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Abstract

Soil erosion is an important problem in the loess landscapes of Europe, resulting in a lowering of soil quality and landscape
changes. As a result of soil erosion, SOC is redistributed and stored in SOC pools within the landscape. Understanding the SOC
dynamics is important because changes in the SOC stocks may have large impacts on global climate change. Closed depressions
(CDs) in loess landscapes collect colluvial sediments resulting from soil erosion and constitute sediment stores enabling the
calculation of soil erosion phases and rates. CDs are also SOC pools enabling assessing of SOC erosion and storage in loess
landscapes over long periods. Colluvial sediments and fossil soils, infilling five representative CDs in the Polish loess areas used
for agriculture during several millennia, were documented. The mean SOC content in CDs were calculated, the area of CDs at
the regional scale were mapped. Between 11.66 and 31.78 Mg of SOC are stored in each CD. The SOC within CDs represents a
significant SOC storage in the landscape of the studied region and can reach values between 178.96 and 206.73 Mg·ha-1(mean
192.85 Mg·ha-1), the SOC content in the soil cover of the surrounding eroded slopes and plateaus is 102.38 Mg·ha-1. This study
indicates that CDs are a key morphological features for a better understanding of the spatial distribution of SOC in agricultural
used loess landscapes of eastern Poland. SOC storage in CDs needs to be taken into account when calculating total soil carbon
storage at the regional scale.
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Soil erosion is an important problem in the loess landscapes of Europe, resulting in a lowering of soil quality
and landscape changes. As a result of soil erosion, SOC is redistributed and stored in SOC pools within
the landscape. Understanding the SOC dynamics is important because changes in the SOC stocks may
have large impacts on global climate change. Closed depressions (CDs) in loess landscapes collect colluvial
sediments resulting from soil erosion and constitute sediment stores enabling the calculation of soil erosion
phases and rates. CDs are also SOC pools enabling assessing of SOC erosion and storage in loess landscapes
over long periods.
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Colluvial sediments and fossil soils, infilling five representative CDs in the Polish loess areas used for agricul-
ture during several millennia, were documented. The mean SOC content in CDs were calculated, the area
of CDs at the regional scale were mapped.

Between 11.66 and 31.78 Mg of SOC are stored in each CD. The SOC within CDs represents a significant SOC
storage in the landscape of the studied region and can reach values between 178.96 and 206.73 Mg·ha-1(mean
192.85 Mg·ha-1), the SOC content in the soil cover of the surrounding eroded slopes and plateaus is 102.38
Mg·ha-1.

This study indicates that CDs are a key morphological features for a better understanding of the spatial
distribution of SOC in agricultural used loess landscapes of eastern Poland. SOC storage in CDs needs to
be taken into account when calculating total soil carbon storage at the regional scale.

Keywords: SOC storage, loess landscape, closed depressions, soil erosion, colluvial sediments, fossil soils

1. Introduction

Soil organic carbon (SOC) represents the largest part of the terrestrial carbon reservoir (Doetterl et al.,
2016).

SOC determines qualities and functions of soils and is partly released into the atmosphere possibly con-
tributing to climate change (e.g. Batjes, 1996; Lal, 2004; Meersmans et al., 2016; Wiesmeier et al., 2019).
Quantification of soil organic carbon storage at various spatial and temporal scales is important in the con-
text of climate and environmental changes as well as land management. Current regional studies have used
a multiple regression approach to predict SOC (e.g. Grimm et al., 2008; Meersmans et al., 2008; Suuster et
al., 2012).

Wiesmeier et al., (2019) proposed a quantification of SOC storage using many different indicators based on
mainly factors controlling SOC content in soils.

Soil types and its features (i.e. clay content, soil texture, Ca and Mg cations, metal oxides, micro and macro
soil fauna), soil moisture (drainage class), climate (air temperature, precipitation, potential evapotranspira-
tion), topography (slope gradient, elevation and other terrain attributes) and land use are factors most often
used for SOC assessment, as well as for mapping and predicting SOC distribution (e.g. Tan et al., 2004; Vos
et al., 2019; Wiesmeier et al., 2014; Wiesmeier et al., 2019). However, it should be emphasized that SOC
content also changes with soil depth depending on different controlling factors (e.g. Hobley & Wilson, 2016;
Jobbágy & Jackson, 2000; Vos et al., 2019). The SOC content is most frequently studied in the topsoil (i.e.
the upper 0.15-0.3 m), and rarely in the entire soil profiles (e.g. Arrouays et al., 2001, Bellamy et al., 2005;
Pignard et al., 2000; Rumpel & Kögel–Knabner, 2011; van Wesemael et al., 2005).

