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Abstract

When two or more amino acid mutations occur in protein systems, they can interact in a non-additive fashion termed epistasis.
One way to quantify epistasis between mutation pairs in protein systems is by using free energy differences: = ??G1,2 - (??G1

+ ??G2) where ??G refers to the change in the Gibbs free energy, subscripts 1 and 2 refer to single mutations in arbitrary order

and 1,2 refers to the double mutant. In this study, we explore possible biophysical mechanisms that drive pairwise epistasis in

both protein-protein binding affinity and protein folding stability. Using the largest available datasets containing experimental

protein structures and free energy data, we derived statistical models for both binding and folding epistasis ( ) with similar

explanatory power (R2) of 0.299 and 0.258, respectively. These models contain terms and interactions that are consistent with

intuition. For example, increasing the Cartesian separation between mutation sites leads to a decrease in observed epistasis

for both folding and binding. Our results provide insight into factors that contribute to pairwise epistasis in protein systems

and their importance in explaining epistasis. However, the low explanatory power indicates that more study is needed to fully

understand this phenomenon.
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Abstract

When two or more amino acid mutations occur in protein systems, they can interact in a non-additive
fashion termed epistasis. One way to quantify epistasis between mutation pairs in protein systems is by
using free energy differences: = ??G1,2 - (??G1 + ??G2) where ??G refers to the change in the Gibbs free
energy, subscripts 1 and 2 refer to single mutations in arbitrary order and 1,2 refers to the double mutant. In
this study, we explore possible biophysical mechanisms that drive pairwise epistasis in both protein-protein
binding affinity and protein folding stability. Using the largest available datasets containing experimental
protein structures and free energy data, we derived statistical models for both binding and folding epistasis
( ) with similar explanatory power (R2) of 0.299 and 0.258, respectively. These models contain terms and
interactions that are consistent with intuition. For example, increasing the Cartesian separation between
mutation sites leads to a decrease in observed epistasis for both folding and binding. Our results provide
insight into factors that contribute to pairwise epistasis in protein systems and their importance in explaining
epistasis. However, the low explanatory power indicates that more study is needed to fully understand this
phenomenon.
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1. Introduction

Multiple amino acid mutations can interact in biological systems, leading to nonadditive effects termed epis-
tasis. While a general understanding of the concept of epistasis has existed for many years, the prevalence of
epistasis, or its importance in biological systems, is still a matter of debate1–5. Some believe it is a major force
in evolution, either by constraining the available pathways for systems to evolve, by counteracting mutations
that reduce fitness through compensatory effects, or by contributing to a more rugged fitness landscape6–18.
Others have explored the epistatic effect between sets of beneficial mutations, finding that epistasis is per-
vasive and a key aspect of adaption, but leading to diminishing returns or negative epistasis10,19,20,20–22.
Other studies using RNA viruses have shown that epistasis is prevalent and likely a mechanism for their
evolution23–28. Epistasis has also been shown to be a likely contributing factor to drug and antibody resis-
tance of influenza A, HIV-1 and other pathogens12,24,29,30, and for general disease susceptibility in humans31.
Finally, the complexity that epistasis provides in understanding mutation effects must be accounted for in
protein engineering and design32–35.

For pairs of simultaneous mutations in proteins (we will refer to these as “double mutations”), epistasis can
be expressed in terms of free energy differences:

= ??G1,2 - (??G1 + ??G2) (EQ 1)

Where ??G1,2 corresponds to the change in the folding or binding free energy due to the double mutation,
and ??G1+ ??G2 refers to the sum of the constituent single mutation free energy changes. This nonadditivity
can be caused by direct interactions between mutational sites, or by indirect effects such as conformational
perturbations. Epistasis is positive when the double mutant is more stabilizing than the sum of the con-
stituent singles ( < 0) and negative when the double mutant is more destabilizing than the sum of the
constituent singles ( > 0).

Despite its importance to understanding biological systems, a comprehensive mechanistic picture of the
drivers of epistasis in proteins is not known. An early attempt to explain epistasis mechanisms is a study by
Wells36; they concluded that features like separation distance, electrostatic interactions, and conformational
perturbations were likely contributors. However, this conclusion was based on a small data set containing
a total of 12 folding and binding systems, with less than 75 total multiple mutations. More recent studies
have examined specific protein systems like TEM-1 β-lactamase37,38and the IgG-binding domain of protein
G39, finding pervasive negative epistasis. Long-range epistasis has also received attention Gromiha et al.
proposed that distant residues that are part of a specific local group (they defined this as a rigid cluster)
could lead to epistasis40. Other researchers have used tools like molecular dynamics to analyze if networks of
interactions can mediate long-range epistasis41. Classification systems have also been developed. Jemimah
et al. used structural features to build a model to classify whether mutational pairs would be additive (i.e.,
not epistatic)42. These previous studies provide a basis for understanding possible contributors to epistasis
and some even offer predictive capability, however they do not provide a complete understanding of epistasis
mechanisms and their interactions.

