record_new = np.max([attempt_new, record]) # Update the record
sample_path.append(record_new)
record = record_new

# Plot
plt.plot(index, sample_path, color="red")
plt.xlabel("Period")
plt.ylabel("Record")
plt.title("One Sample Path")

2
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y. Figure 1: 100 periods of one sample path for the record. Here our underlying attempt distribution is a
Gaussian with mean of 10 and a variance of 1. As we expect, the record becomes harder to beat as it
approaches the tail of the attempt distribution.

While this is a straightforward way to simulate a sample path, note that we can use the fact that all of the
attempts are independent to vectorize this code.

# Vectorized version of the above
np.random.seed(4)
attempts = mu_true + sigma_true*np.random.randn(n_periods)
sample_path = np.maximum.accumulate(attempts)

As we expect, the record path is monotonically increasing since it is the maximum over an increasing number
of attempts. While the record is broken several times in the early periods, as time progresses the record is
broken less frequently. While with real-world data we obviously only get to observe one such sample path,
according to our stochastic model, it is but one of many possible trajectories we could have observed. Let
us draw many alternative sample paths to characterize the distribution over records.

# Generate many sample paths
np.random.seed(4)
n_paths = 10000
attempts = mu_true + sigma_true*np.random.randn(n_paths, 100)
sample_paths = np.maximum.accumulate(attempts, axis=1)

# Calculate the 1%, 10%, 50%, 90%, and 99% quantiles
lower_bound_one = np.quantile(sample_paths, q=0.01, axis=0)
lower_bound_ten = np.quantile(sample_paths, q=0.1, axis=0)
medians = np.quantile(sample_paths, q=0.5, axis=0)
upper_bound_ninety = np.quantile(sample_paths, q=0.9, axis=0)
upper_bound_ninety_nine = np.quantile(sample_paths, q=0.99, axis=0)

# Plot
fig, axs = plt.subplots(1, 2, figsize=(13,8))

3
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# Plot sample paths on the left
axs[0].plot(index, sample_paths[1:,:].T, alpha=0.05)
axs[0].plot(index, sample_paths[0,:], color="red", label="Observed Sample Path")
axs[0].legend()
axs[0].set_ylim(7.5, 15)
axs[0].set_xlabel("Period")
axs[0].set_ylabel("Record")
axs[0].set_title("Many Alternative Sample Paths")

# Plot CI on the right
axs[1].fill_between(index, lower_bound_one, upper_bound_ninety_nine, alpha=0.4, label="99% CI", color="C0")
axs[1].fill_between(index, lower_bound_ten, upper_bound_ninety, alpha=0.7, label="80% CI", color="C0")
axs[1].plot(index, medians, label="Median")
axs[1].plot(index, sample_paths[0,:], color="red", label="Observed Sample Path")
axs[1].legend()
axs[1].set_ylim(7.5, 15)
axs[1].set_xlabel("Period")
axs[1].set_ylabel("Record")
axs[1].set_title("Credible Interval Over Sample Paths")

fig.tight_layout()

Figure 2: Left: many alternative sample paths drawn according to our stochastic model for the record
process. Right: credible intervals over these sample paths at each period.

4
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The point of the above is that even if we had perfect knowledge about the parameters µ and σ of our model,
there is still a wide range of behavior we might expect when drawing samples from the record process and
we can calculate probabilities to express this variability. This is known as aleatoric uncertainty, as opposed
to parametric uncertainty. But perhaps this is not very interesting, since we are likely concerned with the
record at some future period instead of in the past. In a similar manner, we can extrapolate into the future
by drawing sample paths of the record process conditioned on the observations.