Rumpel & Kögel–Knabner, (2011) suggest that ca. 50% of the total SOC stocks is found in subsoil. Especially
in eroded landscapes SOC buried at depositional sites may be underestimated when one assesses SOC stocks
in topsoil only. Therefore, SOC content in the entire soil profile should be assessed (Doetterl et al., 2016).

In landscapes where significant soil erosion occurs, the importance of topographic conditions for the spatial
distribution of SOC and its storage is emphasized (Doetterl et al., 2016).

Some studies revealed that topographical features are of major importance for understanding SOC distribu-
tion only at local scales where there are small variations in soil properties. At regional scale topography is
usually considered to be less important for SOC storage (e.g. Thompson et al., 2006; Vos et al., 2019). Soil
moisture (low C mineralization and microbial activity under high soil moisture content) is considered to be
the most important factor for SOC storage and its spatial distribution at regional scale (e.g. Neufeldt, 2005;
Tan et al., 2004; Wiesmeier et al., 2019).

It should be noted, however, that the spatial variation of soil moisture content is affected by the topography
of an area. The presence of concave forms, small elevation differences and gentle slopes favour the retention
of soil moisture, while steep slopes and large elevation differences are conducive to the drainage of surface
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and subsurface water rather than the retention of moisture in the soil. Therefore, topography is a significant
factor and may have not only a direct (SOC erosion control) but also an indirect (moisture control) effect
on SOC distribution in landscapes.

The models predicting SOC dynamics are often used at regional and national scales. Martin et al. (2014)
compared and evaluated available models used for SOC stocks prediction and mapping.

In previous studies it was observed that some landscapes in loess regions may have up to 60 CDs per
km² closed depressions (CDs) in which colluvial deposits containing SOC have been reported (Ko lodyńska-
Gawrysiak & Poesen, 2017; Ko lodyńska-Gawrysiak, Poesen & Gawrysiak, 2018). The aim of this study is
therefore to quantitatively assess the influence of such CDs on the spatial SOC distribution in eroded loess
landscapes at the regional scale. This study addresses SOC across the whole soil profiles.

2. Materials and methods

2.1. Study area

The study area is the Na lęczów Plateau (East Poland) which covers 49608 ha (Figure 1).

The area is covered by loess patches which were mainly deposited during the Vistulian Glaciation ( ca. 50
000 BP to 15 000/12 000 BP). These loess patches are separated by river valleys where the loess cover is
absent (Maruszczak, 1991). The thickness of the loess reaches values of 10 to 20 m in the eastern part and
up to 30 m in the western part of the region (Harasimiuk, 1987).

Peat with a mean thickness of 3 m, covered by alluvial soils with a mean thickness of 2.3 m, is found in the
river valleys of the study area (e.g. Ba laga & Maruszczak, 1981; Urban & Mikosz, 1996; Superson et al.,
2003, 2016).

The loess belt covers a Pleistocene sediment complex made up of glacigenic deposits (glacial tills, sands
and gravels, clayey loams, clays) from the Odranian (Saale 1) and the Sanian (Elsterian) Glaciation (Ha-
rasimiuk & Henkiel, 1978; Pożaryski et al., 1994). The bedrock of the Na lęczów Plateau consists of Upper
Maastrichtian (opoka, marly opoka, marl) and Palaeogene (limestone, gaize and carbonate sandstone) rocks
(Pożaryska, 1967; Harasimiuk, 1980).