In this study, we determine biophysical drivers of pairwise epistasis in protein systems and rank their contri-
bution to the observed epistasis, (EQ 1). We used protein structural data, protein-protein binding affinities,
and protein folding stabilities from the largest, most diverse datasets currently available. We explored possi-
ble relationships between the observed epistasis and features that are intrinsic to both the proteins and the
mutated residues. A statistical model selection procedure was performed to determine the features that are
most important to explaining the observed epistasis. The models determined for binding and folding have
similar and modest predictive power. Both models contain similar features that include separation distance
and charge interactions. Our work serves as a stepping stone to further our understanding of the biophysical
drivers of epistasis, and to build future models with more complex features and interactions.

2. Methods

3
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2.1: Curating experimental data

Experimental binding affinity data was obtained from SKEMPI v2.043and folding stability data from
ProTherm 444. Since the focus of our study is pairwise epistasis, we extracted a subset of the data consisting
of all instances where there was data for a double mutant and the corresponding constituent singles. For
both folding and binding data, values were converted to kcal/mol. A temperature of 298 K was used if not
specified in the dataset. Averages were calculated for mutations that included multiple free energy values.
The attributes in the resulting curated folding and binding datasets used in our study include the PDB ID,
protein complex name, the mutation(s), and either binding or folding free energy values. The total number of
data points for double mutants with constituent single mutants were 572 from 58 protein-protein complexes
for binding, and 204 from 30 protein systems for folding. Epistasis was calculated for each double mutation
data point using EQ 1, that is, by taking the difference between the free energy change due to the double
mutation and the sum of the free energy changes due to the constituent single mutations. Protein structures
used for analysis were acquired from the RCSB Protein Data Bank (PDB)45.

2.2: Extracting Features as Possible Drivers of Epistasis

For electrostatics, and other categorical features described below, the explicit wildtype-mutant pairs are
henceforth denoted separated by a semicolon for simplicity: wt1wt2;mut1mut2.

Amino Acid Properties

To investigate the effect of electrostatics on epistasis, we classified amino acids as positively charged (+),
negatively charged (-), or neutral (0). To incorporate every wildtype-mutant pair state would be infeasible
due to overparameterization, as it would result in 34=81 possible categories (++;–, ++;-+, ++;+-, +-;–,
. . . ). To avoid overparameterization, we explored various abstractions of this data, incorporating this into
our model selection process (detailed below). The resulting charge contribution was given by a simplified
charge-interaction scheme with pairs belonging to one of three categories: attractive (+- or -+, denoted
“A”), repulsive (– or ++, denoted “R”), and neutral (all other cases, denoted “0”). The reverse of each
wildtype-mutant states were classified as the same (e.g. 0;A = A;0), resulting in four categories: 0A, 0R,
AR, and 00 to capture all possible electrostatic interactions. Note that the AR case was not present in either
dataset.

To include the change in size for the constituent amino acids we used the van der Waals volume in . To
capture the net effect due to the change in size for both sites we used the metric (referred to as sizenet.

sizenet = | sizem1 - sizewt1| + | sizem2 - sizewt2| (EQ 2)

where wt and m correspond to the wildtype and mutant amino acids, respectively, and 1 and 2 denote the
amino acid sites in an arbitrary order. Under this scheme, if one or both sites undergo a large/small change
in volume occupancy the corresponding metric will be large/small respectively, even if they are in opposing
directions.

To include the effect of hydrophobicity, each residue is classified as either “H” for hydrophobic or “P” for
polar. Using all possible 16 categories would be possible, but risk overfitting. We instead found the following
abstraction: a boolean value (“0” or “1”) that denotes whether the net hydrophobicity of the pair changed
upon mutation. For example, HP;PH would give 0 since the net hydrophobicity remained the same. By
contrast, PP;HP or PP;HH would both give 1, since the net hydrophobic state changed upon mutation.

Structural Properties

Separation distance was defined as the Cartesian separation between the alpha carbons for each mutational
site. This Euclidean distance rwas calculated using the x, y, z coordinates for the mutation sites via the
standard formula:

4



P
os

te
d

on
A

u
th

or
ea

7
J
u
n

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

29
08

94
.4

1
74

94
80

/v
2

—
T

h
is

a
p
re

p
ri

n
t.

V
er

si
o
n

o
f

R
ec

o
rd

av
a
il
a
b
le

a
t

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
16

/j
.b

p
j.

20
19

.1
1.