# Forecast parameters
n_fcast_periods = 100
n_fcast_paths = 10000

# Calculate new index
last_idx = index[-1]
fcast_index = np.arange(last_idx, last_idx+1+n_fcast_periods, 1)
new_index = np.concatenate((index, fcast_index))

# Draw future attempts
attempts = mu_true + sigma_true*np.random.randn(n_fcast_paths, n_fcast_periods)

# Add a column filled with the last observation of the record
last_record = sample_paths[0,-1]
last_record_col = last_record*np.ones(n_fcast_paths)[:,None]
attempts = np.concatenate((last_record_col, attempts), axis=1)
fcast_paths = np.maximum.accumulate(attempts, axis=1)

# Calculate bands for the CIs
lower_bound_one = np.quantile(fcast_paths, q=0.01, axis=0)
lower_bound_ten = np.quantile(fcast_paths, q=0.1, axis=0)
medians = np.quantile(fcast_paths, q=0.5, axis=0)
upper_bound_ninety = np.quantile(fcast_paths, q=0.9, axis=0)
upper_bound_ninety_nine = np.quantile(fcast_paths, q=0.99, axis=0)

# Plot
fig, axs = plt.subplots(1, 2, figsize=(13,8))
axs[0].plot(index, sample_paths[0,:], color="red", label="Observed Sample Path")
axs[1].plot(index, sample_paths[0,:], color="red", label="Observed Sample Path")

# Plot sample paths on the left
axs[0].plot(fcast_index, fcast_paths.T, alpha=0.05)
axs[0].legend()
axs[0].set_ylim(9.5, 15)
axs[0].set_xlabel("Period")
axs[0].set_ylabel("Record")
axs[0].set_title("Many Forecasted Sample Paths")

# Plot CI on the right
axs[1].fill_between(fcast_index, lower_bound_one, upper_bound_ninety_nine, alpha=0.4, label="99% CI", color="C0")
axs[1].fill_between(fcast_index, lower_bound_ten, upper_bound_ninety, alpha=0.7, label="80% CI", color="C0")
axs[1].plot(fcast_index, medians, label="Median", color="Green")
axs[1].legend()
axs[1].set_ylim(9.5, 15)
axs[1].set_xlabel("Period")
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axs[1].set_ylabel("Record")
axs[1].set_title("Credible Interval Over Forecasted Sample Paths")

Figure 3: Left: many alternative forward-looking sample paths drawn according to our model. Right:
credible intervals over these sample paths at each period. The fact that the median record (shown in green)
is still unchanged by the 200th period can be interpreted as there being at least a 50% chance that the last
observed record (as of the 100th period) will not be broken by the 200th period.

Note that this analysis is predicated on knowing the true values of µ and σ that generated our time series
for the record. In what follows we consider the task of performing Bayesian inference to recover a posterior
distribution on these two parameters given our observed time series.

2. Deriving the Likelihood Function

In order to perform Bayesian inference, we need to know the likelihood function associated with our model
that expresses the relative likelihood of an observed record time series for any choice of model parameters µ
and σ. If you are not interested in the derivation, simply look at equation ?? and skip to the next section.

Let Y1:m denote the collection of random variables Y1, . . . , Ym and θ denote the collection of model param-
eters. Since

Yj+1amp; = max {X1, . . . , Xj , Xj+1}
amp; = max {Yj , Xj+1}

6
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we know that Yj+1 must be independent of all of the Yi for i < j. Then we can express the likelihood
function of our model as

LY1:n
(y1, . . . , yn|θ) = LY1

(y1|θ)
n−1∏
j=1

LYj+1|Yj=yj (yj+1|θ)

where LYj+1|Yj=yj (yj+1|θ) is the likelihood function for the random variable Yj+1|Yj = yj . It turns out that
this conditioned likelihood islikelihood is

LYj+1|Yj=yj (yj+1|θ) =


FX(yj), amp; if yj+1 = yj ,

fX(yj+1), amp; if yj+1 > yj ,

0, amp; otherwise,

which is a bit complicated, but that the likelihood function for the entire time series is much simpler.

Proposition 1. Let X1, . . . , Xn be a collection of i.i.d. continuous random variables with common PDF fX
and CDF FX , and define Yj := maxi≤j Xi. Then the joint likelihood for the sequence Y1, . . . , YN is given by

LY1:n(y1, . . . , yN ) =
∏
i∈R

fX(yi)
∏
i 6∈R

FX(yi)

where R ⊆ {1, . . . , n} is the set of indices where the record was broken and a new maximum was established.

Proof : see the appendix.

Equation ?? is the key ingredient needed for performing inference of the model parameters. We will use it
in the next section, where we demonstrate how to implement the model within the PyMC3 framework.