Vast surfaces of this loess plateau have CDs that are a typical element of the landscape of the Na lęczów
Plateau (Figure 1). CDs are shallow and barely visible in loess landscape micro landforms, infilled by soil-
sediment sequences (Figure 2). Moreover, the Na lęczów Plateau is dissected by main river valleys (Bystra,
Ciemięga) and also small river valleys (Grodarz, Czechówka) as well as many erosion-denudation valleys and
gully systems (Figure 1). The average density of the gully network is 2.48-10 km per km2 in the western part
of the region, while in the eastern part it does not exceed 2 km per km2 (Gawrysiak & Harasimiuk, 2012).
The relative heights in the region reach 40–50 m and maximally 90 m in the western part of the region.

The loess of the Na lęczów Plateau is overlain by Luvisols in different stages of erosion, Colluvisols in CDs
and dry valley bottoms as well as Fluvisols in valley bottoms.

2.2. Soil data

2.2. 1 Field and sampling methods

5 CDs, representative for this study area, were chosen for detailed soil profile and SOC measurements. At
the bottom of each CD (i.e. its deepest point), a 160-220 cm deep soil profile pit (outcrop) was dug, reaching
the lower boundary of the soil horizons (Figure 3). Next, identification and documentation of soil horizons
and colluvial layers in the exposures were made. All outcrops were described, according to standard methods
(Guidelines for soil descriptions, FAO, 2006).

Bulk samples of soils and sediments were collected from each horizon in the wall of the exposures for
laboratory analysis. One to four samples were collected from each of the horizons distinguished, depending
on their thickness.
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A total of 103 soil samples were collected from 5 soil profiles, all located in the bottom of the studied CDs.
The samples were air-dried, crushed with a mortar, sieved at 2 mm and stored in plastic bags.

Furthermore, 20 to 30 control augerings were carried out in each CD to determine the areal extent and
thickness of colluvial sediments (C1, C2) and fossil soil horizon (A, Bh, Bt) extension. Augerings were
located in two cross-sections of each CD (Figure 3).

2.2.2. Laboratory analyses and SOC stock calculations

Soil organic carbon content (SOC %) was determined using a LECO CNS elementary analyzer. The cali-
bration method was based on ISO 10694:2002 and was three-point calibration with the transition through
point 0. C: y = 0.9904x + 0.0051. Mean SOC (mass %) was calculated for the sampled soil horizons. SOC
content in the CDs (SOC cont, t) was calculated using the volume (V, m³) of colluvial layers and fossil soil
horizons as well as bulk density (B, t·m³). The volume (V, m³) of colluvial layers and fossil soil horizons was
determined as the product of the areal extent (E, m²) of the colluvial layers and the fossil soil horizons and
the mean thickness (D, m) of these layers : V = E x D;

SOC cont = V x B x SOC (%).

SOC content in the soil covering the loess plateau and slopes in the studied region was estimated using data
from soil profiles studied by Paluszek (2001) and Paluszek, Żembrowski (2008).

2.3. Delimitation of closed depressions and map elaboration methodology

The analysis of closed depressions was made using a Digital Terrain Model (DTM) elaborated as a part
of the ISOK project (Informatic System for Country Protection against extraordinary hazards), involving
LiDAR scanning of Poland in the period 2011-2014 (Woźniak, 2015). The DTM has a vertical accuracy of
0.15 m and a high spatial resolution of 1x1 m (Kurczyński et al., 2015). Closed depressions were extracted
from this DTM using the CDs function, included in SAGA-GIS (Conrad et al., 2015). The resulting grid
contained all CDs, strongly differentiated in shape and size. In the next stage, depressions with an area of
more than 200 m2 were extracted and grid data was converted to shapefile polygons. Then depressions of
anthropogenic origin were manually selected and removed based on the analysis of shaded relief, coloured
DTM and field observations. Next, polygons were automatically smoothed and small errors were manually
removed from some polygons. The spatial distribution of SOC was analysed using 10 ha hexagons. First,
a simplified geomorphological map of the Na lęczów Plateau, containing the valley bottoms, slopes, plateaus
and closed depressions, was drawn using GIS software. Then data from laboratory analyses of SOC content
in the soils inside the CDs were assigned to their map polygons, while SOC content in soils outside CDs in
the study area was obtained from published data and assigned to the polygons as well. Then the contribution
(%) of the main relief elements (CDs, slopes and hilltops) inside each hexagon was calculated. Based on the
SOC content of these relief elements, total SOC content within the hexagons were computed. Only hexagons
where CDs, slopes and tops cover together entirely hexagons’s area were used in calculations. Separate maps
of SOC content within the closed depressions and of closed depressions together with plateaus and slopes
were elaborated. Hexagons of 10 ha area were used for the spatial analysis of the CDs in the study area
(consisting of 4960 hexagons). The number of CDs per unit area (density of CDs) in the study area was
calculated by summing all CDs per hexagon and then converting these values into the number of CDs per
ha.

