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Abstract28

Upwelling events over the Yucatan shelf are physical phenomena of importance for the region. In July 2018,29

based on oceanographic sampling, we detected the presence of upwelled waters on the west side of the shelf.30

These events have been widely studied on the northern Yucatecan coast but little has been said about their31
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. existence off Campeche, although they are known to the fishing communities of the region. Back-in-time32

Lagrangian simulations identify the origin of the subsurface Caribbean water; this particular event came33

from the northeast of Yucatan, over 500 km away from the sampling site. It took over a month to arrive34

at the study region, traveling alongshelf with an average velocity of 14.5 cm/s along the region with the35

most intense upwelling of the Yucatan shelf. This phenomenon separated the water column into two layers36

with differentiable thermohaline characteristics. These trajectories are also observed with climatological37

Lagrangian Coherent Structures suggesting recurrence. Monthly-averaged SST anomalies also show that38

advected upwelling waters off Campeche occur mainly during summer (from July to August each year).39

Introduction40

Located on the southeast Gulf of Mexico (GoM), the Yucatan Peninsula continental shelf (hereafter Yucatan41

Shelf), is an important economic area rich in fishing resources, gas, and oil deposits. It is a wide shallow42

marine region where the ocean floor frictions the ocean currents and detriments the height of the waves,43

characterized by low speeds (mean -20 cm/s, (Mart́ınez-López and Pares-Sierra, 1998), (Rúız-Castillo et al.,44

2016)) and low significant wave heights (0.63 m on average), respectively. Wind stress forcing and bottom45

friction are the main drivers of the ocean currents over the shelf, but also the water column stratification has46

been found to be an important factor ((Rúız-Castillo et al., 2016), (Reyes-Mendoza et al., 2016), (Jouanno47

et al., 2018)). Winds blow preferentially towards the west all year-round (also known as easterlies or tra-48

de winds), forcing the ocean to produce a westward circulation ((Mart́ınez-López and Pares-Sierra, 1998)49

and (Zavala-Hidalgo et al., 2003)). But from September to June atmospheric cold fronts coming from con-50

tinental North America motivate wind burst episodes affecting the region with northwesterly winds blowing51

over the hole GoM (events locally known as “Nortes”)(Kurczyn et al., 2020).52

The Yucatan Shelf, also known as the Campeche Bank, is situated in a tropical region with an abundant53

amount of precipitation where the karst nature of its geology causes rainwater to be absorbed by the ground,54

leaving almost no rivers on its surface overflowing to the sea but to the west of the peninsula. Then, conti-55

nental freshwater inputs are carried through coastal lagoons and the subsoil, by water holes scattered along56

the seabed on the northern coast ((Herrera-Silveira et al., 2002), (Valle-Levinson et al., 2011), (Enriquez et57

al., 2013)), causing the salinity in most of the shelf to be influenced mainly by evaporation processes. On the58

other hand, the oceanographic region that surrounds this bank is very dynamic, to the east, the western arm59

of the large North Atlantic Anticyclonic Ocean Gyre is found represented by the strong high-speed flow of60

the Yucatan current. To the north, the Lazo current with its mesoscale eddies are located, and to the west is61

the Bay of Campeche, identified as a deep-sea area with a semi-permanent cyclonic eddy. The exchange of62

properties between the adjacent ocean and the shelf is limited due to the shallowness of the region, however,63

some very important and known interchanging processes occurring on the northern coast of this bank are64

the upwelling events ((Ruiz-Renteria, 1979), (Furnas and Smayda, 1987), (Reyes-Mendoza et al., 2019)).65

Upwelling phenomena on the Yucatan shelf had always been known to the coastal fishing communities, still,66

it was until the mid-1960s that these were scientifically reported from hydrographic campaigns ((Cochrane,67

1966), (Cochrane, 1968), (Cochrane, 1969), (Belousov et al., 1966), (Bogdanov et al., 1968), (Bessonov et al.,68

1971), (Bulanienkov and Garcia, 1973), (Ruiz-Renteria, 1979)). Numerous works have emerged investigating69

the events themselves and the mechanisms that generate them, managing to conceive different hypotheses70