3. Fitting a Bayesian Model using PyMC3

PyMC3 is a popular probabilistic programming language written for Python that can be used to implement
and fit Bayesian probabilistic models to data. In this section, we demonstrate how to use our formula for
the likelihood function to fit a model within the PyMC3 framework.

Note that while typically probabilistic programming languages such as PyMC3 are capable of assembling the
likelihood function for a model without the user needing to derive the analytic formula themselves, in our
case the likelihood function cannot be handled as conveniently. We resort to deriving the likelihood function
by hand since we will need to provide it directly to PyMC3. To do so, we will use the pm.DensityDist class
to implement our custom distribution.

Looking at equation ??, we see that the likelihood is split into the contributions from the timesteps where
the record was broken and those where it wasn’t. To make our implementation easier, we will split up the
data accordingly in a pre-processing step.

### Separate the data where there were jumps in the running max
### and the data where the running max stayed constant
jump_mask = np.insert(np.diff(sample_path) > 0,0,True)
jump_data = obss[jump_mask] # Slice out the data where a new record is set
flat_data = obss[~jump_mask] # Slice the data where the record is maintained

Next, we implement the log-likelihood for the joint distribution of the data. To take advantage of the gradient-
based No U-Turn Sampler (NUTS) provided by PyMC3, we will need to write out the log-likelihood using
the PyMC3 equivalents of vanilla NumPy /SciPy functions.

7
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import pymc3 as pm

# Implementation of the log-likelihood for the record data
def logp(jump_data, flat_data, mu, sigma):

# Attempt distribution
x_dist = pm.Normal.dist(mu=mu, sigma=sigma)

# Add likelihood contribution from the jump data
log_likelihood = pm.math.sum(x_dist.logp(jump_data))

# Add likelihood contribution from the flat data
log_likelihood += pm.math.sum(x_dist.logcdf(flat_data))

return log_likelihood

This log-likelihood is specific to the case of an underlying normal distribution for the attempts, but can
be easily adapted to other attempt distributions. As an aside, if you want to fit a minimum instead of a
maximum, use pm.math.log1mexp(-x_dist.logcdf(flat_data)) instead of x_dist.logcdf(flat_data).
Now we assemble the model.

# PyMC model definition
with pm.Model() as model:

mu = pm.Normal(’mu’, mu=12.0, sigma=3.0)
sigma = pm.Exponential(’sigma’, lam=1.0)
likelihood = pm.DensityDist(’running_max’, logp, observed = {’jump_data’:jump_data,

’flat_data’:flat_data,
’mu’: mu,
’sigma’: sigma})

The choice of priors for the parameters mu and sigma were arbitrarily chosen such that most of the mass
was concentrated in the ballpark of the true values of 10 and 1. In a real application, you obviously don’t
have this same luxury, so you should carefully choose the parameters priors to reflect your previous beliefs
about the problem and the underlying attempt distribution. In practice, we highly recommend simulating
data from the prior predictive when choosing priors.

Now we can use the default NUTS sampler method to fit the posterior distribution of the parameters and
plot the posterior using ArviZ:

with model:
trace = pm.sample(draws=20000, chains=5, tune=5000, target_accept=0.99,

return_inferencedata=True,
idata_kwargs={"density_dist_obs": False})

pm.plot_trace(trace, [’mu’, ’sigma’])

8
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Figure 4: A trace plot for the model posterior.

Note that we have increased the target_acceptparameter of the NUTS sampler. We have done this to
address the divergences we observed without doing this, which we believe is an artifact of fitting to a
single sample path rather than many. In our experiments, fitting our model to many sample paths in
parallel removes all divergences without the need to increase target_acceptand correctly recovers the true
parameters.

4. Sampling the Posterior Predictive Distribution

As a sanity check for our model fit, it is useful to compare the actual observations to the posterior predictive
distribution. In our case, this is the distribution of the cumulative maximum implied by the posterior
distribution on our model parameters µ and σ.

In order to take advantage of the convenient pm.sample_posterior_predictive function while using a
custom likelihood via pm.DensityDist, we just need to implement a function randomthat specifies how to
sample a time series of records given the model parameters.