For the calculation of the spatial distribution of SOC in the eroded loess landscape, measured SOC content
in CDs and on slopes were used. SOC values for each hexagon are calculated as sum of SOC content in all
the corresponding CDs and the SOC content of the remaining sloping areas. These calculations cover 100%
of the Na lęczów Plateau. SOC present in valley bottoms was not taken into account in these calculations.

For calculating SOC from all CDs in the study area only the areal fraction of the CDs in each hexagon
was taken into account. This calculation covers 23 010 ha (46.3% of the Na lęczów Plateau). Contribution of
SOC stored in CDs (SOC enrichment in Mg·ha-1) to overall SOC distribution in the studied landscape was
calculated as the difference between SOC content in CDs and the SOC content on slopes.
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SOC enrichment for each hexagon (% SOC) is the fraction of SOC content in CDs (Mg·ha-1) to total SOC
content in CDs and on slopes. This calculation is only made for hexagons, where CDs and slopes cover
together 100% of the hexagon area (in total 19 820 ha, 39.95 % of the Na lęczów Plateau).

Next Pearsons’ correlation coefficients were calculated between the density of CDs and SOC enrichment
(Mg·ha-1 and %) per hexagon.

3. Results

3. 1. Spatial distribution and structure of closed depressions (CDs)

CDs are small landforms, commonly found in the European loess belt (Ko lodyńska-Gawrysiak & Poesen,
2017). 5367 CDs have been mapped in the Na lęczów Plateau. The total area of the CDs bottoms is 7.26
km2, representing 1.46% of the study area. CDs are not evenly distributed in the studied region. In some
places, their density reaches 1 CD·ha-1 (max. 1.9 CDs·ha-1). Areas where CDs density does not exceed 1
CD·ha-1 predominate in the Na lęczów Plateau (Figure 4). Fossil soils and colluvial sediments in 5 CDs
were studied in detail and dated (Ko lodyńska-Gawrysiak et al., 2017; Ko lodyńska-Gawrysiak, Poesen &
Gawrysiak, 2018; Ko lodyńska-Gawrysiak, 2019). These CDs are all filled with a 80-90 cm thick Holocene
soil-sediment sequence, consisting of two colluvial sediment layers (C1 and C2) and a fossil Colluvisol (S2)
Ab2g-Cg (Table 1, Figure 3). This sequence overlies a fossil soil (S1) Ab1g-Bht-Btg-BtC-C that developed
on loess in situ. On the slopes this soil has the horizons A-E-Bt1-Bt2-BtC-C-CHCl+ or predominantly A-Bt1-
Bt2-BtC-C-CHCl+ as a result of soil erosion (Figure 3). Calcareous loess was found below the soil surface
of the CD slopes (Figure 3). Below the CD bottoms, calcareous loess was not detected. The dating results
indicate that fossil soil S1 developed during along period from the Late Vistulian until the Late Boreal or
Early Atlantic Period (10130± 60 BP until 7.99 ± 0.65 BP). The older colluvial layer C1 is 30-60 cm thick.
The formation of this layer occurred from the Late Boreal or Early Atlantic Period until the (Middle)Late
Bronze Age or Early Iron Age (7.99 ± 0.65 BP until 3.67 ± 0.33 BP/2.37 ± 0.13 BP). The fossil Colluvisol
(S2) Ab2g-Cg developed on the oldest colluvial layer C1 (Figure 3). This fossil Colluvisol developed from the
Late Bronze Age or Early Iron Age until the Early or High Middle Ages (3.67 ± 0.33 BP/ 2.37 ± 0.13 BP until
7th–8thc/12th–14th c). At the top of the CDs infilling younger colluvia C2, 50-70 cm thick with Colluvisol
have been found (Table 1, Figure 3). The younger colluvia C2 layers were deposited during the last several
hundred years, i.e. since the Early Middle Ages until today (7th–8th c until today) (Ko lodyńska-Gawrysiak,
2019).

