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Abstract

Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to detect plant and animal

taxa in basic and applied biodiversity research because of its targeted nature that allows sequencing of genetic markers from

many samples in parallel. To achieve this, PCR amplification is carried out with primers designed to target a taxonomically

informative marker within a taxonomic group, and sample-specific nucleotide identifiers are added to the amplicons prior to

sequencing. This enables assignment of the sequences back to the samples they originated from. Nucleotide identifiers can be

added during the metabarcoding PCR and/or during ‘library preparation’, i.e. when amplicons are prepared for sequencing.

Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of which can lead to

misleading results, and in the worst case compromise the fidelity of the metabarcoding data. Given the range of questions

addressed using metabarcoding, the importance of ensuring that data generation is robust and fit for purpose should be at

the forefront of practitioners seeking to employ metabarcoding for biodiversity assessments. Here, we present an overview of

the three main workflows for sample-specific labelling and library preparation in metabarcoding studies on Illumina sequencing

platforms. Further, we distil the key considerations for researchers seeking to select an appropriate metabarcoding strategy for

their specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows, we hope to

further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of applications.
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Abstract

Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to detect
plant and animal taxa in basic and applied biodiversity research because of its targeted nature that allows
sequencing of genetic markers from many samples in parallel. To achieve this, PCR amplification is carried out
with primers designed to target a taxonomically informative marker within a taxonomic group, and sample-
specific nucleotide identifiers are added to the amplicons prior to sequencing. This enables assignment of
the sequences back to the samples they originated from. Nucleotide identifiers can be added during the
metabarcoding PCR and/or during ‘library preparation’, i.e. when amplicons are prepared for sequencing.
Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of
which can lead to misleading results, and in the worst case compromise the fidelity of the metabarcoding data.
Given the range of questions addressed using metabarcoding, the importance of ensuring that data generation
is robust and fit for purpose should be at the forefront of practitioners seeking to employ metabarcoding
for biodiversity assessments. Here, we present an overview of the three main workflows for sample-specific
labelling and library preparation in metabarcoding studies on Illumina sequencing platforms. Further, we
distil the key considerations for researchers seeking to select an appropriate metabarcoding strategy for their
specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows,
we hope to further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of
applications.

Keywords

Amplicon sequencing, Biodiversity assessment, Environmental DNA, High-throughput sequencing, Illumina
sequencing, Library preparation

Introduction

In recent years, the analysis of environmental DNA (eDNA) and DNA extracted from bulk specimen samp-
les has experienced an enormous surge in popularity in basic and applied biodiversity studies seeking to
detect plants and animal taxa (Taberletet al. 2012a; Creer et al. 2016; Jarman et al.2018). Within the
field of genetic biodiversity assessment, DNA metabarcoding is currently the most widely used approach, as
it allows targeted, parallel, and as such relatively cost-effective, identification of multiple taxa from DNA

2
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. extracted from e.g. soil, water, faeces as well as from bulk samples of organisms (Taberlet et al.2012b).
Here, the application of metabarcoding ranges widely; e.g., detection of invasive species in water samples
(e.g. Pochonet al. 2013); assessment of water quality via identification of freshwater invertebrates in bulk
specimen samples (e.g. Elbrechtet al. 2017) and environmental samples (e.g. Seymouret al. 2020); identifi-
cation of plant-pollinator interactions via pollen trapped on the bodies of modern (e.g. Lucaset al. 2018)
and historical (e.g. Gouset al. 2019) pollinator specimens; detection of vertebrate wildlife via invertebrate
‘samplers’ of vertebrate blood or feces (e.g. Calvignac-Spencer et al. 2013), assessment of e.g. niche par-
titioning (e.g. Razgouret al. 2011) and ecosystem services (e.g. Aizpuruaet al. 2017) through detection of
diet items in gut and faecal samples. Furthermore, metabarcoding is explored for implementation in routine
biomonitoring around the world (Pontet al. 2018, 2021; Li et al. 2018, 2019; Aylagas et al. 2018; Zizka et
al. 2020) (www.danubesurvey.org; www.syke.fi), and is an integral component of the proposals for the Next
Generation of Biomonitoring programmes (Bohan et al. 2017).