# Random sampling function
def random(n_periods=100, past_obs=None):

def _random(point=None, size=None, n_periods=n_periods, past_obs=past_obs):
mu, sigma = point[’mu’], point[’sigma’]
attempts = mu + sigma*np.random.randn(n_periods)

if past_obs is not None:
last_obs = np.atleast_1d(past_obs[-1])
attempts = np.concatenate([last_obs, attempts])
sample_path = np.maximum.accumulate(attempts)[1:]
full_sample_path = np.concatenate([last_obs, sample_path])
return full_sample_path

else:
sample_path = np.maximum.accumulate(attempts)
return sample_path

9
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return _random

While we won’t use this feature quite yet, this randomfunction can also handle sampling for forecasting. Now
we can update our model definition accordingly and sample the posterior predictive distribution.

# PyMC3 model definition
with pm.Model() as model:

mu = pm.Uniform(’mu’, 0., 20.)
sigma = pm.Uniform(’sigma’, 0.5, 1.5)
likelihood = pm.DensityDist(’running_max’, logp, random=random, # Here we incorporate the sampling function

observed = {’jump_data’:jump_data,
’flat_data’:flat_data,
’mu’: mu,
’sigma’: sigma}

)

# Sample posterior distribution
with model:

trace = pm.sample(draws=20000, chains=5, tune=5000, target_accept=0.99,
return_inferencedata=True,
idata_kwargs={"density_dist_obs": False})

# Generate predictive posterior
with model:

post_pred = pm.sample_posterior_predictive(trace, var_names=["running_max"])

## Plot
sample_paths = post_pred["running_max"]

# Calculate the 1%, 10%, 50%, 90%, and 99% quantiles
lower_bound_one = np.quantile(sample_paths, q=0.01, axis=0)
lower_bound_ten = np.quantile(sample_paths, q=0.1, axis=0)
medians = np.quantile(sample_paths, q=0.5, axis=0)
upper_bound_ninety = np.quantile(sample_paths, q=0.9, axis=0)
upper_bound_ninety_nine = np.quantile(sample_paths, q=0.99, axis=0)

# Plot
fig, axs = plt.subplots(1, 2, figsize=(13,8))

# Plot sample paths on the left
axs[0].plot(index, sample_paths[:10000,:].T, alpha=0.05)
axs[0].plot(index, sample_path, color="red", label="Observed Sample Path")
axs[0].legend()
axs[0].set_ylim(7.5, 15)
axs[0].set_xlabel("Period")
axs[0].set_ylabel("Record")
axs[0].set_title("Many Posterior Predictive Sample Paths")

# Plot CI on the right
axs[1].fill_between(index, lower_bound_one, upper_bound_ninety_nine, alpha=0.4, label="99% CI", color="C0")
axs[1].fill_between(index, lower_bound_ten, upper_bound_ninety, alpha=0.7, label="80% CI", color="C0")
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axs[1].plot(index, medians, label="Median")
axs[1].plot(index, sample_path, color="red", label="Observed Sample Path")
axs[1].legend()
axs[1].set_ylim(7.5, 15)
axs[1].set_xlabel("Period")
axs[1].set_ylabel("Record")
axs[1].set_title("Credible Interval Over Posterior Predictive Sample Paths")

fig.tight_layout()

Figure 5: Left: many alternative sample paths for the record drawn from the posterior predictive distribution.
Right: credible intervals over these sample paths at each period.

One natural comparison to make is how our posterior predictive distribution on sample paths compares with
the same distribution when the true parameters are known exactly.

import matplotlib.patheffects as pe

# Plot
fig, axs = plt.subplots(figsize=(13,8))

# First plot the posterior predictive
sample_paths = post_pred["running_max"]

11
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# Calculate the 1%, 10%, 50%, 90%, and 99% quantiles
lower_bound_one = np.quantile(sample_paths, q=0.01, axis=0)
lower_bound_ten = np.quantile(sample_paths, q=0.1, axis=0)
medians = np.quantile(sample_paths, q=0.5, axis=0)
upper_bound_ninety = np.quantile(sample_paths, q=0.9, axis=0)
upper_bound_ninety_nine = np.quantile(sample_paths, q=0.99, axis=0)