3.2. SOC content in closed depressions

In the soils and sediments from the CDs bottoms one can observe higher SOC contents than in the thin soil
cover on the slopes of the studied CDs (Figure 5). Both in the bottoms and on the slopes of the CDs, SOC
content decreases to 0.2 % with increasing depth (Figure 5). On the slopes of the CDs this value is reached
at 0.5 m depth. After a slight increase in the B horizons, the average SOC content decreases again to 0.2%
already at a depth of 1.3 m (Figure 5). In the bottom of the CDs, down to a depth of ca. 1 m, a colluvial
layer is observed where the average SOC content is the highest, ranging from 0.5% to 1.1%. With increasing
depth, the average SOC content drops to about 0.2% at a depth of 2 m (Figure 5). A slight increase of SOC
content to 0.6% at a depth of 1.2-1.4m accompanies the humus horizons of fossil soils (Figure 5).

Mean SOC content in colluvial sediments C1 and C2 infilling the studied CDs ranges from 0.47 to 0.82 %
(Table 2). However in younger colluvial sediments C2 usually is up to twice the value of SOC content from
the older colluvial sediments C1. Fossil soils S1 have a smaller SOC content than that of colluvial sediments
i.e. 0.2-0.55 % (Table 2).

Volume of colluvial sediments in particular CDs varies between 509.6 and 1715.59 m3 and depends on the
CD size. The mass of colluvial sediments infilling the studied CDs ranges from 787.52 to 2651.5 t. The SOC
content in these colluvial sediments ranges from 5.28 to 20.39 t (Table 2). SOC content in fossil soils S1
covering the original bottoms of the CDs varies from 4.12 to 15.98 t and is smaller than SOC content in
colluvial sediments (Table 2). There may be two reasons for this: longer time for decomposition of organic
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matter in these Late Vistulian-Early Holocene soils than in colluvial sediments as well as the areal extent of
these soils and of the colluvial sediments in the CDs. In total, between 11.66 and 31.79 t SOC are stored in
the studied CDs, the average being about 20 t SOC (20.62) per CD (Table 2).

Between 206.73 and 178.96 Mg SOC·ha-1 (20 673.27 and 17 896.01 Mg SOC·km-2) average 192.85 Mg
SOC·ha-1 (19 285.58 Mg SOC·km-2) are stored in the bottoms of all CDs (Table 3). Between 1.87 and
7,69 Mg SOC is stored in the topsoil of each CD (Table 4). In regional scale between 42.34 and 34.18 Mg
SOC·ha-1 (4234.14 and 3418.73 Mg SOC·km-2) and average slightly more than 38.26 Mg SOC·ha-1 (3826.44
Mg SOC·km-2)(about 1/4) are stored in the topsoil of all CDs whose total area is slightly over 7 km2 (1.46%
of the region’s area) (Table 5). This shows that in the bottoms of the CDs, the highest SOC reserves are
below the topsoil. This is opposite to the situation on the loess plateaus and slopes (Table 6).

3.3. SOC content in the eroded loess plateau and slopes of Na lęczów Plateau

The plateau tops and slopes of the Na lęczów Plateau are covered by Luvisols in different stages of erosion
(Table 6), which leads to a variation in the depth of the soil profile and of soil properties. In the light of
studies on Luvisols conducted by Paluszek (2001) and Paluszek and Żembrowski (2008), the mean thickness
of the soil cover on the loess plateau tops and soils is 0.81m, while the mean SOC content in these soils is
0.79% (Table 6). On average, 4 695 432.62 Mg SOC (10 238.39 Mg SOC·km-2, 102.38 Mg SOC·ha-1) of SOC
is stored in the soil cover of the slopes and plateau tops (Table 7). Out of that amount, half of the SOC
(51.07 Mg SOC·ha-1, 5107.19 Mg SOC·km-2) is stored in the topsoil (average 0 – 0.24 m depth) of the slopes
and plateau tops of the Na lęczów Plateau.

