Early intervention and prevention of allergic diseases

Helen Brough¹, Bruce Lanser², Sayantani Sindher³, Joyce Teng⁴, Donald Leung⁵, Carina Venter⁶, Susan Chan¹, Alexandra Santos¹, Henry Bahnson⁷, Emma Guttman-Yassky⁸, Ruchi Gupta⁹, Gideon Lack¹, Christina Ciaccio@bsd.uchicago.edu¹⁰, Vanitha Sampath³, Kari Nadeau³, and Cathryn Nagler¹¹

¹King's College London Faculty of Life Sciences and Medicine
²National Jewish Health
³Stanford University School of Medicine
⁴Lucile Salter Packard Children's Hospital at Stanford
⁵National Jewish Health Division of Allergy & Clinical Immunology
⁶University of Colorado Denver Children's Hospital Colorado Research Institute
⁷Benaroya Research Institute at Virginia Mason
⁸Rockefeller University
⁹Ann and Robert H Lurie Children's Hospital of Chicago
¹⁰University of Chicago Department of Medicine
¹¹University of Chicago Pritzker School of Medicine

May 5, 2021

Abstract

Food Allergy (FA) is now one of the most common chronic diseases of childhood often lasting throughout life and leading to significant worldwide healthcare burden. The precise mechanisms responsible for the development of this inflammatory condition are largely unknown; however, a multifactorial aetiology involving both environmental and genetic contributions is well accepted. A precise understanding of the pathogenesis of FA is an essential first step to developing comprehensive prevention strategies that could mitigate this epidemic. As it is frequently preceded by atopic dermatitis and can be prevented by early antigen introduction, the development of FA is likely facilitated by the improper initial presentation of antigen to the developing immune system. Primary oral exposure of antigens allowing for presentation via a well-developed mucosal immune system, rather than through a disrupted skin epidermal barrier, is essential to prevent FA. In this review, we present the data supporting the necessity of 1) an intact epidermal barrier to prevent epicutaneous antigen presentation, 2) the presence of specific commensal bacteria to maintain an intact mucosal immune system and 3) maternal/infant diet diversity, including vitamins and minerals, and appropriately timed allergenic food introduction to prevent FA.

Introduction:

Atopic conditions, including atopic dermatitis (AD), food and environmental allergies and asthma, have become an important public health concern world-wide.¹ This review will focus primarily on early interventions to prevent food allergy (FA).²⁻⁴ Recent studies reinforce the strong connection between early severe AD and the development of FA. Pediatric FA has become an epidemic in many countries, with increasing rates in the past few decades, although substantial variations from 1% to 10% exist by country. To date, some of the highest rates have been observed in high-income countries such as the United Kingdom, United States, and Australia, where population-based surveys and analyses of healthcare utilization data suggest the burden of disease has substantially increased.⁵⁻⁹ While there is consensus that prevalence has increased in many parts of the world, the magnitude is difficult to ascertain due to numerous factors, including a lack of systematic population-based surveillance efforts incorporating repeated, validated prevalence assessments, and high-quality estimates lacking from many countries. Figure 1 visualizes the most recently available population-based estimates of pediatric FA prevalence.¹⁰⁻¹²

It is also difficult to estimate FA prevalence globally or compare rates by country because of the limited international coordination of disease surveillance efforts, leading to heterogeneity in study design, FA case definitions, and study populations.^{10,13}Even in studies with similar populations, direct comparisons of prevalence rates are challenging as there are variations in social, cultural, and economic factors. Despite the literature gaps, extensive research into paediatric FA epidemiology provides insight into possible FA aetiology and promising disease prevention avenues. For example, an epidemiologic finding of disparate rates of infant peanut allergy among genetically similar populations in the UK and Israel led to insights regarding the protective role of early life exposure to major food allergens.¹⁴ These insights have now been tested in randomized controlled trials (RCTs) and translated into clinical practice guidelines that advocate the early introduction of allergenic solids for primary prevention.¹⁵⁻¹⁷

The multifactorial aetiology of FA is well-recognised, with environmental and genetic factors contributing to FA development. However, strategies to manage FA remain limited in most cases to strict allergen avoidance and managing allergic reactions, including teaching patients/caregivers to administer epinephrine during suspected anaphylaxis, which can adversely impact patient/caregiver quality of life. ¹⁸ Food allergen immunotherapy appears to offer transient protection but is allergen-specific, time-intensive, and side effects limit tolerability.¹⁹ Even when gold standard treatments exist, prevention remains the ultimate goal since it can circumvent early morbidity from disease and ameliorate treatment burden.

AD often heralds the atopic march and frequently precedes the development of FA, allergic asthma and allergic rhinitis. Whether AD is the primary insult, or the earliest manifestation of other underlying factors is not yet fully established. However, AD is a significant risk factor for FA and may play a key role in FA prevention. Numerous studies suggest a causal role of cutaneous sensitization in FA's development where both the skin barrier and immunology are thought to be key players.²⁰

The true global prevalence for AD is also unclear, with previous studies indicating paediatric AD prevalence varying by country.²¹ Between 1999-2004 the International Study of Asthma and Allergies in Childhood incorporated a standardized school-based sampling methodology and symptom questionnaire to estimate current AD prevalence among 6-7-year-olds in 60 countries and estimates for 13-14-year-olds in 96 countries. Subsequent studies have independently verified the increase of increasing several countries. These landmark findings are visualized in Figures 2 and 3. However, they are nearly 20 years old, and no comparable effort to systematically assess longitudinal changes in the global prevalence of AD has since been undertaken.