# Plot CI on the right
axs.fill_between(index, lower_bound_one, upper_bound_ninety_nine, alpha=0.4, label="99% CI - Posterior", color="C0")
axs.fill_between(index, lower_bound_ten, upper_bound_ninety, alpha=0.7, label="80% CI - Posterior", color="C0")
axs.plot(index, medians, label="Median - Posterior", lw=3.0, color="C0", path_effects=[pe.Stroke(linewidth=5, foreground=’k’), pe.Normal()])

# Next plot the exact distribution
n_paths = 10000
attempts = mu_true + sigma_true*np.random.randn(n_paths, 100)
sample_paths = np.maximum.accumulate(attempts, axis=1)

# Calculate the 1%, 10%, 50%, 90%, and 99% quantiles
lower_bound_one = np.quantile(sample_paths, q=0.01, axis=0)
lower_bound_ten = np.quantile(sample_paths, q=0.1, axis=0)
medians = np.quantile(sample_paths, q=0.5, axis=0)
upper_bound_ninety = np.quantile(sample_paths, q=0.9, axis=0)
upper_bound_ninety_nine = np.quantile(sample_paths, q=0.99, axis=0)

# Plot CI on the right
axs.fill_between(index, lower_bound_one, upper_bound_ninety_nine, alpha=0.4, label="99% CI - Exact", color="C2")
axs.fill_between(index, lower_bound_ten, upper_bound_ninety, alpha=0.7, label="80% CI - Exact", color="C2")
axs.plot(index, medians, label="Median - Exact", lw=3.0, color="C2", path_effects=[pe.Stroke(linewidth=5, foreground=’k’), pe.Normal()])
axs.plot(index, sample_path, color="red", label="Observed Sample Path")
axs.legend(loc="lower right")
axs.set_ylim(7.5, 15)
axs.set_title("Exact vs. Posterior Credible Interval Comparison")
axs.set_xlabel("Period")
axs.set_ylabel("Record")

fig.tight_layout()

12
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Figure 6: A comparison of credible intervals from the exact model (green) and the posterior predictive
(blue). The exact model exhibits aleatoric uncertainty, whereas the posterior model exhibits both aleatoric
and parametric uncertainty. In the limit of a large number of observations, the posterior credible intervals
will converge to the exact credible intervals.

The posterior predictive distribution helps us characterize the alternative sample paths we would have
expected to see, should the “rolls of the dice” had turned out differently. Now we turn our attention to
forecasting using the posterior.

5. Predicting Future Records

Given samples of the posterior distribution of the parameters, we can easily generate samples of the forward-
looking posterior predictive distribution conditioned on the past observations we used to fit our model. We’ll
recycle our randomfunction from earlier to achieve this.

n_fcast_periods = 100
forecast_sampler = random(n_fcast_periods, past_obs = sample_path)

posterior = trace[’posterior’]
n_samps_subset = 20000
mus = np.random.choice(posterior.mu.values.flatten(), size=n_samps_subset, replace=False)
sigmas = np.random.choice(posterior.sigma.values.flatten(), size=n_samps_subset, replace=False)

13
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sample_paths = np.zeros((n_samps_subset, len(sample_path)+n_fcast_periods))
for j in range(n_samps_subset):

sample_paths[j,:] = forecast_sampler( point = {"mu": mus[j], "sigma":sigmas[j]} )

Similar to how we just compared the posterior versus exact distributions over the past periods, we can
compare the posterior versus exact forecasting distributions.

# Calculate new index
last_idx = index[-1]
fcast_index = np.arange(last_idx, last_idx+n_fcast_periods, 1)
new_index = np.concatenate((index, fcast_index))

# Plot
fig, axs = plt.subplots(figsize=(13,8))

# First plot the posterior predictive

# Calculate the 1%, 10%, 50%, 90%, and 99% quantiles
lower_bound_one = np.quantile(sample_paths, q=0.01, axis=0)
lower_bound_ten = np.quantile(sample_paths, q=0.1, axis=0)
medians = np.quantile(sample_paths, q=0.5, axis=0)
upper_bound_ninety = np.quantile(sample_paths, q=0.9, axis=0)
upper_bound_ninety_nine = np.quantile(sample_paths, q=0.99, axis=0)