Metabarcoding relies on PCR amplification of extracted DNA with primers designed to target a taxonomi-
cally informative marker for a selected taxonomic group (Taberletet al. 2012b) (Fig. 1). The backbone of
metabarcoding analyses is the addition of sample-specific nucleotide identifiers to amplicons and the use of
these to assign metabarcoding sequences back to the samples they originated from (‘demultiplexing’). This
allows pooling of hundreds to thousands of samples for sequencing and thereby full utilisation of the capacity
of high-throughput sequencing platforms (Fig. 1). Amplicon labelling can be achieved at two stages during
a metabarcoding workflow: prior to library build as 5’ nucleotide ‘tags’ on amplicons and/or during library
build as library indices. The strategies to achieve this labelling can be categorised into three main approa-
ches (Fig. 2). All three approaches have advantages, challenges and limitations, which - if not considered
- can result in misleading data interpretation, and in the very worst case can lead to unusable data and
considerable wasted time and money, as for instance in the case of the so-called ‘tag-jumps’ (Schnell et al.
2015; Esling et al. 2015; Carøe & Bohmann 2020). Despite this, in contrast to discussions on metabarcoding
substrate selection, DNA extraction and data processing, the strategies for amplicon labelling and library
preparation workflows have received little systematic attention in the metabarcoding literature (although
see Murray et al. 2015).

Here, we present an overview of the three most commonly used workflows with which to achieve sample-
specific labelling and library preparation in metabarcoding studies and how they can potentially influence
the resulting data. For the sake of simplicity, we focus on metabarcoding of plants and animals in basic and
applied biodiversity studies with sequencing on arguably the most used high-throughput sequencing platform
series today, the Illumina sequencing platforms. Doing so, we provide critical considerations for researchers to
choose the optimal metabarcoding strategy for generating reliable data tailored to their individual study;for
example, regarding sample type and number, research question, speed of laboratory processing, contaminati-
on risk, budget and whether similar studies are to be carried out in the laboratory in the future. Ultimately,
by gaining detailed and critical insights into the consequences of choosing different metabarcoding workflows,
we hope to further increase the potential of metabarcoding as a reliable tool for use across a wide range of
applications.

Tagging and indexing approaches in metabarcoding studies

Today, the most commonly used high-throughput sequencing platform for metabarcoding studies is the Illu-
mina series, where for example the MiSeq, iSeq, HiSeq, NextSeq, and NovaSeq have been employed (Jarman
et al.2018). These platforms offer high-throughput, relatively low error rates, and \soutlong paired-end reads,
typically up to 150bp of each paired read on the NextSeq550/1000/2000, HiSeq 3000/4000 and NovaSeq (up
to 250 bp on SP flow cell), and 300bp of each paired read on the MiSeq platform (www.illumina.com, applied
in e.g. Shehzad et al. 2012b; Quéméré et al. 2013; Hope et al. 2014; Elbrecht et al. 2017; Stoeck et al. 2018;
Singer et al. 2019).

The sequencing depth required per sample is commonly much lower in metabarcoding studies than in shot-
gun sequencing studies (e.g. Srivathsan et al. 2015; Stat et al. 2017), and in metabarcoding studies it is
(economically) feasible to sequence tens, hundreds, or even thousands of samples per sequencing run. To
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. allow pooling and parallel sequencing of this magnitude, different molecular labelling systems have been
developed. For metabarcoding studies, the addition of sample-specific identifiers to PCR amplicons can be
achieved either as nucleotide tags during the metabarcoding PCR, or as library indices when converting
amplicons into sequencing libraries.

Metabarcoding approaches can be divided into three overall strategies for adding nucleotide tags and library
indices (Taberlet et al.2018) (Fig. 2):

1. The ‘one-step PCR’ approach in which sample DNA extracts are amplified and built into sequence
libraries in one reaction. Here, metabarcoding primers carry sequencing adapters and library indices,
referred to as ‘fusion primers’ (Fig. 2B). This approach is used in e.g. Kozich et al. (2013), Elbrecht
and Leese (2015), Sickel et al. (2015), Grealy et al. (2016), Berry et al. (2017), Elbrecht et al. (2017),
Hardy et al. (2017), Seersholm et al. (2018) and Bessey et al. (2020). In the one-step PCR approach,
each PCR replicate or sample is a sequencing library and as such is returned as a separate fastq file
following sequencing. It should be noted that a few studies modify this approach by adding nucleotide
tags to the fusion primers instead of library indices (e.g. Elbrecht & Steinke 2018). When doing that,
each PCR replicate is not an individual sequencing library.

2. The ‘two-step PCR’ approach in which sample DNA extracts are PCR-amplified with two primer sets.
In the primary reaction metabarcoding primers carry 5’ sequence overhangs of ca. 33-34 nucleotides in
length and no nucleotide tags. The sequence overhangs allow the resulting amplicons to be targeted by
the second round of primers, which carry sequencing adapters and indices (Fig. 2C). Most commonly,
two consecutive PCRs are carried out, such as in Miya et al. (2015), de Vere et al, (2017), Galan et al.
(2017), Kaunisto et al. (2017), Swift et al. (2018) and Vesterinen et al. (2018). However, a few studies
carry out only one reaction with the two primer sets, such as Clarke et al. (2014a). The two-step
PCR approach is based on Illumina’s 16S rRNA system originally developed for microbiome studies
(www.illumina.com). In the two-step approach, each PCR replicate is an individual sequencing library
and as such is returned as a separate fastq file following sequencing. It should be noted that a few
studies modify the two-step PCR approach to include nucleotide labelling in the first PCR, see Kitson
et al. (2018).