The dietary impact of early life nutrition is another staple of FA prevention. It has been studied to varying degrees, including the impact of oral tolerance induction, breast and formula feeding, Vitamin D, dietary diversity, and the role of pre-, pro-and syn-biotics. The interaction of the skin and diet come together in the interplay between oral tolerance induction and epicutaneous allergen exposure. This forms the basis of the dual-allergen exposure hypothesis, which proposes that epicutaneous food allergen exposure in early life is associated with the development of FA, whilst early life oral exposure is protective.²²⁻²⁴

Finally, microbial factors may impact FA prevention with the mode of delivery at birth, pet exposure and bacterial (*S. aureus*) colonisation. The roles of viruses and fungi are still unknown. This review will explore AD, the infant diet, microbial factors, and the complex interplay of all factors in FA development, focusing primarily on early intervention to prevent FA. We conclude our review with a discussion of future and ongoing research including key topics that must be addressed.

Cutaneous factors and environmental exposures in the development of FA

Early AD is implicated in the subsequent development of allergic diseases, including FA, asthma, allergic rhinitis and is termed the "atopic march".²⁻⁴ In the "outside-in" hypothesis, skin barrier defect allows

penetration of allergens and microbes leading to atopic sensitization whereas, in the "inside-out" paradigm, a polarized immune response leads to a defective skin barrier (Figure 4).²⁵

Experimental models and clinical observations in humans support the concept of epicutaneous food allergen sensitization.^{20,26}The epidermis plays a key role in preventing allergens, irritants and microbes from penetrating the skin and eliciting the host immune response. These events are facilitated by skin barrier dysfunction in AD, promoting the penetration of food allergens from topical application or the environment. Lack et al.²³ first reported that peanut allergy was associated with the topical application of skin creams containing peanut protein. Subsequently, Fox et al.²⁴ reported increased FA in households that ate peanuts. In addition, Brough et al.²⁷ found house dust dose-dependent peanut sensitization in patients with FLG mutations, and the impact of developing allergy was greater in children with AD²⁸ and in children with egg allergy.²⁹These observations supported a role for the "outside-in" process of food sensitization where exposure to environmental peanut in an individual with skin barrier dysfunction leads to enhanced FA.

The "inside-out" process implicates the immune response in making the skin barrier more susceptible to skin epithelial dysfunction, development of AD, and allergen entry. The current understanding of 'AD's pathogenesis is centered on the robust activation of Type 2 (IL-4, IL-13, IL-31) and Type 22 (IL-22) cytokine axes in both skin and serum.^{25,30-34}Model systems showed that type 2 cytokine activation inhibits keratinocyte terminal differentiation products (i.e., filaggrin, loricrin), tight junctions (i.e., claudins), and lipid products.³⁵⁻³⁸ Recent findings show that Th2 cytokines decrease antimicrobial peptides, causing AD skin to be more prone to colonization of infectious organisms, such as S. aureus. Thus, IL-4 and IL-13 play a hallmark role in the Th2 immune response in AD, contributing to both immune activation and skin barrier dysfunction. IL-31, another Th2 cytokine, has been shown to interact synergistically with IL-4, driving pruritus and contributing to the inflammatory and barrier defects of AD.³⁹⁻⁴⁴ The Th22 axis also plays a role in suppressing the epidermal barrier and the lichenification and increase of S100As in chronic AD lesions.^{45,46}Additional proinflammatory axes, including Th17, are preferentially upregulated in certain AD populations, such as Asians and children, revealing the heterogeneous nature of AD across its subtypes.⁴⁷⁻⁵¹Recently, minimally invasive studies of the skin using tape strips, performed in infants, children and adults with moderate-to-severe AD, show robust upregulation of type 2 and 22 T-cell immune cytokines in both lesional and non-lesional AD skin.⁵²⁻⁵⁴ The upregulation of immune markers in involved and uninvolved skin showed high correlations with disease severity scores and the functional barrier measure trans-epidermal-water-loss (TEWL).⁵⁵⁻⁵⁷

Allergic disease development is associated with a Th2 cell-mediated inflammatory response^{58,59} described above. Allergic disease is preceded by the formation of specific IgE (sIgE) antibodies against environmental and food allergens, also known as the sensitization phase. In epicutaneous sensitization, specific resident dendritic cell (DC) subsets residing in the skin⁶⁰ sample antigens and present to naïve CD4⁺ T cells in draining lymph nodes This promotes differentiation into allergen-specific CD4⁺ T cells favouring B cell isotype class switching to sIgE cells further driving the production of IgE memory B cells⁶¹. Through the maturation and production of plasma cells, large amounts of sIgE antibodies are produced. The sensitization phase drives the production of a large memory pool of allergen-specific B cells and Th2 cells.