# Plot posterior
axs.fill_between(new_index, lower_bound_one, upper_bound_ninety_nine, alpha=0.4, label="99% CI - Posterior", color="C0")
axs.fill_between(new_index, lower_bound_ten, upper_bound_ninety, alpha=0.7, label="80% CI - Posterior", color="C0")
axs.plot(new_index, medians, label="Median - Posterior", lw=3.0, color="C0", path_effects=[pe.Stroke(linewidth=5, foreground=’k’), pe.Normal()])

# # Plot exact
n_paths = 20000
exact_sample_paths = np.zeros((n_paths, 200))
for j in range(n_paths):

attempts = mu_true + sigma_true*np.random.randn(100)
last_obs = np.atleast_1d(sample_path[-1])
attempts = np.concatenate([last_obs, attempts])
exact_sample_path = np.maximum.accumulate(attempts)[1:]
exact_sample_path = np.concatenate([sample_path, exact_sample_path])
exact_sample_paths[j,:] = exact_sample_path

# # Calculate the 1%, 10%, 50%, 90%, and 99% quantiles
lower_bound_one = np.quantile(exact_sample_paths, q=0.01, axis=0)
lower_bound_ten = np.quantile(exact_sample_paths, q=0.1, axis=0)
medians = np.quantile(exact_sample_paths, q=0.5, axis=0)
upper_bound_ninety = np.quantile(exact_sample_paths, q=0.9, axis=0)
upper_bound_ninety_nine = np.quantile(exact_sample_paths, q=0.99, axis=0)

axs.fill_between(new_index, lower_bound_one, upper_bound_ninety_nine, alpha=0.4, label="99% CI - Exact", color="C2")
axs.fill_between(new_index, lower_bound_ten, upper_bound_ninety, alpha=0.7, label="80% CI - Exact", color="C2")
axs.plot(new_index, medians, label="Median - Exact", lw=3.0, color="C2", path_effects=[pe.Stroke(linewidth=5, foreground=’k’), pe.Normal()])
axs.plot(index, sample_path, color="red", label="Observed Sample Path")
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axs.legend(loc="lower right")
axs.set_ylim(9.5, 15)
axs.set_title("Exact vs. Posterior Forecasting Credible Interval Comparison")
axs.set_xlabel("Period")
axs.set_ylabel("Record")

fig.tight_layout()

Figure 7: A comparison of credible intervals for the forecasted distribution from the exact model (green)
and the posterior predictive (blue). The posterior distribution places higher probabilities on increases in the
record than we would expect if we knew the true “data-generating” µ and σ. As we observe more periods in
the sample path, in the limit the posterior probabilities will converge to the exact probabilities.

This plot helps show how the record will evolve over time, but what if we wanted to forecast the distribution
at a single future period t = 200? We can simply slice out the samples corresponding to this time.

fig, axs = plt.subplots(figsize=(13,5))
axs.hist(sample_paths[:,-1], color="C0", bins=30, alpha=0.6, density=True, label="Posterior")
axs.hist(exact_sample_paths[:,-1], color="C2", bins=30, alpha=0.6, density=True, label="Exact")
axs.set_xlim(np.amin(sample_paths[:,99]), 15)
plt.xlabel("Record at Time t = 200")
plt.ylabel("Normalized Frequency")
plt.title("Record Forecast Distribution")
plt.legend()
plt.show()
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Figure 8: The forecasted distribution of the record in the 200th period. We note that the posterior has a
longer tail than the exact distribution.

If we wanted to know the chance that the record breaks 13 by the period t = 125, we can compute this
probability as a Monte Carlo expectation over our sample paths as

P (Y125 ≥ 13) ≈ 1

M

M∑
j

g (ωj)

where g (·) is the function that returns 1 if this condition is met and 0 otherwise.

posterior_probability = (sample_paths[:,149] > 13).sum()/n_samps_subset
exact_probability = (exact_sample_paths[:,149] > 13).sum()/n_paths

We find that this probability is about 17% given our posterior, but is about 7% given the true values of µ
and σ. This discrepancy arises from our uncertainty about these parameters, which is captured nicely by a
Bayesian approach.

