Fast and efficient CO₂ absorption in non-aqueous tertiary amines promoted by ethylene glycol

Meisi Chen¹, Feng Zhang², Xiemin Liu¹, Xingbang Hu¹, and Youting Wu³

August 1, 2021

Abstract

With the catalytic induction of EG, anhydrous DMEA shows CO₂ absorption performance via chemical binding and physical storage under normal pressure. Among the absorbents, pure DMEA can hardly absorb CO₂ directly but when the zwitterionic alkylcarbonates are formed between CO₂ and DMEA-EG which can be characterized by ¹³C NMR and FTIR, the absorption rate of CO₂ will be improved at this time. An increasing the CO₂ loading as the mass fraction of EG in DMEA-EG, 90wt.% EG captures up to 0.72 mol/mol. The amount of chemically bound and physically stored is directly dependent on temperature, within the range of 293 to 323K, an absorption-regeneration cycle can be formed in a closed vessel because of the zwitterion DMEA-EG-CO₂ is unstable at the higher temperature. In other words, DMEA-EG-CO₂ can be easily regenerated upon appropriate depressurization or heating, corresponding thermodynamic calculations prove that the regenerative energy of DMEA-EG-CO₂ is 25.49kJ/mol.

Hosted file

Manuscript-1.docx available at https://authorea.com/users/342837/articles/532437-fast-and-efficient-co2-absorption-in-non-aqueous-tertiary-amines-promoted-by-ethylene-glycol

¹Affiliation not available

²nanjing university

³Nanjing University