The sensitization phase is followed by the effector phase, which is triggered by subsequent exposure to previously sensitized allergens. This causes cross-linking of sIgE bound to receptor $Fc \in RI$ on sensitized mast cells and basophils. Activation of these cells leads to the release of inflammatory mediators triggering an allergic reaction⁶². The immune mechanisms linking the skin and gut have their origins in skin injury-induced release of IL-33 from keratinocytes, leading to intestinal mast cell hyperplasia and food-induced anaphylaxis in mice.⁶³ IL-33 blocking antibodies have also been shown to prevent peanut allergy induced anaphylaxis.⁶⁴

Interestingly, skin sampling in patients with peanut allergy but not AD reveals low filaggrin levels but increased long-chained lipid species, which may protect the skin from dryness and AD.⁶⁵ Other risk factors have been associated with peanut allergy, including filaggrin mutations, severe infantile AD, environmental irritant exposures such as detergents and *S. aureus* colonization on the skin.⁶⁶⁻⁶⁸

Skin dysbiosis, often observed among individuals with AD, is often characterized by reduced microbial

diversity and the presence of one or few dominant microbes. The loss of commensal microbes is likely due to several factors including host genetics, local immune response, environmental factors such as pH, temperature, humidity, hygiene practice and exposure to antibiotics. It is estimated that 30% to 100% of individuals with AD are colonized by S. *aureus*, a dominant pathogen implicated in this disease (Figure 5a).⁶⁹ S. *aureus*affects the development of both innate and adaptive immune responses. It can lead to uncontrolled inflammation by inducing lymphocyte and macrophage activation. The increased presence of S. *aureus* in the dermis directly correlates with a Th2 response evident by increased expression of IL-4, IL-13, IL-31 and TSLP.⁷⁰ These Th2 cytokines in turn suppress the production of antimicrobial peptides (AMPs) by the skin that inhibits S. *aureus*proliferation.⁷¹Therefore, it is not surprising that colonization by S. *aureus* is associated with increased AD severity and treatment thereof has been shown to decrease disease severity.^{72,73}

Malassezia spp., previously known as Pityrosporum, is a genus of lipophilic yeast. Its role in AD's pathogenesis was initially speculated when some AD patients responded to topical and systemic antifungal therapies.⁷⁴⁻⁷⁸ A large population study showed more than 40% of children with seborrheic dermatitis during early childhood will develop AD later on, suggesting early sensitization of seborrheic skin may result in the onset of AD.⁷⁹ Most of the Malassezia species lack fatty acid synthases genes, therefore relying on exogenous fatty acid sources that are abundant at certain cutaneous sites such as the head, neck and skin folds (Figure 5b).⁸⁰ Although the pathogenesis of *Malassezia spp* in AD is not entirely clear, yeast is known to trigger a multitude of immune responses. It is estimated that 80% of adults with AD have detectable *Malassezia* IgE antibodies.⁸¹⁻⁸³ *Malassezia spp*. in the epidermis and dermis, can be recognized by keratinocytes and Langerhans cells as well as dermal DCs. These antigen presenting cells in turn activate downstream immunologic cascades that lead to the release of proinflammatory cytokines such as TNF-alpha, IL6, IL-8, IL-10, and IL-12p70. Induced expression of TLR2 and TLR4 on human keratinocytes and DCs upon exposure to *Malassezia spp*. have been observed, suggesting direct activation of innate immune response.^{84,85}In addition, the NLRP3 inflammasome in skin DCs can also be activated by *Malassezia spp* with subsequent release of Th2 cytokines (e.g., IL-1beta, IL-4, 5, 13,) likely directly contributing to AD pathogenesis.^{86,87}

Lamellar bilayer structural integrity is highly organized in normal skin, seen under electron microscopy, but very abnormal in those with AD and peanut allergy. The epidermis in AD with peanut allergy is associated with high TEWL, high type 2 immune activation, *S. aureus* colonization, reduced filaggrin breakdown products, and a reduced proportion of long-chained lipid products. These observations suggest that a defective skin barrier in patients with AD and peanut allergy may predispose affected individuals to epicutaneous allergen sensitization. The availability of minimally invasive skin tape sampling techniques may play an important role in identifying infants with early epidermal barrier dysfunction who may benefit from timely initiation of novel therapies for skin barrier dysfunction, non-lesional immune activation, and microbial dysbiosis. Using this technique epidermal profiling of lipids, proteins, and transcriptome identifies differences in the epidermis between patients with peanut allergy and AD versus AD alone.^{65,88}

Barrier protection is the cornerstone of AD management. Skin hydration and prevention of TEWL are keys in maintaining skin barrier homeostasis. Animal studies also suggest that changes in hydration and corneocyte adhesion within stratum corneum affect the development and maturation of epidermis.⁸⁹ Although there has been considerable controversy about whether early application of skin emollients can prevent AD and FA,²⁰ these studies have often not targeted high-risk infants with pre-existing evidence for skin barrier dysfunction, or the ingredients of emollients has not been optimized for infant skin barrier repair. The use of topical steroids to prevent AD flares and control subclinical inflammation is being evaluated as a potential strategy to prevent FA in AD.²⁰ Other novel pathogenesis-based topical and systemic therapies targeting inflammation of the skin have also been investigated for their roles in preventing FA.⁹⁰