3. The ‘tagged PCR’ approach, in which sample DNA extracts are PCR amplified with metabarcoding
primers that carry 5’ nucleotide tags. The individually tagged PCR products are pooled, and ligation-
based library preparation is carried out on pools of 5’ tagged amplicons. The ligated adapters can
themselves contain indices, which eliminates the need for a second PCR step (e.g. Thomsen et al. 2016;
Carøe & Bohmann 2020), or the adapter ligation can be followed by a PCR step with indexed primers
(e.g. Hope et al. 2014; Bohmann et al. 2018). This approach was first demonstrated by Binladen et al.
(2007) on the 454 FLX platform and has been since been used in e.g. Shehzad et al. (2012a), Hibert et
al. (2013), Hope et al. (2014), Thomsen et al. (2016), Apothéloz-Perret-Gentil et al. (2017), Sigsgaard
et al. (2017), Bakker et al. (2017), Kocher et al. (2017), Thomsen and Sigsgaard (2019) and Lynggaard
et al. (2020) (Fig. 2D). In this approach, each library pool of PCR replicates is a sequencing library
and is returned as a separate fastq file, each of which can contain data from a large number of PCR
replicates.

All three main strategies offer the option to add extra nucleotides to shift PCR amplicons in relation to
each other and thereby to increase sequence complexity on the flow cell (‘heterogeneity spacers’, see e.g.
De Barba et al. 2014; Elbrecht & Leese 2015; Bohmann et al. 2018). Note that given the inconsistent use
of terminology in the metabarcoding literature, for clarity, we use the original term for nucleotide tags in
amplicon sequencing as used by Binladen et al . (2007) and Illumina’s terminology to describe the nucleotide
reads that are used to demultiplex sequencing libraries, the i5 and i7 index reads. That is, 5’ nucleotide tags
are sequenced with the metabarcoding marker and primers in the Illumina sequencing read 1 (and read 2
for paired-end sequencing), while library indices are sequenced as separate index reads, i.e. if dual-indexing
is performed as i5 and i7 reads (Fig. 2A) (https://support.illumina.com).

In this article, we discuss the three main metabarcoding strategies. One approach not mentioned here is
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. library preparation on individual unlabelled PCR products through a ligation-based library preparation
protocol with or without an index PCR step. However, such ligation based protocol would entail several
steps on each PCR product, such as end-repair and ligation of adapters (e.g. carrying indices such as in
Illumina’s TruSeq Nano DNA Library Prep kit, see Zizka et al (2019). The reason that we do not consider
this approach a main metabarcoding strategy is due to low reported use of this method, its high cost and
workload and thereby limited throughput (Zizka et al. 2019).

Pros and cons of metabarcoding approaches

The ability to tag and index amplicons to fully harvest the power of high-throughput sequencing comes at
a price; the labelling and pooling of hundreds of PCR replicates is highly complex and entails costs asso-
ciated with preventing, detecting, and eliminating errors and biases. None of the metabarcoding approaches
presented here is perfect; rather each of them has pros and cons. Below, we outline the advantages and
disadvantages, specifically addressing issues related to cross-contamination risk, PCR amplification efficien-
cy, chimera formation, tag-jumping, index-misassignment, cost, and workload. The issues associated with
each metabarcoding strategy are important to keep in mind for choosing a metabarcoding strategy and for
designing laboratory workflows and interpreting results.

Cross-contamination risk

During the metabarcoding PCR (here specified as the PCR in which the metabarcoding marker is targeted),
relatively short DNA sequences (typically <300 bp) are enriched through amplification. Especially when
targeting trace amounts of DNA, PCR amplification can be highly susceptible to contamination and thereby
to false positives. The risk of contamination when preparing metabarcoding PCRs is the same no matter
which of the three overall metabarcoding approaches is used. Moreover, regardless of the metabarcoding
strategy employed, cross-contamination can happen between nucleotide tagged and indexed primer stocks
(which are delivered at very high molarity). The risk of this happening will be similar between the strategies
and will depend on the number of samples and the chosen setup within the employed strategy. In the
following, rather than discussing primer contamination, we will focus on how the three main metabarcoding
approaches differ in risk of cross-contamination between PCR products after the metabarcoding PCR.