((Cochrane, 1966), (Ruiz-Renteria, 1979),(Furnas and Smayda, 1987), (Merino, 1997), (Rúız-Castillo et al.,71

2016), (Reyes-Mendoza et al., 2016), (Jouanno et al., 2018)), nevertheless the subject is still a matter of inves-72

tigation. Although the Yucatecan coast is parallel to the persistent trade winds of the region, its shallowness73

does not allow us to describe these phenomena using Ekman’s theory itself. The most convincing hypothesis74

suggests that the Yucatecan upwelling is a phenomenon due to the interaction of the Yucatan current with75

the bathymetric configuration of the shelf break ((Furnas and Smayda, 1987), (Merino, 1997), (Jouanno76

et al., 2018)), which at the east of the Peninsula presents a notch that manages to introduce Caribbean77
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. water ˜ 250-m deep to the surface, which is then carried through the bottom of the shelf towards the coast78

where the westward currents, forced by the trade winds, redistribute it along the coast ((Rúız-Castillo et al.,79

2016), (Reyes-Mendoza et al., 2016)).80

This work is based on an upwelling event registered on the western coast of the shelf (off Campeche state),81

by a hydrographic survey that helped describe its main structural features. Our findings are complemented82

with numerical modeling, using climatological Lagrangian Coherent Structures from a 12-year HyCOM Gulf83

of Mexico simulation and satellite remote sensing, to analyze the point source and time of origin of the84

upwelled waters. This particular discovery illustrates the importance of the coastal current advection, in85

transporting for more than 500 km upwelled waters to the western side of the shelf where the coastline86

is perpendicular to the wind direction, bringing new insights and questions about these phenomena in the87

Yucatan Shelf.88

Materials and Methods89

In-situ data:90

(a) Oceanographic survey91

From Jul 2017 to Jul 2018, five oceanographic surveys were conducted on small boats along the first ˜3092

km offshore of the western Yucatan Peninsula coast to sample the seasonal variation of the thermohaline93

characteristics of the coastal ocean. Each survey took about one week to be completed and was planned94

three months apart from each other. This particular work presents the findings of the 5th campaign that95

occurred during summer 2018 (Jul 23- 28, Figure 1). The vessels used in the surveys were equipped with a96

hand-held Valeport miniCTD factory-calibrated, and a Garmin GPS, to collect temperature, conductivity,97

and depth data, at all sampling stations. These data were later transformed to observations of conservative98

temperature (CT) and absolute salinity (SA) using the thermodynamic equation of seawater TEOS-10 tool-99

box (McDougall and Barker, 2011). To show the surface distribution of SA and CT in the study region,100

surface samplings of these variables were optimum interpolated using the Data-Interpolating Variational101

Analysis software (Troupin et al., 2012). All data were processed using the R software (RCoreTeam, 2014).102

3
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Figure 1: Study area for the oceanographic surveys (black dots) and location of the ADCPs (blue dots). Red
dots show stations used to depict cross-shore (L1) and along-shore view (L2) of the hydrographic proper-
ties. Mean surface current vector and variance ellipse (in blue) during July 2018. Bathymetry is shown as a
background color.

(b) Acoustic Doppler Current Profiler (ADCP) observations:103

Two ADCPs were located on the western continental shelf of the Yucatan Peninsula at ˜11 m depth. These104

were Nortek-AWACs of 1 MHz, measuring the current profile divided into eight layers, starting 1.4 m above105

the bottom until 2.6 m below the surface, taking samples every 20 min and averaging the first 60 s of the106

observations. The ADCPs were used to measure three sites, two of these simultaneously (Table 1):107

Fixed ADCP ADCP 2.a ADCP 2.b
Loca-
tion

Lerma Champoton Chenkan

Position 19°58’22.8”N,
90deg52’29.03”W

19°29’1.86”N,
90deg58’36.12”W

19°18’15.48”N,
91deg6’56.34”W

Dates 1-Jun to 31-Jul-2018 1-Jun to 13-Jul-2018 26-Jul to 31-Jul-2018

Table 1: Positions of the ADCPs.