45
2

(EQ 3)

Secondary structure information was included by considering whether a given mutational site was located
in an alpha helix (“H”), beta sheet (“S”), or loop (“L”). Secondary structure content was determined using
a PyMol script46. As with other categorical features overparameterization may be a concern, though in this
case the explicit consideration only has nine possible cases. We tested the possible abstractions, ranging from
explicit consideration of the structures at each site (e.g., HL,LL,LS,. . . ) to the simplest case of a boolean
value denoting whether both sites belong to the same type of structure (“0”) or different structures (“1”).

We also considered the effect of solvent accessible surface area (SASA): a metric describing whether a residue
is exposed or buried. To calculate the SASA, we first prepared the PDB files using pdbfixer from the OpenMM
software suite47, to add missing residues, replace non-standard residues with their standard equivalents, and
add missing hydrogens. The repaired structures were then processed with FoldX48to generate mutations
using the BuildModel command. DSSP v 3.0.049was then used to calculate the absolute SASA (SASAabs)
for each residue of interest. Both absolute and relative SASA were considered, relative SASA (SASArel)
was calculated using the empirical max accessible surface area (ASAmax) generated by Tien et al50via the
formula:

SASArel = SASAabs / ASAmax. (EQ 4)

Since SASA changes affect both wildtype and mutant residues, we used a modified version of EQ 2 replacing
sizenet with SASA.

We also included classification information. For binding, we included the type of protein-protein complex bro-
ken into five categories, based on the information provided in the SKEMPI v2.0 database: antibody-antigen
(AB/AG), T cell receptor-peptide bound major histocompatibility complex (TCR/pMHC), Cytokine-
Cytokine receptor (Cyto/Cyto), GTPase-other, and non-specific protein-protein interaction (Pr/PI) which
functioned as the reference category for the statistical models. We also included a boolean value indicating
whether or not the mutational sites occur on the same (“0”) or different (“1”) protein chains, as sites which
occur on the same chain may have a different effect on binding than if they occur on opposing chains. For
folding, we included the system size given by the total number of residues acquired from the PDB.

2.3: Statistical Analysis

To analyze the relationship between epistatic effect and separation distance, we conducted a likelihood ratio
test that compares a null model (where separation distance is unrelated to epistasis) against an alternative
model (where epistasis decays with increasing separation). More precisely, we defined the null model to be
that epistasis values are sampled from a normal distribution that is independent of the separation between
residues. For the alternative model, epistasis values are sampled from a normal (same mean as the null case)
with a standard deviation that decays exponentially as a function of separation according to a e? r where r is
the separation between residue site alpha-carbons (EQ 3) and a and ? are the curve’s parameters estimated
by maximum likelihood for the dataset. This maximum likelihood was determined by a grid-search method,
considering all possible a and ?, taking the resulting model with the largest likelihood. The likelihood ratio
is given by the ratio of the log of the two likelihoods of the data under the two models:

(EQ 5)

where L, θ1, θ2 refers to the likelihood, log is the natural logarithm, and correspond to the null and alternative
models respectively. Small values of Λ indicate that the alternative model has more explanatory power than
the null. We first calculated the likelihood ratio for the experimental data, Λexp. In order to determine
statistical significance of Λexp we then obtained the distribution of Λ under the null through parametric

5
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simulation. Specifically, we simulated datasets using the mean and standard deviation of the experimental
epistasis data. We then repeated the fitting exercise used on the real dataset for the simulated dataset, using
the same separation data, and calculated Λ. This process was repeated 1000 times to obtain the distribution
of Λ under the null: Λsim. The p-value for the test was then calculated as the proportion of Λsim less than
or equal to Λexp.

Linear statistical models were used to determine the biophysical features that are best able to explain the
observed epistasis. The absolute value of the epistasis, , was used as a response variable for our model
building. The choice to use the absolute value was necessary to ensure a monotonic relationship between
the features and the response variable, as assumed when using linear models. . One could imagine analyzing
positive and negative epistasis separately; however, this was not possible due to small sample sizes. All
features described above were considered in a standard model selection procedure, including all pairwise
interactions terms. For any features where we considered more than one level of abstraction, only one level
was included in any given model. To evaluate model performance, the corrected Akaike information criterion
(AICc) was used. The corrected criterion was chosen over the standard AIC due to the potential for overfitting
models that contain a large number of terms given a small amount of data51. Models were generated and
tested using R software52by considering all permutations of abstracted and non-abstracted features. Model
selection was performed using a modified form of stepAIC from the MASS53package to perform forward and
backward selection based on AICc (further verified by the AICc function of AICcmodavg54and compared to
standard AIC). Forward selection explores model space by starting with a term-less model and systematically
adding terms to find the model with the best value for a given criterion. Conversely, backward selection starts
with the complete full-term model and removes terms to find the best model. This model selection process
was performed twice with randomized input terms to avoid potential ordering bias (terms treated differently
based on their position in the initial list) and the lowest AICc values were compared for consistency. Once
we verified that there was no ordering bias, the model with the lowest AICc for both binding and folding
was used for further analysis.