In the one-step PCR approach (Fig. 2B) and the tagged PCR approach (Fig. 2D), PCR products are
labelled during the metabarcoding PCR amplification. In the one-step PCR approach, the metabarcoding
PCR is carried out with primers that target the selected marker and carry both sequencing adapters and
indices. This way, the indexed PCR products can be immediately sequenced following this one PCR step
(Fig. 2B). If the indexed ready-to-sequence libraries are to be pooled into one pool before sequencing,
then cross-contamination between indexed amplicon libraries is obviously not of concern. However, if more
sequencing pools are made in which the same index combinations occur across multiple samples, then cross-
contamination between the sequencing pools can be an issue. A solution is to process them in separate
sequencing run batches to avoid cross-contamination. In the tagged PCR approach, amplicons will be 5’
nucleotide tagged following the metabarcoding PCR, which means that cross-contamination between tagged
PCR products is not of concern. However, until the amplicon pools are indexed during library preparation
there is a risk of cross-contamination between amplicon pools if the same tag combinations are used in
different amplicon pools (Schnell et al.2015). Some laboratories do not reuse tag-primer combinations to
further reduce contamination risk (see Murrayet al. 2015).

In the two-step approach, sample-specific labelling is not carried out during the metabarcoding PCR. This
creates a risk of cross-contamination between unlabelled PCR products when handling them prior to the
second PCR (Zizka et al.2019). Therefore, this metabarcoding approach has the greatest theoretical risk
of cross-contamination between PCR amplicons (Fig. 2C). It is worth mentioning that a few studies adopt
modifications of the two-step approach that eliminates this kind of cross-contamination. One is to include
nucleotide labelling in the first PCR, see Kitson et al. (2018), and the other is to carry out both of the two
PCRs, i.e. to include both two primer sets, in the same reaction, see for example Clarke et al. (2014a).

Irrespective of the chosen approach, cross-contamination can be detected and filtered out by including sam-
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. ple replicates, PCR replicates, and positive and negative controls. Thus, these should be included in the
laboratory workflow and sequencing (e.g. Bistaet al. 2017). An important measure that enables one to filter
out potential contamination during data processing is to use different nucleotide tag and/or library index
combinations on each sample’s individual PCR replicates as this will allow for restrictive sequence processing
across each sample’s PCR replicates (Alberdi et al.2018).

PCR amplification

PCR amplification introduces biases, such as primer biases and errors, such as nucleotide substitutions and
chimeras (e.g. Polz & Cavanaugh 1998; Haas et al. 2011; Murray et al.2015; Piñol et al. 2015). Two of
the three main metabarcoding strategies allow practitioners to carry out only a single PCR step before
sequencing, namely the one-step PCR with fusion primers approach and the tagged metabarcoding PCR
approach in which PCR-free library building is carried out (Fig. 2B and D). Because an extra PCR step
adds an additional risk of introducing errors, these two approaches offer an advantage over the two-step PCR
method and the tagged PCR approach in which the workflow includes an index PCR step (Fig. 2C and D).

Apart from minimizing the number of PCR steps, the 5’ nucleotide additions to metabarcoding primers should
be considered. Bulk sample and eDNA extracts consist of complex mixtures of DNA from a large number of
organisms, which in the case of eDNA can be degraded (Taberlet et al.2012a). With such DNA extracts, the
primers are faced with the task of amplifying (trace) copy number target DNA from different taxa (Taberlet
et al.2012b) potentially distorted by primer biases, inhibitors and potentially abundant predator or host
DNA (e.g. Deagle et al. 2014; Clarke et al. 2014b; Murray et al. 2015). To add to this, nucleotide additions
to primers can decrease PCR efficiency (Schnell et al.2015; Murray et al. 2015).

The three main metabarcoding strategies have different lengths of nucleotide additions on the 5’-end of
metabarcoding primers. The longest 5’-nucleotide additions are found in the one-step PCR approach where
up to 60 nucleotides (sequence adapters and indices) are added to one or both of the primers, making the
complete primer often over 80 bp long (e.g. Elbrecht & Leese 2015). In the two-step PCR approach (Fig.
2C), the sequence overhangs on the metabarcoding primers used in the first PCR are approximately half
the length of the fusion primers, e.g. 33-34 nucleotides, if using Illumina® Nextera Indices. The tagged
PCR approach has the shortest nucleotide additions to the metabarcoding primers (Fig. 2D) with tags of
typically 5-10 nucleotides in length (Coissac 2012; De Barba et al. 2014; e.g. Alberdi et al. 2018). The long
additions to the metabarcoding primers cause a decrease in PCR efficiency (Murray et al. 2015) and in line
with this, the two-step PCR approach has been shown to have a marginal increase in detection of taxa as
compared to the one-step fusion primer approach (Zizka et al. 2019). Even the short nucleotide additions
in the tagged PCR approach have been shown to decrease PCR efficiency (Schnell et al.2015). Thus, no
method is free of decreased PCR efficiency caused by the nucleotide additions to 5’-end of metabarcoding
primers. However, it has to our knowledge not been formally tested whether - and to what extent - the
shorter nucleotide tag additions in the tagged PCR approach offers greater PCR efficiency and taxonomic
detection than the two other approaches, and thereby it can only be speculated that it is the most sensitive
when it comes to detection of taxa in low abundance amongst the three main approaches. Regardless of
metabarcoding strategy, we stress the importance of optimising PCR amplifications (usually by qPCR) to
detect PCR inhibition, identify samples with low template quantity and track PCR efficiency issues (Murray
et al.2015; Yang et al. 2021).