Tides were eliminated from the ADCP observations using a Lanczos filter with a cut-off frequency of 24108

hours, leaving only the dynamic structure of the currents due to surface wind stress, bottom friction, and109

geostrophic forcing. In this work, only the mean currents measured during June and July 2018 were shown110

(Figure 1).111
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Satellite data:113

To depict the regional distribution of the sea surface temperature, ocean currents, and winds during July114

2018, the following remotely sensed data was employed:115

(a) Optimum Interpolation Sea Surface Temperature (OISST)116

The NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (or daily OISST) is an analysis117

constructed by combining observations from different platforms (satellites, ships, buoys) on a regular global118

grid. A spatially complete SST map is produced by interpolating to fill in gaps. The methodology includes119

bias adjustment of satellite and ship observations (referenced to buoys) to compensate for platform differences120

and sensor biases (Reynolds et al., 2002). These data was provided by the NOAA/OAR/ESRL PSD, Boulder,121

Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/.122

(b) Aviso+ Multimission altimeter satellite gridded sea surface heights123

Altimeter satellite gridded Sea Level Anomalies (SLA) were computed with respect to a twenty-year mean,124

processed by the DUACS multimission altimeter data processing system, incorporating data from all al-125

timeter missions: Jason-3, Sentinel-3A, HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, T/P, ENVISAT,126

GFO, ERS1/2. All the missions are homogenized with respect to a reference mission OSTM/Jason-2. The127

SLA is computed with an optimal and centered computation time window (6 weeks before and after the128

date). Resolution is 0.25 X 0.25 degrees and has an irregular temporal resolution, although they are distri-129

buted on a daily basis. This dataset can be downloaded from the Copernicus Marine Environment Monito-130

ring Service (CMEMS): https://resources.marine.copernicus.eu/? option=com csw&task=results&product -131

id=SEALEVEL GLO PHY L4 REP OBSERVATIONS 008 047&view=details132

(c) ASCAT133

Daily wind and wind stress fields are estimated over global oceans from Metop/ASCAT retrievals using an ob-134

jective method. The resulting fields have spatial resolutions of 0.25° in longitude and latitude. The calculation135

of daily estimates uses ascending as well as descending available and valid retrievals. Data and documentati-136

on are freely distributed on Cersat/Ifremer FTP site (ftp://ftp.ifremer.fr/ifremer/cersat/products/137

gridded/MWF/L3/ASCAT/Daily/ ).138

Lagrangian simulations:139

Trajectories were integrated back in time for 40 days, from July 19 to June 10; in one experiment using140

the 2018 velocity from HyCOM GOM10.04 expt. 32.5, and in another experiment using the 2003–2014141

HyCOM climatological velocity described in (Duran et al., 2018). The almost 7 thousand trajectories in142

each experiment were computed using a fourth-order Runge-Kutta with cubic interpolation, a combination143

that has been shown to be efficient and accurate when integrating discrete data (Nordam and Duran, 2020).144

The 2018 velocity was a two-dimensional field at 5 meters depth, while the climatological velocity is a surface145

field.146

Climatological Lagrangian Coherent Structures147

Trajectories are compared with the climatological Lagrangian Coherent Structures computed in (Duran et148

al., 2018). The code for cLCS is described and freely available (Duran et al., 2019); the climatological velocity149

(with which the results of (Duran et al., 2018) can be replicated) is also available at that repository.150

5
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Results151

In-situ and remote observations:152

The Yucatan shelf is a shallow environment defined by a very smooth slope, 1 m/3000 m off Campeche and153

1m/1000m off Yucatan, where the mobility of the vessels is limited by draft restrictions. In this work, the154

sampling stations of the surveys fell on depths ranging between 2 to 20-m depth, capturing the thermohaline155

variations of the first ˜30 Km of the coast. Figure 2 depicts the T/S diagram of the campaign, where two156

water types were found: (1) Caribbean Tropical Surface Water (CTSW), also called Yucatan Sea water157

(off Yucatan state, (Enriquez et al., 2013)) or Gulf Common Water (off the GoM west coast, (Vidal et al.,158

1994)), and (2) Caribbean Subtropical Under Water (CSUW). The former occupied most of the study region,159

presenting a modification of the CTSW having saltier values than the reported for the region ((Nowlin and160