To rank the importance of features present in the final statistical models for their effect on epistasis we
compared R2values with and without each feature and it’s interactions. Features with larger explanatory
power of the observed epistasis will have a larger change in R2 when removed.

2.4 - Quantification of Experimental Error and Model Validation

In order to develop a model for epistasis, it is important to quantify how much of the observed epistasis could
be attributed to error, or noise, in the experimental data. Quantification of overall error is based on the error
in three values (??G1,2, ??G1, ??G2), each of which were determined using a broad range of techniques and
conditions from diverse studies (e.g., 60+ for binding). A survey of six studies that contained some of the
largest observed epistasis for binding showed the experimental standard error for ??G to be in the range 0.05
- 0.3 kcal/mol55–57. However, some studies do explicitly include the error for epistasis (frequently termed
the coupling energy). For example, in the case of barnase-barstar, Schreiber et al., reports errors in from
0.2 - 0.39 kcal/mol across 33 mutation pairs58and Goldman et al. reports an error of 0.3 kcal/mol across
13 pairs for an Idiotype-AntiIdiotype Protein-Protein complex59. There are outliers, such as the study from
Pielak, et al. with six mutational pairs in the Iso-1-cytochrome C Peroxidase complex60found to have an
error range of 0.4 - 1.0 kcal/mol with an average error of 0.75 kcal/mol for six samples; an unusually large
error. In summary, the reported error for our curated binding and folding datasets are in the range of 0.2 -
1.0 kcal/mol, with mean around 0.4 kcal/mol. For the remainder of this study, we will use a slightly more
conservative estimated error of 0.5 kcal/mol to quantify the amount of observed epistasis.

Since our binding and folding data comes from many different protein systems collected by a diversity of
methodologies and laboratories, there is an inherent imbalance in the quantity and quality of data for each
system. To test the robustness of our model to this bias, we applied a modified “leave-one-out” procedure.
We randomly removed 10% of the protein systems and their data, creating a subset from the remaining 90%
of systems. The model selection procedure was performed on this subset to generate a new model. This
process of removing 10% of the systems and running model selection was repeated 100 times. The resulting

6
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100 subset models were analyzed and compared to determine which terms appeared, their frequency of
appearance, and average performance or ranking when present in a model.

3. Results

To build a statistical model for epistasis in proteins we used data for binding curated from SKEMPI v2.0
(572 mutation pairs), and for folding curated from ProTherm 4 (204 mutation pairs). We first considered
the extent to which epistasis was present in our data set. To determine this, we defined an epistasis cutoff;
values where | | is larger than the cutoff are considered epistatic, and other values are not. Ideally, the cutoff
would be chosen based on the experimental error or uncertainty, however, given that our data come from
a broad spectrum of methods and sources, this is not possible to determine for the dataset as a whole (see
supplemental Figure S1 for the dataset divisions with various cutoffs).

Figure 1 shows the free energy change of the double mutant as a function of the sum of individual free
energies for both binding and folding datasets with a cutoff of 0.5 kcal/mol. Both figures 1 and 2 show
that epistasis is present in binding and folding. In both datasets there is a marked trend for large sums
of constituent single mutations (sum in EQ 1) to correspond to a double mutant with free energy falling
below the 1:1 line (i.e., more stabilizing that predicted by additivity). The opposite is true for constituent
mutations with smaller sums.

After ascertaining the extent to which epistasis is present in our data, we investigated how well the separation
between mutation sites could explain the epistatic effect. Figure 2 shows the relationship between separation
distance and the observed epistasis for binding (top) and folding (bottom). Both show the general expected
trend of less epistasis as separation increases. Both also show a larger number of data points for distances
with the largest values, or spread in (around 6-10 ).

Figure 3 shows our analysis to determine whether the apparent decrease in epistasis with increasing separation
distance (Figure 2) is due to an actual relationship or a consequence of the larger number of data points
at small distances. Figure 3A shows null model (σ( ) is not a function of r) and alternative model (σ( )
exponentially decreases as a function of r) for the likelihood ratio analysis. Figure 3B shows the simulated
distribution of the likelihood ratio, Λ,from the analysis with 1000 samples. The experimentally observed
likelihood ratio is well outside the distribution of null ratios given by the label “EXP” and has a value of
-5.50 compared with the tail of the simulation distribution minimum of -4.59. In simple terms, this results
in a p-value of p < 1/1000 (p<0.001) in strong support of the alternative model.