Petrolatum, a non-physiologic mineral lipid, is often considered a gold standard ointment-based emollient that can prevent TEWL effectively for 4-6 hours. Therefore, to maintain optimal skin hydration, ointmentbased emollients should be applied 3 to 4 times daily to provide complete protection. However, ointmentbased emollients can also exacerbate AD; therefore, alternatives must be considered. Lipids including ceramide, fatty acids and cholesterol are mixed in appropriate ratio within stratum corneum to maintain its integrity.^{91,92}Atopic skin is known to be deficient in lipids especially ceramide and hygroscopic amino acids that are the result of filaggrin breakdown products.^{93,94}Newer generations of emollients containing these lipids have been developed in recent years.^{95,96}A recent study demonstrated a trilipid cream was more effective than a paraffin-based emollient in reducing TEWL and sIgE levels.^{20,97}However, efficacy in AD or FA prevention is yet to be proven in a randomized clinical trial.⁹⁸ While treating AD patients with a barrier-based approach, a liver X receptor agonist upregulated terminal differentiation and lipid products in the skin of patients with AD, consistent with its mechanism of action;⁹⁹ however, it was not associated with clinical benefit or suppression of immune products (Th17/Th22/IL6). This suggests that although barrier-based approaches may be valuable for disease prevention, the immune abnormalities perpetuate the AD disease phenotypes and should be targeted to resolve active AD.

The discovery of cytokine dysregulation in non-lesional skin from AD patients suggest the role of systemic therapy especially for individuals with severe disease. The increased understanding of AD's immune pathogenesis led to the development of immune-based treatments targeting Th2 cytokines.¹⁰⁰⁻¹⁰⁵Downregulation of immune markers in the skin of patients treated with such agents highly correlated with reductions in disease severity scores, demonstrating clinical improvement.^{33,106-111}Furthermore, the Th2-targeting anti-IL-4R mAb dupilumab was shown to induce significant changes in the microbiome of skin lesions, again supporting the key role of the Th2 cytokines in inducing the disease pathogenesis.¹¹²

Dietary factors

The obvious dietary factor relevant to the establishment of oral tolerance (and susceptibility to FA) is **food allergens**. Oral tolerance is the active maintenance of both mucosal and systemic non-responsiveness to ingested food allergens.¹¹³ The induction of tolerance to dietary antigen is a multistep process;¹¹⁴**dietary vitamin A** plays a critical role in its regulation. CD103⁺ dendritic cells (DC) in the gut associated lymphoid tissue (GALT) express elevated levels of retinal dehydrogenase (RALDH) enzymes which enhance their ability to metabolize dietary vitamin A. Antigen-loaded CD103⁺ DC migrate to the mesenteric lymph node (MLN) from the intestinal lamina propria (LP). Retinoic acid (RA) produced by these DC and by stromal cells in the MLN induce the expression of the gut homing receptors CCR9 and $\alpha 4\beta 7$ favoring TGF- β dependent conversion of Foxp3⁺ regulatory T cells (Tregs). ¹¹⁵⁻¹¹⁷Committed Tregs then home back to LP, expanding under the influence of IL-10 produced by CX3CR1^{hi} macrophages. Some Tregs exit the mucosa via the lymph or bloodstream to promote systemic tolerance. ¹¹⁴ Elegant studies in germ-free mice on an antigen-free diet showed that, in the small intestine, Foxp3⁺ Tregs are induced by exposure to dietary antigen.¹¹⁸In the large intestine, however, Foxp3⁺ Tregs are induced by a subset of the mucosa-associated bacteria which comprise the intestinal microbiota.¹¹⁹

The increasing prevalence of FA parallels increases in other non-communicable diseases and can be explained, in part, by alterations in the composition and function of the commensal microbiome. 21^{st} century lifestyle practices including increased antibiotic use, low fiber/high fat diets, reduced exposure to infectious diseases, Caesarean birth and formula feeding have collectively depleted populations of bacteria beneficial to health.¹²⁰⁻¹²² In addition to dietary antigen induced Foxp3⁺ Tregs, a bacteria-induced barrier protective response is required to prevent allergic sensitization to food.^{123,124}Clostridia-induced IL-22 production by type 3 innate lymphoid cells (ILC3) is necessary and sufficient to reduce intestinal epithelial permeability to dietary allergen.¹²³ IL-22 protects the intestinal epithelial barrier by regulating epithelial proliferation and the production of mucus and anti-microbial peptides.¹²⁴ The mechanisms by which intestinal bacteria, particularly those in the Clostridia class, regulate mucosal immunity and allergic disease are increasingly understood. Prominent among these is their ability to ferment short chain fatty acids (SCFAs) from dietary fiber. SCFAs have potent immunomodulatory effects correlated with host health¹²⁵ including induction of colonic Tregs¹²⁶ and improvement of allergy symptoms in a mouse model.¹²⁷ Butyrate, in particular, is an important energy source for colonic epithelial cells.¹²⁸ Butyrate drives oxygen consumption by colonocytes through β -oxidation, which maintains a locally hypoxic niche for butyrate-producing obligate anaerobes .¹²⁹ Early dysbiosis characterized by an impaired capacity to produce butyrate may be a common feature of allergic diseases.¹³⁰**Tryptophan metabolites**, from both dietary and bacterial sources, also play a central role in regulating tolerance in the gut. Catabolism of tryptophan to indole derivatives produces ligands which bind to the aryl hydrocarbon receptor on innate lymphoid cells (ILC3) and stimulate the production of IL-22 to regulate epithelial barrier permeability. ¹³¹Finally commensal bacteria can metabolize **bile acids** to produce bioactive mediators which regulate T cell differentiation in the intestinal lamina propria (Figure 6).¹³²