Mclellan, 1967), (Vidal et al., 1994), (Merino, 1997), (Aldeco et al., 2009), (Enriquez et al., 2013)). Waters161

located in the first 5 m showed very warm temperatures (29.6±1 °C) with large salinity and density ranges,162

influenced mainly by evaporation processes between the lower atmosphere and the surface ocean, and to163

a lesser extent by nearshore freshwater inputs from the Champoton river, coastal lagoons, and submarine164

groundwater discharges located near the coast, particularly in the northern part of the study area between165

Lerma and Isla Arena (20-21°N, 91°W).166

On the other hand, water temperatures below 26 °C were seen between 7 to 16-m depth, located on the167

farthest sampling stations to the shore. At these depths, saltier Caribbean Subtropical Under Water-type168

signature was found. This water is commonly found in the Yucatan Channel at 250-m depth, and its presence169

over the Yucatan shelf is attributed to upwelling processes between the Yucatan current and bottom friction170

on the northeastern side of the Yucatan Peninsula ((Merino, 1997), (Jouanno et al., 2018)), approximately171

600 Km to the east from the study region. This result illustrated a two-layer distribution of coastal waters172

on the deepest parts of the study region, represented by the CTSW above the CSUW, with local processes173

(evaporation/freshwater inputs) modifying their characteristics. It was found that evaporation processes174

greatly exceeded precipitation (or freshwater inputs) as both water types showed saltier values, even though175

the survey was carried in July which is at the middle of the rainy season defined from May to November176

each year.177
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Figure 2: Temperature (Conservative Temperature) and Salinity (Absolute Salinity) diagram for July 2018.
Water type signatures found during this survey are: (1) The CTSW- Caribbean Tropical Surface Water, and
(2) the CSUW-Caribbean Subtropical Under Water. Contours represent σθ values.

Figure 3 depicts the surface salinity and temperature distribution during the days of the survey, which178

represents an approximate 6-day average. It exhibited salty and warm values all along the coast, particularly179

between Lerma and Isla Piedra which are located on the shallowest depths (<5 m) at the NE of the study180

region. At the northwestern edge of the sampling region (off Isla Arena), upwelled waters coming from181

the Yucatan coast entered the study area bringing “cold” temperatures and mild salinities (27 °C and 37.2182

g/Kg, respectively). Off Terminos lagoon, located on the south of the study region, flushing waters from this183

body of water expelled warm (30 °C) and less salty waters and (36.2 g/Kg), thru its southern mouth (Boca184

del Zacatal) to the adjacent ocean.185
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Figure 3: Surface distribution of (a) Absolute Salinity (g/Kg) and (b) Conservative Temperature (°C),
optimum interpolated.

Regularly during the surveys, ADCPs were recovered for maintenance and battery replacement. Their moo-186

ring locations were planned to coincide with a particular CTD station of the survey. During summer 2018 we187

decided to change the Champoton ADCP further south, off Chenkan (Table 1). While positioning it on its188

new location, during the diving maneuver we noticed that the water column was divided into what seemed189

two layers of water, a wide layer of warm and clear water above a thin layer of low-visibility and cold water190

located very next to the ocean floor. We felt curious about this phenomenon, which was unnoticeable during191

the recovery of this ADCP some days before off Champoton. The CTD observations (Figure 4) illustrates192

the cross-shore thermodynamic distribution along the Chenkan section, where a saltier and warmer layer193

of water (CTSW) was located above a fresher and colder thin layer of water (CSUW), located next to the194

bottom of the ocean and extending for more than 15 km long. The CSUW water-type was located 10 Km195

away from the shore at a depth between 7 to 15 m. Very next to the shore, CTSW salinity and temperature196

contours showed a vertical distribution of this water-type that changed horizontally right above the location197

of the CSUW. The ADCP mooring was located on the CTD station before the end of the section(˜ 25 km198

offshore).199
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Figure 4: Cross-shore view of the vertical distribution of (a) Absolute Salinity (g/Kg), (b) Conservative
Temperature (°C), and (c) density (σθ in Kg/m3), off Chenkan locality (L1 on Fig. 1). Black triangles on
top depict sampling stations.