Table 1 shows a summary of the binding (1A) and folding (1B) statistical models for epistasis in protein
systems. Both models have similar predictive power in the range of 25-30%. The final selected binding
model contains all features that we considered except for hydrophobicity (seven features, 28 terms including
interactions) and depends on SASAabs and secondary structure in addition to binding specific features like
the complex type. The folding model is simpler (five features, 12 terms with interactions), and depends
on hydrophobicity and SASArel. Features are listed in order according to their relative contribution to the
explanatory power of the full model. That is, the highest-ranked feature is the one whose removal leads
to the greatest reduction in R2. For the binding epistasis model, the largest contributor was the complex
type, with a change in R2 of 0.128 upon removal followed by charge with a change in R2 of 0.078 upon its
removal. The remaining terms each contribute ˜5% or less to the predictive power of the binding model. For
the folding epistasis model, the largest contributor was hydrophobicity with a change in R2 of 0.151 upon
removal, followed by both size and charge with similar contributions (change in R2 of 0.0765 and 0.0695 with
their removal respectively). The remaining terms each contribute ˜4.5% or less to the predictive power of
the folding model.

Table 2 shows the results of 100 trials of our ”leave-10%-out” robustness test where 10% of the available
systems were randomly removed. These results show that both of our full models are highly robust – with
the binding model being slightly more robust than the folding model. All terms present in the full models
are present in the leave-10%-out analysis, most occurring in all trials. Additionally, the mean ranks of
most terms are identical to the full-data binding model with more variance in the folding model. Graphical
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representation of our robustness tests shown in supplemental Figure S2.

Figure 4 further illustrates the results of our statistical model for epistasis in binding. For charge, the sub-
category for interactions involving an attractive pairing (0A) contains the most strongly epistatic mutations.
While mutations in this subcategory cover a broad range of values, many tend towards positive epistasis;
the largest value belongs to this subcategory. Neutral or constant charge states (00) show a near normal
distribution centered on zero with some low levels of epistasis. Changes involving a repulsive interaction (0R)
contain the least number of data and have a narrow distribution, with fewer large values for in either direc-
tion. For the complex type category, the antibody-antigen subcategory shows the most epistasis, including
the most positive. TCR/pMHC also contains a large amount of positive epistasis. Cytokine-cytokine is the
only subcategory with a negative mean suggesting that mutations in this subcategory tend to have negative
epistasis. Generic protein-protein complexes show similar behavior to the neutral charge category; centered
on zero, broad spread, but low numbers of epistatic data points. Other categorical features are shown in
supplemental Figure S3.

4. Discussion

Before building linear models we first determined the extent to which our datasets contain meaningful
epistasis. That is, considering there is uncertainty in the data, where should we draw the line between
epistatic and non-epistatic values of ; We estimated (see Methods) that the error for both datasets fall
between 0.2 - 1.0 kcal/mol with an average around 0.5 - 0.6 kcal/mol. From this, we estimated a cutoff of
0.5 kcal/mol, i.e., | | > 0.5 kcal/mol are considered epistatic. There are further limitations of our dataset;
the data is not from randomized studies. Instead, the experiments were generally conducted in a targeted
fashion with a priori knowledge of function. This may explain why we find more positive epistasis (more
stabilizing that additivity predicts) than negative epistasis (more destabilizing that additivity predicts) as
shown in Figure 1. Alternatively, it is possible that more positive epistasis is present in the data because
negative epistasis could lead to protein misfolding or non-binding events in the experiments. The former
reasoning is an artifact of how the data was generated, and the latter is related to biophysical features of
the proteins; both carry different implications for the dataset and warrant future work.

Separation distance is the most intuitive feature expected to contribute to epistasis, because residues that
are near each other are more likely to interact than those far apart. Simple comparisons show a decreasing
spread of epistasis with increasing distance (Figure 2). The folding data show this most strongly with a sharp
peak around the shortest separation distances of approximately 6 , dropping to near zero at larger distances.
The binding data show a possible peak around 10 , however, the trend is not as clear. Additionally, with
binding there is a paucity of data from 25 to 40 with only one data point around 40 . Our tests using
likelihood ratio methods (Figure 3) confirm that separation does play a role in epistasis for both binding and
folding. Our alternative model (width of possible values depends on separation) was a better explanation
than the null model (no relationship between separation and ), with a p-value of p < 0.001 in the case
of binding, and p < 0.002 in the case of folding. The importance of separation is also illustrated in our
models (Table 1) where both folding and binding models have negative coefficients for separation distance.
In the folding model, a 10 increase in separation between residues results in a decrease in epistasis of 0.416.
In the binding model, the effect of separation alone is an order of magnitude less than the folding model
and has less significance in the model (p=0.8074). Instead, the effect of separation in the binding model is
most strongly characterized by the interaction with charge. With charge alone, changes involving attractive
pairings show an increase in epistatic effect whereas changes involving a repulsive pairing show a decrease.
The interaction between charge and separation contributes an opposing effect: as separation between residues
increases, changes involving attractive and repulsive pairings cause a decrease and increase in epistatic effect
respectively. Intuitively, as separation between charged residues, regardless of categorization, increases the
net effect of charge on epistasis tends towards zero (Δ charge + Δ charge:separation ˜ 0).