From the evidence from mouse models that food allergen exposure was necessary for the development of tolerance, observational studies in humans linking allergen avoidance in the first few years of life with the development of FA further supported the dual allergen-exposure hypothesis. Specifically, a cross-sectional study showed that peanut consumption in Israel early in life was associated with a lower prevalence of peanut allergy than a population with a similar ancestry in the UK, where peanut was typically avoided in the first few years of life.¹³³ Whereas avoidance of food allergens in an infant's diet was standard advice in many countries, advice has changed, and oral tolerance induction is being used as a strategy to prevent peanut and other FA by introducing peanuts and other food allergens early into the diet of young infants.¹⁷ The LEAP study showed that the rate of peanut allergy could be reduced by 86% in non-sensitised children and the LEAP-On study confirmed that this protection against peanut allergy remained one year after complete subsequent avoidance at five years of age in the children's diet.¹³⁴ The impact of early peanut introduction in LEAP was peanut specific and did not protect against other FA.¹³⁵ The EAT study (a lower risk, exclusively breastfed population) showed similar results for peanut in a per protocol analysis.¹³⁶ It also showed that consuming cooked egg in infancy was associated with a reduction in egg allergy. Since, subsequent studies and a meta-analysis have confirmed the efficacy of this approach, ^{133,137-139} and a recent Japanese study has shown that early introduction of cow's milk in early infancy protects against the development of milk allergy.¹⁴⁰Introducing multiple foods early and continuing to eat them regularly proved challenging for most families in the EAT study. The study identified several factors associated with reduced adherence to this strategy: increasing maternal age, feeding difficulties in the neonate, and non-Caucasian ethnicity. This could help identify families who might benefit from further support to encourage early weaning. ¹⁴¹⁻¹⁴³

Many other dietary factors have been studied for their association with FA and/or AD. Observational studies have been summarized in a number of systematic reviews focusing on the maternal and infant diet^{144,145} or the maternal diet during pregnancy alone.^{144,146} Collectively over a hundred papers from observational studies have been identified reporting dietary patterns, diet diversity, fruit and vegetable intake, fat and fatty acid intake, vitamin and mineral intake, and a wide range of other dietary exposures, including alcohol, tea or coffee intake. Summarizing these studies using meta-analysis is limited as study exposures and outcome definitions are highly heterogeneous. A comprehensive review by the UK Food Standards Agency focusing on maternal and infant dietary intake concludes that there is no consistent evidence for associations between dietary exposures and allergy outcomes based on observational studies.¹⁴⁴ Other systematic reviews have, however, attempted to summarize findings from these studies.

Dietary patterns and food groups

Dietary patterns, such as the Mediterranean diet, have not been associated with reduced AD or FA in offsprings. During pregnancy,¹⁴⁵ no studies report on maternal dietary patterns in lactation and AD or FA outcomes in the infant. However, two systematic reviews tentatively conclude that fruit, vegetable, and yogurt intake in pregnancy may prevent offspring AD and that margarine and vegetable oil may increase the risk of AD.^{144,146}Studies of the associations between intake of particular foods and infant FA are lacking¹⁴⁶ Diet patterns in infancy have not been associated with infant AD. One study indicates that a diet pattern of predominantly home-cooked food may prevent FA. ¹⁴⁷

Diet diversity

Diet diversity is the number of different foods, food groups or food allergens eaten over time, such as the first year of life. Recently there has been considerable interest in the effect of infant diet diversity in preventing allergic diseases. A task force report from the European Academy of Allergy and Clinical Immunology (EAACI)¹⁴⁸ suggested that increased diet diversity in infancy may reduce the risk of developing allergic diseases such as asthma, AD, allergic rhinitis or FA in later childhood. Two observational studies, have shown increased diet diversity in the first year of life to be associated with reduced FA by six¹⁴⁷ and ten¹⁴⁹ years. Using data from Europe and the UK, these observational studies suggest that early oral intake of a variety of foods and food allergens, once the infant is developmentally ready, may reduce the incidence of FA in the first 10 years of life. Studies focusing on diet diversity in infancy and AD in childhood are however less clear. One study found both an increased risk and no effect on AD outcomes at different timepoints.¹⁵⁰ Another study reported a preventative effect and no effect at different time points.^{150,151}Three studies found both an increased risk-154-156 of increased diet diversity on AD outcomes in childhood.