The vertical distribution of the upwelled CSUW along the Campeche shore was illustrated in Fig. 5. It200

complemented the results of Fig. 3, showing the behavior of the upwelled water in the vertical as it flows201

towards the southwest. It penetrated the study region off Isla Arena, then it was kept away from the sampling202

region from Isla Piedra to the south of Lerma (between 20-21°N, 91°W) and got closer to the shore around203

Champoton until the rest of the region. This colder and fresher water could not reach the shore in the204

northern region due to a bathymetric step that disappears after passing Champoton, which prevents the205

approach of this water towards the coast. The upwelled water occupied the whole water column on the206

northern region (off Isla Arena) but passing Champoton it was restricted to a thin layer close to the ocean207

floor.208
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Figure 5: Along-shore view of the vertical distribution of (a) Absolute Salinity (g/Kg), (b) Conservative
Temperature (°C), and (c) density (σθ in Kg/m3), for sampling stations aligned from north to south (L2 on
Fig 1). Black triangles on top depict sampling stations.

Remotely sensed observations were used to expand the study’s spatial and temporal extent and explore the209

behavior of sea surface temperature (SST), currents, and winds, during the upwelling event. SST anomalies210

exhibited a cold tongue of seawater extending from the north-eastern coast of the Yucatan Peninsula all the211

way until Isla Aguada in southern Campeche, reaching a minimum SSTa during July 19th (Fig. 6.a1). Near212

the coast, the bathymetric restriction off northern Campeche (20-21°N, 91°W) presented warmer anomalies213

during all the time of the event, and it is clear that during the time of the survey (Fig. 6.c1), this phenomenon214

was weakening and retracting, showing smoother SSTa with positive values off Campeche and low-negative215

values off Yucatan. Off Campeche, currents and winds are most of the time south-westward and easterly216

flows, respectively, and during the dates inspected this was no different (Fig. 6.middle and lower panels).217
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Figure 6: Satellite images of the regional distribution of (a) Sea Surface Temperature anomalies (SSTa), (b)
SST plus geostrophic currents, and (c) surface winds, during the end of July 2018.

Lagrangian simulations:218

Trajectories were initiated from a regular grid of initial positions with a constant spacing of 0.01 degrees219

within a polygon encompassing the Campeche pool of cool water as determined from satellite SST on July220

19, 2018 (Fig. 7). Back-in-time trajectories indicate that the water within the polygon of initial positions221

mainly came from the northeast in the 2018 experiment, and only from the northeast in the climatological222

experiment.223

Using the 2018 velocity, about 18% of all trajectories had at least one longitude to the west of the westernmost224

point of the initial-position polygon, and 80% of all trajectories had at least one point to the east of the225

easternmost point of the initial-position polygon (Fig. 7b). In the climatological experiment, in contrast,226

trajectories only from the Yucatan shelf to the northeast (Fig. 7d).227

At the surface, SST advection by the ocean model (HyCOM) also shows cool water moving along the same228

path as the trajectories and along a tongue of water that is about 2–3 degrees Celsius cooler than the rest of229

the surface water over the Yucatan shelf (Fig. 7c). Satellite and model SST are in good agreement, although230

the model has additional variability as should be expected from a higher resolution simulation (Fig. 7a231

and 7c).232
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Figure 7: Sea Surface Temperature (oC) from satellite (a) and HyCOM GoM (c) on July 19, 2018. The blue
polygon is used as initial conditions for back-in-time trajectories to investigate the cool water pool’s origin
in the satellite data (a). Black dots in the right column are points from trajectories initiated within the blue
polygon on July 19, 2018, and integrated back in time for 40 days (June 10, 2018) using HyCOM GoM’s
velocity at 5-m depth (b), and a 1994–2014 climatological velocity at the surface (d). Color contours in the
right column are the velocity magnitude (ms-1) used for the trajectories after time averaging, HyCOM GoM
at 5-m depth is shown in (b), and the velocity climatology at the surface is shown in (d). The blue line is
used as a path representative of most of the trajectories shown in (b) and is plotted as a reference in the
other panels. The 50-m isobath is shown in black. (Fig. 8).