3.4. The spatial distribution of SOC stocks in the agriculturally used eroded loess landscape
of the Na lęczów Plateau

At regional scale, a strong variation of SOC distribution within non-valley areas can be observed (Figure 6),
which results from the presence of a microtopography (closed depressions) on the loess plateau. In most non-
valley areas of the Na lęczów Plateau, SOC storage is 100-105 Mg·ha-1 (Figure 6). The CDs within the loess
plateau tops constitute local stores of sediments and SOC originating from soil erosion in their catchment.
The CDs are not evenly distributed (see Figure 4), and their presence leads to a local increase in SOC
storage within the plateau tops and slopes to more than 105 Mg·ha-1 and even more than 120 Mg·ha-1 (max.
144.1 Mg·ha-1) and to a considerable variation of its spatial distribution (Figure 4 and 6). A high density of
the CDs (above 1 CDs·ha-1) is usually accompanied by a considerable mass of stored SOC i.e. 105.1-144.1
Mg·ha-1. In these areas about 10-50 Mg·ha-1 and sometimes above 50 Mg·ha-1 SOC is present in the CDs
(Fig. 7).A relationship is observed between CDs density on the plateau tops and slopes and SOC enrichment
(Figure 8). SOC enrichment is 4-25 Mg·ha-1 in areas with a high density of CDs ( i.e. > 1 CDs·ha-1). The
Pearson’s correlation coefficient is 0.57. Some areas with a smaller density of CDs (i.e. < 1 CDs·ha-1) show
a similar or higher (max. 42 Mg·ha-1) value of SOC enrichment, which is explained by the larger sizes of the
CDs observed there (Figure 8). The size of the CDs is of secondary importance, however, because most CDs
are of similar size. More than 76% of the CDs have diameters less than 65 m, and the area of more than 65%
of the CDs does not exceed 1400 m2 (Ko lodyńska-Gawrysiak & Poesen, 2017).

At the regional scale, most of the analyzed plateau and sloping areas (95.96%) have a number of CDs that
represent a SOC enrichment in the eroded loess landscape by a few percent (up to about 10%) (Figure 9).

For 3.83% of the analyzed area of plateau and slopes, SOC stored in the CDs leads to a local SOC enrichment
by 10-20% i.e. 10.1-30 Mg·ha-1 at most, and for 0.32% of these areas, up to 20-30% i.e. 30.1-41.8 Mg·ha-1

respectively (Figure 9, 10). An average increasing of SOC storage in the studied eroded landscape is 3.08%.
A relationship can be observed between CDs density and SOC enrichment (%) of loess plateau (Figure
11). The Pearson’s correlation coefficient is 0.60. A high density of the CDs (above 1 CDs·ha-1) is usually
accompanied by a considerable enrichment of SOC (i.e. 4-20 %). The presence of a small number of large
CDs results in a higher SOC enrichment (by up to 20-28%) for a CDs density less than 1 CD·ha-1

4. Discussion

6
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The results show that the SOC content in the whole soil cover of the agriculturally used loess slopes and
plateau tops (including microtopography i.e. CDs) of the Na lęczów Plateau is 100-144 Mg·ha-1. If we disregard
the specific for loess area microtopography (CDs), this value in the area under study will be slightly lower,
i.e. 102.38 Mg·ha-1 of SOC. In eroded sites (loess slopes and plateaus) 51.07 Mg·ha-1 SOC are stored in the
topsoil (i.e. the A horizon, mean depth 0.24 m). In depositional sites (i.e. CDs) about ¼ (38.26 Mg SOC·ha-1)
of SOC are stored in the topsoil. This confirms the findings of Rumpel and Kögel-Knabner (2011) that high
SOC storages may be present below the topsoil and not only within the topsoil. Therefore, more attention
should be given to subsoils when assessing SOC stocks. Otherwise, calculated SOC stocks will be strongly
underestimated.