Vitamins and minerals

Vitamin D insufficiency and deficiency have been associated with IgE sensitization¹⁵⁷ and FA in some studies¹⁵⁸but not others.¹⁵⁹There is little evidence from interventional studies of vitamin D supplementation for primary allergy prevention¹⁶⁰⁻¹⁶³ as reviewed by Yepes-Nunez, et al.¹⁶⁴ The lack of evidence about the role of vitamin D in FA risk is in part related to the multiple factors influencing vitamin D levels that need to be accounted for when designing studies. These factors include sun exposure, country and latitude of residence, migratory status, skin colour, ethnicity, age, diet, vitamin D supplementation (timing, formulation and dose), genetic polymorphisms affecting metabolism, epigenetic changes contributing to vitamin D levels, vitamin D binding protein, interaction with disease-associated genetic polymorphisms (e.g., ORMDL3), definition of vitamin D insufficiency/deficiency, and time-points to assess levels (longitudinal versus cross-sectional)¹⁶⁵.

One systematic review indicated that intake of beta-carotene, vitamin E, zinc, calcium, magnesium, and copper during pregnancy might be protective of offspring AD^{146} . This review also summarized a small number of papers indicating that copper and vitamin C intake during pregnancy may reduce the risk of offspring FA. In contrast, vitamin D intake was associated with an increased risk of offspring FA. The amount of vitamins and minerals taken in these studies did not align with healthy eating guidance, and the results should be interpreted with caution¹⁴⁶.

Results from RCTs have been summarized in several guideline papers and systematic reviews, with or without meta-analysis, to guide families. Results from these meta-analyses largely support current recommendations from the American Academy of Pediatrics (AAP),¹⁶⁶EAACI,¹⁷ and the consensus statement from the 3 North American allergy societies.¹⁶ All refrain from making recommendations on omega-3 fatty acids, vitamins, minerals, or pre-/pro-/syn-biotics for allergy prevention.

Conclusions

The 2000 AAP policy¹⁶⁷ recommended avoidance of allergenic foods for breastfeeding mothers and delayed introducing allergenic foods to infants to prevent FA was based on expert opinion informed by a limited number of low quality studies.¹⁶⁸ These guidelines influenced infant feeding practices for almost 20 years,¹⁶⁹ while FA only continued to increase, rather than decrease. These guidelines were reversed in 2008, but not replaced with comprehensive guidelines, only limited recommendations.¹⁶⁸With publication of data from higher-quality studies, recent guidelines offer a comprehensive approach to maternal/infant diet.^{16,17,166,170}The foundation for these studies and ongoing efforts to study the prevention of atopy was laid throughout the 1900s by pioneers in the field (Table 1).

It is critical to not only have consistent diagnostic criteria for the conditions being studied, but also to have comparable outcomes that are patient-relevant when possible. This will allow for valid and complete comparisons across studies in diverse populations, including high and general risk populations, regionally and globally. Reliable estimates of the global burden of atopic disease and improved epidemiologic data for these conditions is crucial to gain support for and acceptance of prevention guidelines.

Interventions to prevent AD and FA targeted at the first few months of life are not early enough for some babies. There are likely factors already in place within the first few weeks of life, or earlier, particularly in at-risk infants who may start the march towards atopy and a Th2 milieu in the womb. The proposed increased risk for FA with more than daily application of moisturizer in the EAT study cohort highlights the need for earlier assessments and interventions among diverse and representative populations employing consistent disease definitions using easily applied and clinically relevant assessments.¹⁷¹ This finding further cautions against drawing potentially premature conclusions when important confounders cannot be adequately accounted for. These most recent findings add to the conflicting evidence about the potential to prevent AD to reduce the risk of FA.¹⁷² Further, this supports the need for intervention trials designed from the outset to study FA using a broadly accepted definition as the primary outcome, beginning in the first weeks of life, with intentionally developed treatment groups and carefully planned assessments in hopes of Stopping Eczema and ALlergy (SEAL, NCT03742414). The SEAL Study will also attempt to answer ongoing research questions identified in this review, summarized in Box 1.

It is unlikely that there is a single way to stop the atopic march once underway or a master switch that could render all the external factors discussed in this review ineffective at inducing a Th2 response. It remains important to investigate these potential targets for prevention (Figure 7) and continue to search for others. Given the remarkably conflicting results within and between studies on the microbiome and a wide variety of dietary factors, it seems that well-informed guidelines in these areas are farther off in the future, and may require extensive public health campaigns to slowly change behaviors if successful approaches can be identified.

It is of course still necessary to provide recommendations before definitive evidence that is applicable to diverse populations is available. In the interim, recent updates from North America¹⁶ and the UK¹⁷ are more unified and coming aligned with those from Australasia.¹⁷⁰ There will certainly be disagreement with some aspect of any guideline, but these do represent a responsible approach toward prevention of atopic conditions, based on the presently limited evidence base. Well-designed trials must continue, and future trials move forward in the face of unprecedented challenges faced today by study subjects, clinical researchers, and scientists so that the field can move closer to an understanding of the complex mechanisms driving allergic sensitization early in life. Effective strategies for the prevention of atopic conditions, particularly AD and FA will almost certainly be the result.