In addition to separation distance, amino acid size is present in both models. Size is another feature one
might intuitively expect to contribute to epistasis: large absolute changes in size imply that voids are created
when residues change from larger to smaller, or that smaller to larger residues create steric clashes. In both
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models the coefficient is positive (increases in occur with change in size) with more of an effect in the case
of folding (on the order of 10-2 vs 10-3 in the case of binding). Size interaction terms differ between binding
and folding. In the case of binding, when there are changes in size that occur on different protein chains,
there is a reduction in epistasis. Otherwise, for all complex types, changes in size lead to an increase in
epistasis, most strongly with Antibody-antigen complexes. For folding, sizenetinteracts with hydrophobicity
and SASArel leading to decreases in epistasis. This will be discussed further with the features specific to the
folding model.

In the case of both binding and folding, there are unique features that contribute significantly to the observed
epistasis. In the case of binding, these elements only apply to binding interactions such as the type of complex
(defined by function) and whether both mutations occur on the same side of the binding interaction. Complex
type is the most significant contributor to the observed epistasis ([?]R2= 0.17) with most complexes showing
less epistatic effect compared to the reference category of generic protein-protein complexes. There is an
exception with Cytokine-cytokine complexes that shows a small increase in epistasis with a coefficient of
+0.4677. The interaction side is a smaller contributor compared to complex type ([?]R2 = 0.0465), with a
slight increase in epistatic effect when mutations occur on opposite sides of the binding interaction. This is
consistent with intuition; if both mutations are near the binding interface and on opposite sides, they are
more likely to directly interact, or propagate effects at the interface. Additional features that contribute to
epistasis in binding are secondary structure and SASAabs. Secondary structure has a minor contribution,
with a slight increase in epistatic effect when residues belong to different secondary structure types. This is
counterbalanced by an interaction with separation distance, where residues that occur in different secondary
structures, and are also far apart, lead to a decrease in epistatic effect. This could be due to direct interactions
between sites; if they are close together but belong to different secondary structures, they can change these
structures either directly or indirectly. This is less likely to happen if they are further apart. SASAabs is the
penultimate feature in the model ranking with a very small coefficient (-0.006). This implies that changes
in the total exposed surface area due to the two mutations lead to small reductions in the epistatic effect.

Unique to the folding model, hydrophobicity is present, and is the strongest contributor to epistasis with
a [?]R2 of 0.1506. Changes in the net hydrophobicity lead to an increase in the observed epistasis. This is
consistent with other studies that have shown that hydrophobicity contributes to predicting folding stabilities
with double mutations61. Most of the other terms present in the folding model interact with hydrophobicity
leading to a stronger effect on epistasis, and a reduction when paired with changes in size, and changes in
charge involving attractive interactions.

Since our statistical models for both binding and folding explain approximately 25-30% of the observed
epistasis, an important question is: what explains the other 70-75%? We believe the answer lies in dynamical
properties that are beyond the scope of what we investigated here. Protein complexes are not static objects,
thus static features like those considered in this study are only likely to capture some of the true physical
effect they can have on these systems. While a tool like molecular dynamics could potentially help address
this question, given the number of mutations and systems considered here, the computational cost would be
unreasonably large and will be left as a topic for future study.

Given the size of our datasets, and the imbalanced nature of the data in terms of protein systems, we
performed a “leave-10%-out” validation procedure to test the robustness of our models and determine whether
there are system-specific effects (see Table 2). We found that our binding model was very robust; all terms
appearing in the full model were also present in the validation trials effectively 100% of the time (the least
significant term, secondary structure, was missing from three trials). The mean rank was also consistent
between the validation trials and the full model ranking for the three most significant terms, the 4th and 5th
are switched but close enough to be within a margin of error, the 6th and 7th were also consistently ranked.
The folding model was slightly less robust. The effect of hydrophobicity was very robust being ranked first
in the full model and appearing in 99 of the 100 validation trials with a mean rank of one. The remaining
folding model terms appear between 96% to 100% of the time, however their mean rankings are generally
inconsistent with their full model rank, indicating that while they are important to explaining epistasis we
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cannot be as certain of their relative contribution.