Theoretically, the reduced PCR efficiency in the one-step and two-step PCR approaches caused by the long
overhangs on primers might be counteracted by spiking the PCRs with metabarcoding primers without any
5’ attachments (e.g. Murrayet al. 2015). However, this has been shown to have modest PCR efficiency
improvements for the one-step approach (e.g. Murrayet al. 2015). Alternatively, a pre-enrichment before
the metabarcoding PCR can be carried out, i.e. running a PCR with metabarcoding primers (with no
nucleotide additions) prior to the metabarcoding PCR as done in Zizka et al. (2019) and Elbrecht & Steinke
(2018) for the one-step PCR approach. However, this not only introduces another PCR amplification step,
but can increase the risk of cross-contamination between PCR products due to the initial unlabelled PCR
amplification step (e.g. Murray et al. 2015).
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. Apart from the length of the nucleotide additions, it has been investigated whether differences in nucleotide
tag sequences can result in biases in the tagged PCR approach. Although one study shows that such tag
bias is an issue (O’Donnell et al.2016), other studies show that it is not (Leray & Knowlton 2017; Yang et al.
2021). If tag bias does exist, it should theoretically be minimised if different tags are used on each sample’s
PCR replicates.

Chimeras & tag-jumpsChimeras can be formed during all PCR steps in any metabarcoding workflow (Fig.
2B-D). Chimeras are sequences that consist of two or more different template sequences, and the majority
are thought to result from incomplete primer extension during the elongation phase of the PCR cycle
(Meyerhanset al. 1990; Wang & Wang 1997; Judo et al. 1998; Shinet al. 2014). The probability of chimera
formation increases when similar template sequences are amplified in the same PCR reaction (e.g. Judo
et al. 1998; Smyth et al. 2010, but see also Fonsecaet al. 2012), such as during the metabarcoding PCR
(Fig. 2B-D) or during the index PCR-amplification of pools of tagged amplicons (Fig. 2D). There are
different consequences of chimeric sequences depending on where they arise. If they are created during a
PCR-amplification of a single sample’s DNA extract, the chimeras will be intra-sample chimeras, which can
be falsely interpreted as novel taxa and erroneously inflate measures of diversity. If, on the other hand,
chimeras are created during a PCR-amplification of pooled tagged amplicons, such as in the tagged PCR
approach (Fig. 2D), the chimeras may be inter-sample chimeras, which can result in tag-jumps and false
attribution of amplicon sequences to samples (Schnell et al.2015). This can also lead to false positives and
inflation of diversity.

All metabarcoding approaches are prone to intra-sample chimeras. However, as chimera formation increases
when similar sequences are amplified in the same PCR reaction (e.g. Judo et al. 1998; Smyth et al. 2010),
the use of metabarcoding primers with long 5’ overhangs, as in the one-step and two-step approaches, might
be more prone to chimera formation since they carry long and similar sequences at the 5’ end of the primers.
However, this hypothesis requires testing. Intra-sample chimeras can be reduced by limiting the number of
PCR cycles (Haas et al. 2011). Also, if samples are subjected to multiple, independent PCRs, chimeras can
be filtered out by keeping only sequences that occur in multiple PCR replicates, the ‘restrictive approach-
described in Alberdi et al, (2018). Chimera detection programmes such as UCHIME (Edgar et al. 2011) can
be used for further clean-up.