For Wallonia, Chartin et al. (2016) determined the mean predicted SOC stock in the topsoil at 59.9 Mg C·ha-1

in cropland (53.5-107 Mg C·ha-1 for different regions). For the same region, Lettens et al. (2005b) determined
the mean SOC stock value at 48 Mg C·ha-1 in cropland. These differences results from the different research
methods adopted by the authors. In France, mean SOC stock for cropland is 55.7 Mg C·ha-1(Meersmans et
al., 2012). At the scale of the whole territory of Belgium, Meersmans et al. (2011) forecasted a SOC stock
value of 49.5 Mg C·ha-1 for cropland. In Poland, the present soil organic carbon stock (SOC) in topsoils for
the main soil types range from 36 to 42 Mg C·ha-1 (Faber et al., 2012). The results of SOC content in topsoil
obtained in this study are comparable with the results for other European regions.

In the agriculturally used loess areas subject to erosion, topography has both a direct and an indirect impact
on SOC distribution in the landscape. The direct impact consists of the accumulation of SOC-rich colluvial
sediments in depressions; these sediments are products of soil erosion on hillslopes (Sorensen et al., 2006).
Erosion causes a loss of SOC in topsoils of sloping land and a reduction of their thickness. In the eroded
loess landscapes of the Na lęczów Plateau, CDs are SOC pools where soil erosion-derived colluvial sediments
of considerable thickness are accumulated. SOC storage in the CDs originates not only from soil erosion in
their catchment but also from fossil soils that have been buried by SOC-rich colluvial sediments. Together
with the subsurface fossil soils, closed depressions store more (almost twice) SOC (mean 192.85 Mg·ha-1)
than eroded soils on sloping cropland (mean 102.38 Mg·ha-1). These results demonstrate that if one neglects
microtopographic features like CDs the true SOC storage will be underestimated.

The study of Grimm et al. (2008) indicated that topographic features explained most of the spatial variability
of soil organic carbon content in the topsoil (0–0.1 m) at the regional scale. In the subsoil (0.10–0.50 m),
SOC distribution was related to soil texture.

The investigations conducted in the Na lęczów Plateau indicate that the microtopography has also a signifi-
cant impact on the vertical distribution of SOC in soil profiles. About 1/4 (38.26 Mg·ha-1) of the mean SOC
storage in CDs is found in the topsoil (0-0.24 m) of these forms (Table 5). Most SOC stored in the CDs
occurs in the subsoil and fossil soil (at a depth ca. 1.0 m). The topsoil at the loess plateau tops and slopes
(without CDs) contains about half (51.07 Mg·ha-1) of the mean amount (102.38 Mg·ha-1) of SOC within the
soil cover of these areas (Table 7).

The indirect impact of topography on the spatial SOC distribution in the landscape is linked to its influence
on the larger soil moisture contents (and even water logging) within the CDs and hence on SOC storage. This
has been confirmed in studies by Meersmans et al. (2011) who demonstrated that, at the catchment scale,
a higher SOC content is correlated with soils of waterlogged valley bottoms. The bottoms of CDs are areas
with a larger moisture content than the surrounding slopes, which can be deduced from the redoximorphic
features in colluvial sediments deposited in the CD bottoms. The SOC mass stored in the colluvial sediments
of the CDs is similar to that of the underlying fossil soils. On average, 10.23 Mg SOC per CD is stored in the
colluvial sediments of the studied CDs, while 10.39 Mg SOC per CD is stored in the underlying fossil soils
(Table 2). Furthermore, SOC distribution in fossil soil profiles indicates a vertical leaching of SOC deeper
into the soil profiles as a result of surface water infiltration in the CD bottom. This is deduced from the
morphology and micromorphology of the soils in the CDs and their geochemical properties (Ko lodyńska-
Gawrysiak et al., 2017). The indirect impact of topography on SOC storage, expressed by the topographic
wetness index (TWI), was emphasized by Wiesmeier et al. (2013). Depressed areas display on average
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a larger soil moisture content which delays the decomposition of organic matter and is conducive to the
accumulation of SOC.