A limitation in the current study, that is also a limitation for all similar studies, is the lack of comprehensive,
diverse, and unbiased datasets. Given the challenges associated with measuring binding or folding free
energies for a large number of mutants, these datasets are built with narrow focus and small sample sizes.
Such databases tend to be biased toward systems of particular interest. Additionally, they will not contain
mutations that result in a nonviable protein or system. This does not make the data any less relevant since
in nature proteins must be viable, and thus we should expect similar results (e.g., the preponderance of
positive epistasis observed in this study). If we want to understand the nature of epistasis at the level of
protein stability, we need to study it across more protein systems in a more systematic fashion. To build
a truly predictive model of epistasis, dynamic properties would need to be considered and a larger, more
representative sample of data would need to be accessible.

5. Conclusion & Future Work

In this study we investigated possible mechanisms and determined statistical models for pairwise epistasis
in proteins based on the largest, most diverse, experimental data available. Mechanistic features were
investigated that are intrinsic to the mutating amino acids (e.g., charge, hydrophobicity) or to the proteins
(e.g. secondary structure, distance between mutational sites). Using a model selection procedure we ranked
these features by their power in explaining the observed epistasis. The resulting models for both binding and
folding had similar explanatory power of 25-30% and were composed of similar high-ranked features. The
features included in both models were charge, separation distance, and residue size. The largest contributing
features were complex type for binding, and hydrophobicity for folding. Our results shed some light on the
mechanisms for pairwise epistasis in proteins, and highlights the need for larger datasets. Our study also
suggests that development of a truly predictive model for epistasis will likely require difficult to ascertain
features such as conformational changes, bond formation, and other propagated mutational effects.

Data availability:

All data and scripts used for the analysis in this manuscript are available at the Ytreberg-Patel lab Github
repository:https://github.com/YtrebergPatelLab/EpistasisStats
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Tables:

1A: Binding Model

Feature Categorical Breakdown Removal ([?]R²) Coefficient P-value
Full Model 572 0.2991
Intercept 0.6994 0.0000
Complex Type 0.1275
AB/AG 66 (8) -0.8401 0.0120
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Cyto/Cyto 69 (4) 0.4677 0.3738
GTPase/other 85 (7) -0.4134 0.3153
TCR/pMHC 58 (9) -1.0090 0.0071
Pr/PI 294 (30) 0.0000 0.0000
Charge 0.0778
0 450 0.0000 0.0000
0A 69 1.0195 0.0041
0R 53 -0.7424 0.0131
Separation 0.0522 -0.0025 0.8074
Interaction Side 0.0464 0.5889 0.0055
1 399
0 173
Sizenet 0.0427 0.0022 0.1345
SASAabs 0.0327 -0.0060 0.0002
Secondary Structure 0.0162 0.5837 0.0014
1 315
0 257
Binding Model Interaction Terms Binding Model Interaction Terms Binding Model Interaction Terms Binding Model Interaction Terms Binding Model Interaction Terms
Feature1:Feature2 Coefficient P-value
Separation:Secondary Structure -0.0331 0.0246
Sizenet:Interaction Side -0.0052 0.0081
Separation:Charge
0A -0.0882 0.0001
0R 0.0454 0.0401
SASAabs:Complex Type
AB/AG -0.0140 0.0207
Cyto/Cyto 0.0072 0.2340
GTPase/other 0.0072 0.0789
TCR/pMHC 0.0062 0.1631
Sizenet:Complex Type
AB/AG 0.0130 0.0000
Cyto/Cyto 0.0023 0.4650
GTPase/other 0.0008 0.7843
TCR/pMHC 0.0060 0.0754
Interaction Side:Charge
0A 0.7289 0.0089
0R 0.1460 0.5625
Interaction Side: Complex Type
AB/AG 0.1376 0.6577
Cyto/Cyto -1.4297 0.0004
GTPase/other -0.3189 0.3331
TCR/pMHC 0.0062 0.9824

1B: Folding Model

Feature Categorical Breakdown Removal ([?]R²) Coefficient P-value
Full Model 204 0.2578
Intercept -0.0607 0.8513
HP 0.1506 0.0746 0.0018
0 133
1 71
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Sizenet 0.0765 0.0120 0.0000
Charge 0.0695
0 174 0.0000 0.0000
0A 13 1.8631 0.0015
0R 17 -0.7356 0.0133
Separation 0.0446 -0.0416 0.0054
SASArel 0.0383 0.3269 0.8546
Folding Model Interaction Terms Folding Model Interaction Terms Folding Model Interaction Terms Folding Model Interaction Terms Folding Model Interaction Terms
Feature1:Feature2 Coefficient P-val
SASArel:Sizenet -0.0437 0.0174
SASArel:Separation 0.1577 0.1324
Sizenet:HP -0.0103 0.0085
SASArel:HP 2.7022 0.0459
HP:Charge
0A -2.0467 0.0016
0R 0.8380 0.0391