Inter-sample chimeras can cause havoc in metabarcoding studies. They can only occur in the tagged PCR
approach where library build is carried out on pooled tagged amplicons from different samples (Fig. 2D).
Here, tag-jumps can create sequences with new combinations of the nucleotide tags used in the amplicon
pool (Schnell et al.2015). If the new combinations of tags are already used in the amplicon pool, it will cause
false assignment of sequences to samples, which should be avoided at all costs (Schnell et al.2015; Esling et
al. 2015). Such tag-jumps can also have the consequence that negative controls are seemingly not negative
following bioinformatic sorting of sequences to samples. It should be noted that tag-jumps can also occur
due to T4 DNA Polymerase activity in the blunt-ending step during library preparation, as demonstrated in
library building for the Roche/454 sequencing platform (van Orsouw et al. 2007; Palkopoulou et al. 2016) and
for the Illumina sequencing platform (Carøe & Bohmann 2020). The rate of tag-jumping has been estimated
from ca. 2% to up to 49% of total sequences (Schnell et al. 2015; Esling et al. 2015; Carøe & Bohmann 2020).
This broad range can be caused by factors affecting inter-sample chimera formation during the index PCR.
For example, DNA template and primer concentration, PCR cycle number, and sequence similarity (e.g.
Judo et al. 1998; Smyth et al. 2010; Carøe & Bohmann 2020). The range of tag-jump proportions highlights
the unreliability of including an index PCR step in the tagged PCR approach.

To avoid tag-jumps in the tagged PCR approach, and thereby prevent false assignment of sequences to
samples, it is important to refine index PCR parameters to decrease the likelihood of chimera formation - or
better yet, to omit the index PCR step (Fig. 2D). Further, blunt-ending using T4 DNA Polymerase should
be circumvented during library preparation (Schnell et al. 2015; Palkopoulou et al. 2016; Carøe & Bohmann
2020). If both T4 DNA Polymerase blunt-ending and index PCR are eliminated during library preparation
of pools of tagged amplicons, tag-jumps can practically be eliminated (Carøe & Bohmann 2020).
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. If the library preparation protocol contains a T4 DNA blunt-ending step and/or an index PCR step, and
thereby can be assumed to generate tag-jumps, they can be detected and removed by using ‘twin-tags’ during
the original PCRs (e.g. F1-R1, F2-R2,. . . ), because tag-jumped sequences would then produce non-twinned
tag combinations not used in the set-up (e.g. F1-R2, F2-R3,. . . ) (e.g. Schnell et al. 2015; Yang et al. 2021).
However, using twin tags comes at the price of buying many more versions of tagged primers and building
more libraries (Schnell et al.2015). If twin tags are not used, chimera removal software can remove some
chimeric sequences carrying false combinations of used tags (Schnell et al.2015).

The extent of tag-jumping and spillover of taxa between samples can be detected through inclusion of
positive controls consisting of synthetic oligos or taxa not expected to occur in the dataset. However, note
that such controls do not enable confident elimination of false positives caused by tag-jumps. The extent of
tag-jumping can also be assessed by comparing all observed combinations of used tags to all originally used
tag combinations (Schnell et al.2015; Zepeda Mendoza et al. 2016).

Misassignment of library indicesIncorrect assignment of indices between pooled libraries can cause sequence
reads to be incorrectly assigned to libraries. Misassigned indices have been attributed to the formation of
mixed clusters on the sequencing flow cell, i.e. clusters originating from two different template molecules or
clusters growing into each other, to low levels of free index primers present in the sequence library and to
bulk amplification of pooled libraries (Nelsonet al. 2014; Sinha et al. 2017; Vodak et al. 2018; Costello et al.
2018; Valk et al. 2019). Regardless of how index misassignment occurs, if it occurs in metabarcoding studies
it can cause incorrect assignment of amplicon sequences to libraries, which can cause incorrect assignment
of sequences to samples and false positives. This phenomenon can affect all three metabarcoding approaches
(Fig. 2). To avoid index misassignment it is recommended to dual-index libraries with unique library index
combinations (Kircher et al.2012; Sinha et al. 2017),www.illumina.com). Further, stringent bead purification
(or size selection) can remove free adapters/primers from the libraries (Owens et al. 2018). The labelling
in the different metabarcoding approaches further allows for accounting for potential incorrect assignment
of sequences to libraries. In the tagged PCR approach, unique tagging of PCR replicates across all pooled
libraries can be used to account for (and detect) index misassignment. However, this can be costly. In the
one-step PCR with fusion primers approach, a tweaked protocol where nucleotide tags are used instead of
i7 and i5 of library indices (e.g. Elbrecht & Steinke 2018) creates one single library that is thereby free of
index misassignment. As with tag-jumping, the extent of incorrect assignment of indices and spillover of
taxa between samples can be detected through inclusion of positive controls consisting of taxa not expected
to occur in the data set and by comparing all observed to all used combinations of used indices when
demultiplexing libraries.

It is important not to mistake tag-jumping, index misassignment or cross-contamination between PCR
products with cross-contamination of the primers themselves. Due to the high concentration of primers upon
synthesis, cross-contamination (e.g. by aerosols) can manifest itself as low numbers of sequence reads and
could be misinterpreted as tag-jumps or index-bleeding. Due to the risk of primer cross-contamination, some
laboratories avoid ordering primers in 96-well plates. There are anecdotal reports that primer contamination
can also occur at primer synthesis (or purification). As mentioned, the risk of cross-contamination between
nucleotide tagged primer stocks and indexed primer stocks, which could e.g. occur during resuspension of
primers, will generally be the same no matter which of the three overall metabarcoding approaches is used.
In the first PCR step in the two-step PCR approach, the primers are unlabelled and any cross-contamination
that might occur will not have consequences.