Water parcels ending within the cool water polygon (initial-position) traverse most of their path along a233

region of relatively intense upwelling of about 1–4 meters per day that is present through the water column234

from the bottom to 5 meters deep, in the 40 days leading to the observation of the cool satellite SST pool235

(Fig. 8). The maxima in upward velocity along the representative horizontal trajectory coincide with the236

SST minima from satellite and HyCOM data (cf. Figs. 7a, 7c, and 8).237
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Figure 8: Vertical velocity (m/day) from HyCOM GoM, time-averaged June 10, 2018, through July 19, 2018,
and depth-averaged between 5 m and 50 m, or bottom when less than 50 m. The 50-m isobath is shown in
blue; the polygon used for initial trajectory positions, and a representative trajectory, (see Fig. 7) are shown
in black

There is good agreement between trajectories from the 2018 experiment computed here and cLCS from (Du-238

ran et al., 2018). Trajectories from the east move across weak cLCS that are deformed as chevrons within239

the Yucatan shelf, while trajectories from the northwest move along strong cLCS until they meet within the240

initial-position polygon (Fig. 9). The advection of cool SST coincides with most trajectories (Fig. 7c) in241

crossing weak cLCS that, deformed as chevrons, indicate the direction of weak transport. We note that,242

unlike LCS, cLCS are not proper transport barriers. The chevrons reported here are similar to what was243

found in (Gouveia et al., 2021), where along-slope SST advection happens through weak cLCS deformed as244

chevrons, while cLCS with relatively strong climatological attraction indicate transport barriers.245
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Figure 9: Climatological Lagrangian Coherent Structures (lines) colored according to their climatological
strength of attraction (cρ, logarithmic scale) for July. The trajectories from figure 7(b) are plotted in black,
with the polygon used for their initial positions is plotted for reference in dark orange. The 50-m isobath is
show in in blue.

Discussion246

The hydrographic features and the numerical simulations described here confirm the existence of upwelling247

waters along the western Yucatan shelf, brought from the northeast by coastal current advection. In248

their works of upwelling events over the northeastern Yucatecan coast, (Ruiz-Renteria, 1979), (Merino,249

1997), and (Jouanno et al., 2018) proposed that local wind acts indirectly in the upwelling intensity and250

variability by inducing high-frequency variations in the current magnitude over the platform. Once the251

upwelled water intrudes the shelf from the eastern notch, the wind-forced currents spread this water along252

the north coast, particularly during spring and summer. Similar to their findings, (Mart́ınez-López and253

Pares-Sierra, 1998) detected a wind stress-forced westward current with maximum transport in July–August254

((Zavala-Hidalgo et al., 2003)). Off Campeche, more than 1.5 years of ADCP observations off Lerma255

and Champoton (result not shown) registered a mean 5 cm/s southwestward surface flow with maximum256

velocities reaching 43 cm/s. On the other hand, considering the 500 km traveled by the upwelled waters257

in 40 days gives an averaged advected velocity of 14.5 cm/s, comparable to the westward current velocity258

simulations of 5-20 cm/s off Yucatan ((Mart́ınez-López and Pares-Sierra, 1998), (Rúız-Castillo et al., 2016)).259

An interesting feature promoted by these upwelling events is the two-layer water column distribution in such260

an open and shallow environment, as depicted in the T/s diagram (Fig. 2). Other authors had evidenced the261

large spatial coverture of these events over the shelf ((Rúız-Castillo et al., 2016)) and its lasting duration from262

spring to autumn ((Merino, 1997)), which had demonstrated its importance on the productivity of the bank,263

as Nitrate distributions of the upwelled water layer fertilize the shelf ((Furnas and Smayda, 1987), (Merino,264

1997)). Despite we did not present any Nitrate data over the western side we believe upwelling events265

enhance its productivity, although more hydrographic evidence is needed to enlarge our understanding of266
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. this phenomenon on this side of the shelf and the role it may play in the seasonal and interannual variation267

of the regional fishing resources.268

Some works have studied the seasonality of the upwelling events over the Yucatan Shelf ((Molinari,269