Table 1A: Major Milestones Laying the Foundation for Prevention Studies

Topic	Year (refer- ence)	Study or Publi- cation Title	Author(s)	Key Find- ings and Contri- butions to Allergy	Notable Limita- tions	Study Popu- lation	Study Type	Level of Evider
Ancient Mater- nal Dietary Avoidance	2735- 2598 BC ¹⁷⁴	Interdictions Con- cerning Foods	Chinese emper- ors Shen Nong and Huang Di	Advised preg- nant women to avoid shrimp, chicken, meat, and other agents incrimi- nated in skin lesions	Ancient Chinese History, lacking detailed methods	Ancient Chinese	The first known official guide- line recom- mending food avoid- ance to prevent disease, via Em- peror's decree	n/a

Topic	Year (refer- ence)	Study or Publi- cation Title	${f Author(s)}$	Key Find- ings and Contri- butions to Allergy	Notable Limita- tions	Study Popu- lation	Study Type	Level of Evider
Defining a Disease and a Medical Specialty	1906 ¹⁷⁵	Allergy	von Pirquet C	"For this general concept of a changed reactiv- ity I propose the term Allergy. 'Allos' implies devia- tion from the original state, from the be- haviour of the normal individ- ual, as it is used in the words Al- lorhyth- mia, Allop- tropism."	Opinion	n/a	Clinical observations	n/a
Oral Toler- ance Induction	1908^{176}	A case of egg poison- ing	Schofield AT	First modern oral desensi- tization for food allergy		London clinic patient	Case Report	Level 5

Торіс	Year (refer- ence)	Study or Publi- cation Title	${ m Author(s)}$	Key Find- ings and Contri- butions to Allergy	Notable Limita- tions	Study Popu- lation	Study Type	Level of Evider
Diagnosing Food Allergy and In- ducing Oral Tolerance	1912 ¹⁷⁷	A case of allergy to common foods	Schloss OM	The early develop- ment of food extracts for scratch testing; identifi- cation of ovo- mucoid as the major egg allergen and its use for oral desensitizatio	Single case	New York clinic patient	Case report	Level 5
The Concept of Im- munoglob- ulin E	1921 ¹⁷⁸	The Prausnitz- Kustner Test	Prausnitz O & Kustner H	Demonstrated passive sensiti- zation of the skin in health subjects by transfer- ring serum from a sensi- tized individ- ual using the PK test	1	Prausnitz (toler- ated fish) & Küstner (allergic to fish)	Mechanistic	Level 5

Торіс	Year (refer- ence)	Study or Publi- cation Title	${ m Author(s)}$	Key Find- ings and Contri- butions to Allergy	Notable Limita- tions	Study Popu- lation	Study Type	Level of Evider
Diagnosing Food Allergy	1950 ¹⁷⁹	Allergy for corn and its deriva- tives: experi- ments with a masked inges- tion test for its diagno- sis	Loveless MH	Amid widely varying reports of the inci- dence of corn allergy, recog- nized that positive tests and patient histories often do not match a "blind- fold test," and ap- pealed for stan- dardized FA testing		Survey of Ameri- can Academy of Allergy mem- bers, case series from US allergy clinics	Case series and cohort	Level 4

Торіс	Year (refer- ence)	Study or Publi- cation Title	Author(s)	Key Find- ings and Contri- butions to Allergy	Notable Limita- tions	Study Popu- lation	Study Type	Level of Evider
The Discov- ery of IgE	1966- 8 ^{180,181}	Immunoglob E, a new class of human im- munoglob- ulin	uli K & T Ishizaka; Johans- son SGO & Bennich H	The search for reagin con- cludes with the nearly simulta- neous identifi- cation of IgE, the critical compo- nent of an im- mediate hyper- sensitiv- ity reaction	The IgE recep- tor, discov- ered a few years later, con- firmed the effector func- tions of IgE	Myeloma cell lines	Mechanistic	Level 4

Торіс	Year (refer- ence)	Study or Publi- cation Title	Author(s)	Key Find- ings and Contri- butions to Allergy	Notable Limita- tions	Study Popu- lation	Study Type	Level of Evider
Diagnosing Food Allergy	1976 ¹⁸² 1988 ¹⁸³	Objective clinical and laboratory studies of immediate hypersensi- tivity reactions to foods in asthmatic children; Double- blind, placebo- controlled food challenge (DBPCFC) as an office procedure	May CD, Bock SA, et al.	The gold- standard of diagnosis, the double- blind, placebo- controlled oral food challenge was described and became more accessible to the practicing allergist; defined a SPT <3mm SPT as negative		US asthma center	Cohort	Level 4