Cost Metabarcoding primers in the tagged and one-step PCR approaches have to be labelled with either
nucleotide tags or indices, whereas the metabarcoding primers in the two-step approach are generally not
individually labelled. Due to the different labelling systems in the three primary metabarcoding approaches,
there are different costs associated with them.

The fusion primers for the one-step PCR approach are the most expensive metabarcoding primers amongst
the three approaches. This is (i) because differently indexed versions are purchased for each metabarcoding
primer set and (ii) because the increased oligo length results in lower yield of the full length product. If
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. unique matching indices are used to account for index misassignment, one-step PCR can become increasingly
expensive for larger scale studies. However, this needs to be factored against the potential cost of repeating
runs due to artifacts and contamination, and the fact that only a single PCR step is needed to go from
sample extract to library.

In the tagged PCR approach (Fig. 2D), the metabarcoding primers are relatively inexpensive compared to
the one-step PCR fusion primers as they only add 5’ tags of 5-10 nucleotides in length. However, as with the
one-step PCR approach, these need to be purchased in many tagged editions for each metabarcoding primer
set. Furthermore, if tag-jumping is to be taken into account by only using each tag once in a library amplicon
pool, e.g. by only amplifying with twin forward and reverse tags, then metabarcoding primer sets have to
be ordered in many differently labelled editions (Schnell et al. 2015). To keep costs down, this needs to be
balanced by pooling fewer PCR products into each library and thereby creating more sequence libraries (Fig.
2D). However, if a library preparation protocol is used that does not create tag-jumps, tags can be freely
combined, which lowers the number of tagged primers that must be purchased (Schnell et al.2015; Carøe &
Bohmann 2020). In contrast to the other two metabarcoding approaches, the tagged PCR approach includes
library preparation on pools of amplicons, and the cost of this therefore has to be taken into account. This
can however be kept low if a protocol that does not generate tag-jumps is used and only a few libraries have
to be made.

If a large number of metabarcoding primer sets are used, the two-step approach offers a relatively inexpensive
solution. In the two-step PCR approach, the metabarcoding primers are generally synthesized with 5’ tails
containing no tags or indices. This means that the same primer set can be used across multiple samples and
projects. This has the benefit that trying out new metabarcoding primer sets does not entail buying many
labelled versions of the metabarcoding primer sets, as it does in the other metabarcoding approaches (Fig.
2B-D). However, the second primer set in the two-step PCR approach is costly as it has to include both the
sequence complementary to the sequence overhang, the sequence adapters and the library indices (Fig. 2C).
It is worth noting that, just as with the one-step PCR approach, many labelled index primers will have to
be purchased if twin dual-indices are used to account for incorrect assignment of indices to libraries. This
second primer set is, however, applicable across different metabarcoding primer sets and can thereby be used
across many metabarcoding studies.

Laboratory workload The one-step PCR approach is without doubt the quickest method for generating
sequence-ready libraries, as it only requires a single PCR-step to achieve both amplification and library
preparation of the metabarcoding amplicons (Fig. 2B), and it has been used in the field to rapidly turn-
around sequence data. The workload for the two-step PCR approach and the tagged PCR approach depends,
to some extent, on how many sample extracts and PCR replicates are to be processed. If it is a relatively
high number, the tagged PCR approach is the quickest due to the library build being performed on pooled
amplicons rather than through a PCR step on individual PCR products. However, as with all molecular
biological workflows, carefully organised liquid handling and automation provide solutions to high-throughput
studies.

Choosing a metabarcoding approach

It is clear that there is no such thing as a perfect metabarcoding sample-labelling approach, and that choosing
which one is right for a given study or lab should be an informed trade-off of pros and cons balanced to the
needs. Within metabarcoding studies, those needs can range widely.