1980), (Merino, 1997)) and attributed it to the Yucatan Current flow intensity, which strengthens dur-270

ing spring and summer and weakens in autumn-winter, implying bottom friction mechanisms. On the other271

hand, (Rúız-Castillo et al., 2016) explored the relationship between the alongshore wind stress over the272

shelf and the seasonality of the upwelling events, using a Longitude-time (Hövmuller) diagram of the mean273

monthly upwelling index (his Fig. 9). They found upwelling events throughout the year with two strong274

periods: March and July and October and December, the former being stronger. To explore the regularity275

of the advected upwelled waters over the western coast, we analyzed the alongshore SST anomaly distri-276

bution from the Caribbean sea (87°W) until the Tabasco coast (>92°W, Figure 10), where cooling events277

are related to negative anomalies (blue color values). From the eastern side of the shelf until the western278

side, the Campeche coast is shown between longitudes 92-90°W, cooling events are seen alongshore all year279

round. Although SST is related to different surface heat budget processes and could be noisy to attributed280

it solely to the upwelling events, it showed an interesting resemblance to the findings of (Merino, 1997)281

and (Rúız-Castillo et al., 2016). It exhibited colder SST anomalies between July to August (in summer) off282

Campeche, and between April to August (spring and summer) off the Yucatecan coast. During winter (from283

January to March) surface cooling events encompassed all the region, from the Caribbean until Tabasco,284

although their SST anomalies are low and are probably related to the northerly cold wind burst events (the285

“Nortes”) that affect all the GoM.286
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Figure 10: Hovmöller diagram of the monthly-averaged remotely sensed SST anomalies. Red (blue) color
shows warmer (colder) temperatures than the 39 years spatial-temporal mean (1981-2020). Top left are the
positions used for the calculations (in red).

Lagrangian results presented here are in agreement with the ensemble-mean Lagrangian circulation sustained287

by the instantaneous HyCOM-GOM10.04 velocity from 1994 through 2014, depicted for example in figure 1288

of (Duran et al., 2018). In that figure, the ensemble-mean distribution of a passive tracer moves westward289

over the Yucatan shelf. The ensemble averaging is taken over different initial times spanning 1994–2014.290

Blue tracer reaches the furthest towards the west at the location where cLCS deform as chevrons towards291
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. the west, and where the climatological attraction is weakest. This is in excellent agreement with the 2018292

trajectory simulation presented here, where trajectories originating in the Yucatan shelf move across cLCS293

where the climatological strength of attraction is weakest and where they deform as chevrons towards the294

west (Fig. 9). Thus, the existence of a predominant pathway connecting the eastern Yucatan shelf and295

the Bay of Campeche (western Yucatan shelf) becomes clear. Different experiments supporting a persistent296

along-slope Lagrangian link between the eastern and western Yucatan shelf, including the 2018 simulation297

presented here (Fig. 7), the ensemble-mean tracer distribution from an instantaneous velocity spanning 1994298

through 2014 (Duran et al., 2018), and cLCS computed from a 1994-2014 climatological velocity (Duran et299

al., 2018). Trajectories computed directly from the climatological velocity are also in good agreement with300

this pattern, although when initiated in the Campeche pool of cool water and integrated backward in time,301

trajectories are closer to the coast, where strongly-attracting cLCS align with the coastline, thus confirming302

the cLCS’s strong attraction (Fig. 9).303

Conclusions304

Upwelled waters off the Campeche coast are brought to the region recurrently by the southwestward penin-305

sular currents from the Yucatecan coast, hundreds of kilometers away, being stronger during summer (from306

July to August each year). Although the region is wide open and very shallow, this phenomenon manages307

to separate the water column into two layers with differentiable thermohaline characteristics, both with308

Caribbean water-type signatures evidencing the high connectivity of the region.309

More information is needed to address these interesting phenomena and improve our understanding of their310

role in the environment. The following are some of the issues that still remain open and would be interesting311

to address in future work: (1) the role that upwelled waters must play in the heat budget of the Yucatan shelf,312

that in spring and summer exhibits high atmospheric temperatures (>35°C). (2) The interaction between313

these events and the Northerly cold wind burst phenomena, which also cools down the water temperature314

of the region. (3) The important implications they must have to the marine biota over the bank by bringing315

colder and nutrient-rich underwaters of Caribbean origin, to mention a few.316
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