CONVOLUTION EQUATIONS ON THE ABELIAN GROUP $\$ \backslash \mathrm{cA}(-1,1) \$$

Roland Duduchava ${ }^{1}$

${ }^{1}$ The University of Georgia

July 23, 2021

Abstract

The interval $\$ \mathrm{j}=[-1,1] \$$ turns into an Abelian group $\$ \backslash \mathrm{cA}(\backslash \mathrm{cJ}) \$$ under the group operation $\$ \mathrm{x}+-\backslash \mathrm{cJ} \mathrm{y}:=(\mathrm{x}+\mathrm{y})(1+\mathrm{xy})^{\wedge}\{-$ $1\}, \backslash q q u a d x, y \backslash i n \backslash c J \$$. This enables definition of the invariant measure $\$ d_{-} \backslash c J x=\left(1-x^{\wedge} 2\right)^{\wedge}\{-1\} d x \$$ and the Fourier transform $\$ \backslash c F_{-} \backslash c J \$$ on the interval $\$ \backslash c J \$$ and, as a consequence, we can consider Fourier convolution operators $\$ W^{\wedge} 0_{-}\{\backslash c J, \backslash c A\}:=\backslash c F _$ $\backslash c J^{\wedge}\{-1\} \backslash c A \backslash c F_{-} \backslash c J \$$ on $\$ \backslash c J \$$. This class of convolutions includes celebrated Prandtl, Tricomi and Lavrentjev-Bitsadze equations and, also, differential equations of arbitrary order with the natural weighted derivative $\$ \backslash \mathrm{fD}-\backslash \mathrm{cJ} u(\mathrm{x})=-\left(1-\mathrm{x}^{\wedge} 2\right) \mathrm{u}^{\prime}(\mathrm{x}) \$$, $\$ t \backslash i n \backslash c J \$$. Equations are solved in the scale of Bessel potential $\$ \backslash \mathrm{bH}^{\wedge} \mathrm{s}_{-} \mathrm{p}\left(\backslash \mathrm{cJ}, \mathrm{d}_{-} \backslash \mathrm{cJ} \mathrm{x}\right) \$, \$ 1 \backslash$ leqslant $\mathrm{p} \backslash$ leqslant \backslash infty $\$$, and $H \backslash$ "older-Zygmound $\$ \backslash \mathrm{bZ}^{\wedge} \backslash \mathrm{nu}\left(\backslash \mathrm{cJ},\left(1-\mathrm{x}^{\wedge} 2\right)^{\wedge} \backslash \mathrm{mu}\right) \$, \$ 0<\backslash \mathrm{mu}, \backslash \mathrm{nu}<\backslash$ infty $\$$ spaces, adapted to the group $\$ \backslash \mathrm{cA}(\backslash \mathrm{cJ}) \$$. Boundedness of convolution operators (the problem of multipliers) is discussed. The symbol $\$ \backslash c A(\backslash x i) \$, \$ \backslash x i \backslash i n \backslash b R \$$, of a convolution equation $\$ W^{\wedge} 0_{-}\{\backslash c J, \backslash c A\} u=f \$$ defines solvability: the equation is uniquely solvable if and only if the symbol $\$ \backslash c A \$$ is elliptic. The solution is written explicitely with the help of the inverse symbol. We touch shortly the multidimensional analogue-the Abelian group $\$ \backslash \mathrm{cA}(\backslash \mathrm{cJ} \wedge \mathrm{n}) \$$.

Hosted file

Convolutions_Abelian_Groups.pdf available at https://authorea.com/users/301062/articles/ 531457-convolution-equations-on-the-abelian-group-ca-1-1