Metabarcoding studies range from those that look for one or a few taxa within sample units (e.g. Bohmannet
al. 2018) to studies that look for many taxa within sample units (e.g. Seersholm et al. 2018), and sample
numbers can range from tens (e.g. Elbrechtet al. 2017), to hundreds (Rodgerset al. 2017; e.g. Galan et al.
2017) or even thousands (e.g. Schnell et al. 2018; Ji et al. 2020). The research question and experimental
set-up can require taxonomic identifications to be made within individual samples (e.g. Coghlanet al. 2012),
while in other studies, taxonomic identifications from pools of individual samples or from a number of samples
within e.g. a geographic location is the goal (e.g. Grealy et al. 2016; Schnell et al. 2018). Sample types can
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. range from bulk specimen samples consisting of high quality DNA from pools of entire organisms (e.g. Tanget
al. 2015) to environmental samples in which DNA from target organisms can be fragmented and scarce (e.g.
Statet al. 2017). Furthermore, studies differ in how many metabarcoding primer sets are used - from only
one (e.g. Bohmann et al. 2011; Drinkwater et al. 2018) to several (e.g. De Barba et al. 2014; Drummond
et al. 2015; Zhang et al. 2018). Furthermore, the budget for a metabarcoding project will differ between
studies, and lastly so will whether the metabarcoding primers are to be used in future studies. Lastly, some
applications of metabarcoding, such as biosecurity or forensics, will necessitate a ‘high bar’ for data fidelity
and controls.

A multitude of combinations of the above metabarcoding study parameters exist, and as witnessed by this
article, the significance of the pros and cons of the metabarcoding approaches will differ with them. For
example, while the tagged PCR approach (Fig. 2D) might be more sensitive to low-abundance templates,
the one-step PCR offers a quick turnaround (Fig. 2B). However, this comes at the cost of buying long fusion
primers and is only worthwhile if the metabarcoding primers are to be used again.

When choosing a metabarcoding approach, the need for future multiplexing of the metabarcoding primers
should be considered. That is, to use several metabarcoding primer sets that target different markers and
taxonomic groups in individual PCR reactions to simultaneously screen for many taxonomic groups within
the same reaction, and thereby keep costs and work load at a minimum (e.g. De Barbaet al. 2014). For
this, the nucleotide tagged primers in the tagged PCR approach should theoretically be the most applicable,
whereas the long additions to the metabarcoding primers in the one-step and two-step PCR approaches will
be far less conducive to multiplexing due to the extensive sequence homology.

Lastly, it should be noted that whatever metabarcoding strategy is chosen, it should be clear from the
present article that one should not change workflows within an experiment. Moreover, there is some justified
concern within the metabarcoding community that the nuances in metabarcoding workflows makes inter-lab
comparison difficult (e.g. Murray et al. 2015; Zizka et al. 2019; Blackman et al. 2019).

PerspectivesAll metabarcoding strategies can generate robust data. However, like all laboratory workflows
if they are not executed well or are inappropriate for the application, they may lead to flawed data. We
advocate that just because PCR is a relatively simple method it does not mean that metabarcoding is simple,
and there are many traps in metabarcoding workflows that can trip-up new users. Here, we have presented
an overview of the three main metabarcoding strategies for assessment of biodiversity on Illumina sequencing
platforms, and the downstream consequences for the resulting data with regards to cross-contamination risk,
PCR amplification efficiency, chimera formation, tag-jumping, index-misassignment, cost, and workload. In
doing so we wish to enable researchers and practitioners to make an informed choice of which metabarcoding
strategy is best suited for their specific study. Ultimately, this is to avoid the worst case scenario, generation
of unusable data and wasting a considerable amount of time and money, or even worse making wrong
conclusions due to flawed data.

Metabarcoding of environmental DNA has some commonalities with the field of ancient DNA in which low
quality and quantity of target DNA is also targeted amongst non-target (and potentially more abundant)
templates. In the early days of ancient DNA studies, PCR-based techniques (including amplifying already
amplified DNA to enhance signals) were used, which caused authentication issues, as amplification of modern
templates was mistaken for true ancient signals. This was followed by urgent calls for precautions to ensure
reliability and authenticity of ancient DNA sequences (e.g. Cooper & Poinar 2000; Pääbo et al. 2004). Also
similarly to the field of ancient DNA, the take-home message should be that metabarcoding is becoming
a self-critical and self-correcting field in which technical reliability is promoted and rewarded, with the
long-term benefit of uptake by stakeholders who will employ metabarcoding for environmental management.
Reputational setbacks as the result of practitioners not executing their metabarcoding workflows well will
likely resonante across a variety of biomonitoring, forensic and bioseurity applications.

We thus stress the importance of being informed about the pros and cons of the chosen metabarcoding
approach with regards to cross-contamination risk, PCR amplification efficiency, chimera formation, tag-
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. jumping, index-misassignment, cost, and workload and to include appropriate quality assurance and quality
control measures. This will help ensure that the generated data will facilitate informed data analysis and
interpretation. Therefore, we advocate that metabarcoding publications should include detailed information
about the metabarcoding strategy and how its challenges have been taken into account in the laboratory,
data processing, and interpretation of results. Furthermore, it may be appropriate to eventually develop a
set of metabarcoding guidelines similar to the MIQE guidelines for qPCR (Bustin et al.2009), ultimately
further increasing the power and reliability of metabarcoding.
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