According to Wiesmeier et al. (2019), the influence of topography (topographic position, slope gradient,
TWI) on the variation of SOC storage is significant only at a local scale. It is less significant at regional scale
where SOC storage is determined by climate, vegetation, texture, parent material, land use and management.
Models predicting SOC content at the national or large regional scale usually do not take topography into
account either. The model of SOC prediction at the national scale, proposed by Martin et al. (2010) showed
that SOC distribution is strongly correlated with land use (forest soils, cropland soils). This study reveals
the significant impact of (micro)topography (microrelief) on the SOC storage for the regional scale. For the
Na lęczów Plateau area, the inclusion of microtopographic features (i.e. closed depressions), typical for loess
areas, enabled a more accurate estimation of SOC storage. 95.86 % of the studied eroded landscape actually
holds to 10% more SOC than what models excluding SOC storage in CDs would suggest (Fig. 9). For about
4.13% of these areas, the exclusion of CDs results in an underestimation of SOC storage in the landscape
from 10% to 30 % (Fig. 9).

The presence of thick colluvial sediment layers of different ages in the CDs suggests the influence of these
microtopographic landforms on SOC storage in the past (Ko lodyńska-Gawrysiak, Poesen & Gawrysiak,
2018). Today this carbon storage is often not quantified when conducting organic carbon inventories at local
or regional scale. A similar remark has been made for buried peatlands that have accumulated significant C
stocks over millennia (Treat et al., 2019).

5. Conclusions

The SOC distribution in the soil cover of the eroded loess areas (with CDs) of the Na lęczów Plateau ranges
is 100-144 Mg·ha-1.

About 1/4 (38.26 Mg·ha-1) of SOC in CDs are stored in the topsoil of these forms. Most SOC stored in the
CDs occurs in the subsoil and fossil soil. If we disregard microtopography the topsoil contains ca. half (51.07
Mg·ha-1) of the total SOC mass present in the soil cover of the eroded plateau tops and slopes.

In the erosional loess landscape of the Na lęczów Plateau, topography directly and indirectly influences SOC
distribution in the landscape. The direct influence stems from the redeposition of SOC through soil erosion
on the hillslopes and correlative sedimentation in closed depressions. The indirect impact of topography on
SOC distribution results from the influence of the larger soil moisture content (and even water logging) in
the CDs on SOC storage.

Taking into account these microtopographic features, typical of loess-covered areas, enabled a more accurate
calculation of SOC storage and understanding of its spatial distribution. At the scale of the studied region,
excluding SOC storage in CDs would result in a 30% underestimation of SOC.

CDs had also a significant influence on SOC storage in the past, as evidenced by SOC-rich Holocene soil-
sediment sequences infilling the CDs.

Conflict of Interest Statement : There is no conflict of interest that exists in the submission of this
manuscript.
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(based on Paluszek 2001, 2008)

Table 7. SOC content in soils on the plateau and slopes of the Na lęczów Plateau (based on Paluszek 2001,
2008). * mean thickness of A horizon (see Table 6), ** mean SOC (%) in A horizon (see Table 6 )

List of figures:

Figure 1. Location of the Na lęczów Plateau

Figure 2. Typical CD infilled by a Holocene soil-sediment sequence in loess landscape of Na lęczów Plateau

Figure 3. Typical CD, studied in Rąblów, a) location of the outcrops (soil profile pits) and drillings along
two transects, b) stratigraphy and soil horizons in CD, c) cross-sectional structure of the CD

Figure 4. Spatial distribution of CDs per unit area in the studies region. A unit area (hexagon) covers 10 ha

Figure 5. SOC content in the studied closed depressions (CDs)

Figure 6. Spatial distribution of SOC in the eroded loess landscape of the Na lęczów Plateau. River valleys
and main dry valleys were excluded in these calculations

Figure 7. SOC from CDs in loess landscape

Figure 8. Relationship between CDs density and SOC enrichment (Mg·ha-1). Calculation is based on 1791
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Figure 9. Contribution of SOC stored in CDs (SOC enrichment in %) to overall SOC distribution in loess
landscape

Figure 10. Contribution of SOC stored in CDs (SOC enrichment in Mg·ha-1) to overall SOC distribution in
the studied loess landscape.

Figure 11. Relationship between CDs density and SOC enrichment (%) in loess landscape (calculation is
based on the same polygons as in Figure 7). Total number of datapoints corresponds to 1791 polygons (10
ha in size).
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