Table 1: Summaries of epistasis models for binding (A) and folding (B). The leftmost column (column one)
contains features. Any categorical abstractions are listed directly below the category with right justification.
Column two gives the specific number of mutation pairs for a given category, where applicable. For complex
type specifically, the number of complexes of that type are indicated in parentheses. Column three is the
change in R2(ΔR2), i.e., how much poorer the model fits the data after removing this feature. In the case
of the full model, column three is the R2. Removal of a feature also removes all subcategories and any
interaction terms involving the feature. Column four lists coefficients for the feature/interaction term in the
full model. The rightmost column contains p-values for the features, and features within a given category.

2A Binding Validation

Feature Mean Rank Average [?]R2 Number of Models (/100) In Full Model Full Model Rank
Complex Type 1.04 0.134 100 Yes 1
Charge 2.01 0.082 100 Yes 2
Separation 3.66 0.0560 100 Yes 3
Sizenet 4.45 0.047 100 Yes 5
Interaction side 4.66 0.046 100 Yes 4
SASA 5.64 0.0380 100 Yes 6
Secondary Structure 6.68 0.022 97 Yes 7
Hydrophobicity 7.469 0.018 32 No N/A
2B Folding Validation 2B Folding Validation 2B Folding Validation 2B Folding Validation 2B Folding Validation 2B Folding Validation
Feature Mean Rank Average [?]R2 Number of Models (/100) In Full Model Full Model Rank
Hydrophobicity 1.212 0.15 99 Yes 1
Charge 3.083 0.082 96 Yes 3
Secondary Structure 3.213 0.0810 47 Yes N/A
Sizenet 3.22 0.074 100 Yes 2
Separation 3.98 0.058 100 Yes 4
SASA 4.897 0.041 97 Yes 5
Number Residues 5.269 0.0380 26 No N/A

Table 2: Results from 100 trials of our “leave-10%-out” model robustness test for binding (A) and folding
(B). The feature is indicated by the first column. The second column indicates the average rank across all
trials the given feature appeared in, lower numbers suggest more robust features. The third column indicates
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the average [?]R2 from all trials the feature appeared in (higher numbers suggest more robustness), the fourth
column indicates the total number of trials a given feature occurred in out of 100 possible, the fifth column
indicates whether the feature was present in the full model, and the last column indicates the rank of the
feature in the full model.

Figure legends:

Figure 1: Epistasis scatterplots for binding (A) and folding (B). Both figures use a cutoff of 0.5 kcal/mol
and show data characterized as no epistasis (black), positive epistasis (blue), and negative epistasis (red).

Figure 2: Observed epistasis as a function of alpha-carbon separation between mutation sites for binding
(A) and folding (B). Black indicates no-epistasis using our cutoff of 0.5 kcal/mol, and blue and red indicate
positive and negative epistasis, respectively.

Figure 3: (A) Comparison between the alternative (left) and null (right) models for epistatic effect, , as
a function of separation distance, r . Results of log(likelihood) ratio test for separation distance with 1000
samples for simulated data for binding affinity (B) and folding stability (C). These plots show the alternative
model is a significantly better explanation of the data than the null model.

Figure 4: Comparison of binding model of epistasis for the categories of charge (A) and complex type (B).
The mean value for a given subcategory is indicated by a black dot. The barplots show the histograms
within the categories. In parenthesis is the number of mutation pairs belonging to each category. For the
complex type, the number of complexes belonging to each category are shown in square brackets.

Figure 1:

Figure 2:
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Figure 3:

Figure 4:
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Supplemental figure legends:

Figure S1: Comparison of cutoffs for epistasis for both binding affinity (left) and folding stability (right).
Purple bars correspond to mutants characterized as epistatic while black indicates non-epistatic. Within the
sign breakdown, blue indicates negative epistasis and red indicates positive.

Figure S2: Leave-10-percent-out test results for both binding (left) and folding (right) that demonstrate
our models are robust. The top plots show the ?R2 (y-axis) for the 100 runs with complexes removed (run
indicated on x-axis). The color coding corresponds to a given feature. Abstracted features were combined
to a single heading for that feature for simplicity. The bottom plots indicate the range of ?R2 given by an
error bar. The y-axis (and color coding) indicates the feature.

Figure S3: Comparison of epistasis by subcategory for categorical or boolean features. The mean value for
a given subcategory is indicated by a black dot. The barplots show the histograms within the categories. In
parenthesis is the number of mutation pairs belonging to each category. For the complex type, the number
of complexes belonging to each category are shown in square brackets.

Figure S1:

Figure S2:
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Figure S3:
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