Conclusion

In this article we have:

1. Generated a sample of a cumulative history of records.
2. Derived the likelihood function for said data.
3. Defined and fitted an appropriate Bayesian model to the data using PyMC3.
4. Plotted the predictive posterior distribution of the data and forecasted the distribution of

the future record.

We hope this tutorial will help others perform similar analyses with real data, and gain familiarity with
implementing more challenging models in PyMC3 using custom distributions.
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Appendix: Derivation of the joint likelihood

Proposition 1: Joint distribution of a historical record over time

LetX1, . . . , XN be a collection of i.i.d. random continuous variables with pdf fX and cdf FX , and define Yn :=
maxi≤nXi. Then the joint likelihood for Y1, . . . , YN is given by:

LY (o1, . . . , on) =
∏
i∈R fX(oi)

∏
i 6∈R FX(oi)(1)

where R is the set of indices where a new maximum was established, i.e.

R =
{
i : oi > max{o1, . . . , oi−1}

}
.

First, we note that each Yn is independent of Y1, . . . , Yn−2 when given Yn−1. This means that we can
decompose the joint likelihood as

LY (o1, . . . , oN ) = LY1
(o1)LY2|Y1

(o2|o1) . . .LYN |YN−1
(oN |oN−1)

Consequently, we only need to compute the conditional likelihood LYn|Yn−1
(on|on−1). We can write the CDF

of Yn|Yn−1 as:

FYn|Yn−1=on−1
(on) = P (Yn ≤ on|Yn−1 = on−1) = =


0, amp; if on < on−1,

FX(on−1) = FX(on), amp; if on = on−1,

FX(on−1) +
∫ on
on−1

fX(z)dz = FX(on), amp; if on > on−1.

We will approximate the likelihood of Yn|Yn−1 as the limit of the difference between the cumulative condi-
tional distribution slightly to the right and to the left of the observation (see this post on Cross Validated
for discussion on this approximation).

LYn|Yn−1
(on|on−1) ≈ FYn|Yn−1

(on + ε|on−1)− FYn|Yn−1
(on − ε|on−1) for small enough ε.

We consider three cases:

1. When on < on−1 we have FYn|Yn−1
(on+ε|on−1) = 0 and FYn|Yn−1

(on−ε|on−1) = 0 as long as on+ε < on+1,
so FYn|Yn−1

(on + ε|on−1)− FYn|Yn−1
(on − ε|on−1) vanishes.
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2. When on−1 = on we have that FYn|Yn−1
(on+ ε|on−1) = FX(on−1) +

∫ on−1+ε

on−1
fX(z)dz = FX(on−1) +O(ε),.

For small enough ε the expression is approximately equal to FX(on).

3. When on−1 < on we have that FYn|Yn−1
(on + ε|on−1)− FYn|Yn−1

(on − ε|on−1) =
∫ on+ε
on−ε fX(z)dz.

Assuming f is C1 we can apply Taylor’s theorem we get that for every z ∈ [on − ε, on + ε] there exists c ∈
[on − ε, on + ε] such that fX(z) = fX(on) + f ′X(c)(z − on). And since f is C1 then we have that for
every c ∈ [on−ε, on+ε] there exists a boundm > 0 such that |fX(z)−fX(on)| ≤ |f ′X(c)(z−on)| ≤ m|z−on| .

Therefore we have that∣∣∣∣∫ on+ε

on−ε
fX(z)dz −

∫ on+ε

on−ε
fX(on)dz

∣∣∣∣ ≤ ≤ ∫ on+ε

on−ε
|fX(z)− fX(on)dz| ≤ ≤

∫ on+ε

on−ε
m|z − on|dz = mε2

We conclude that
∫ on+ε
on−ε fX(z)dz =

∫ on+ε
on−ε fX(on)dz + O(ε2) = 2εfX(on) + O(ε2), which is approximately

equal to 2εfX(on) ∝ fX(on) for small enough ε.

We dismiss the first case since the observed time series for the record (our data) must be non-decreasing in
time. The remaining two cases leave us with

LYn|Yn−1
(on|on−1) =

{
FX(on), amp; if on = on−1,

fX(on), amp; if on > on−1.

Deriving the likelihood function for an entire time series then follows immediately. �
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