Торіс	Year (refer- ence)	Study or Publi- cation Title	${f Author(s)}$	Key Find- ings and Contri- butions to Allergy	Notable Limita- tions	Study Popu- lation	Study Type	Level of Evide
Mechanisms of Sensitization	1996 ¹⁸⁴	The dual ex- posure hypothesis	Lack G & Golding J	"Avoidance mea- sures would serve only to reduce expo- sure to peanuts to low levels, and this could para- doxi- cally increase allergic sensiti- sation to peanuts: low dose expo- sure to aller- gens favors produc- tion of IgE, and as little as 1 µg of inhaled allergen a year may be suffi- cient to induce allergic sensiti- zation	Opinion, ob- served less peanut allergy in some cultures outside Britain that also fre- quently con- sumed peanut		n/a	Level 5

Topic	Year (refer- ence)	Study or Publi- cation Title	Author(s)	Key Find- ings and Contri- butions to Allergy	Notable Limita- tions	Study Popu- lation	Study Type	Level of Evider
Diagnosing food allergy	1997 ¹⁸⁵ & 2001 ¹⁸⁶	Food- specific IgE values predict OFC outcomes	Sampson HA & Ho DG; Sampson HA	Proposes and validates predictive values or cut-offs, guiding the decision to perform an OFC	Highly atopic population, at high risk for FA	US tertiary care, academic allergy clinic	Cohort	Level 4

Торіс	Year (refer- ence)	Study or Publi- cation Title	${ m Author(s)}$	Key Find- ings and Contri- butions to Allergy	Notable Limita- tions	Study Popu- lation	${f Study}\ {f Type}$	Level of Evider
At the	At the	At the	At the	At the	At the	At the	At the	At the
time of	time of	time of	time of	time of	time of	time of	time of	time of
publica-	publica-	publica-	publica-	publica-	publica-	publica-	publica-	publica
tion of	tion of	tion of	tion of	tion of	tion of	tion of	tion of	tion of
most of	most of	most of	most of	most of	most of	most of	most of	most o
these	these	these	these	these	these	these	these	these
mile-	mile-	mile-	mile-	mile-	mile-	mile-	mile-	mile-
stones,	stones,	stones,	stones,	stones,	stones,	stones,	stones,	stones,
the exis-	the exis-	the exis-	the exis-	the exis-	the exis-	the exis-	the exis-	the exi
tence of	tence of	tence of	tence of	tence of	tence of	tence of	tence of	tence o
food	food	food	food	food	food	food	food	food
allergy	allergy	allergy	allergy	allergy	allergy	allergy	allergy	allergy
was	was	was	was	was	was	was	was	was
ques-	ques-	ques-	ques-	ques-	ques-	ques-	ques-	ques-
tioned	tioned	tioned	tioned	tioned	tioned	tioned	tioned	tioned
by many	by many	by many	by many	by many	by many	by many	by many	by mar
in the	in the	in the	in the	in the	in the	in the	in the	in the
medical	medical	medical	medical	medical	medical	medical	medical	medica
commu-	commu-	commu-	commu-	commu-	commu-	commu-	commu-	commu
nity,	nity,	nity,	nity,	nity,	nity,	nity,	nity,	nity,
includ-	includ-	includ-	includ-	includ-	includ-	includ-	includ-	includ-
ing	ing	ing	ing	ing	ing	ing	ing	ing
most al-	most al-	most al-	most al-	most al-	most al-	most al-	most al-	most a
lergists.	lergists.	lergists.	lergists.	lergists.	lergists.	lergists.	lergists.	lergists
Despite	Despite	Despite	Despite	Despite	Despite	Despite	Despite	Despite
how	how	how	how	how	how	how	how	how
remark-	remark-	remark-	remark-	remark-	remark-	remark-	remark-	remark
able and	able and	able and	able and	able and	able and	able and	able and	able an
signifi-	signifi-	signifi-	signifi-	signifi-	signifi-	signifi-	signifi-	signifi-
cant	cant	cant	cant	cant	cant	cant	cant	cant
these	these	these	these	these	these	these	these	these
achieve-	achieve-	achieve-	achieve-	achieve-	achieve-	achieve-	achieve-	achieve
ments	ments	ments	ments	ments	ments	ments	ments	ments
were for	were for	were for	were for	were for	were for	were for	were for	were fo
the field	the field	the field	the field	the field	the field	the field	the field	the fiel
of	of	of	of	of	of	of	of	of
allergy	allergy	allergy	allergy	allergy	allergy	allergy	allergy	allergy
and im-	and im-	and im-	and im-	and im-	and im-	and im-	and im-	and im
munol-	munol-	munol-	munol-	munol-	munol-	munol-	munol-	munol-
ogy, it	ogy, it	ogy, it	ogy, it	ogy, it	ogy, it	ogy, it	ogy, it	ogy, it
was not	was not	was not	was not	was not	was not	was not	was not	was no
until the	until the	until the	until the	until the	until the	until the	until the	until th
end of	end of	end of	end of	end of	end of	end of	end of	end of
the $20^{\rm th}$	the 20^{th}	the 20^{th}	the 20^{th}	the 20^{th}	the $20^{\rm th}$	the 20^{th}	the 20^{th}	the 20^{t}
century	century	century	century 17	century	century	century	century	century
that	that	that	that 17	that	that	that	that	that
food	food	food	food	food	food	food	food	food
allergy	allergy	allergy	allergy	allergy	allergy	allergy	allergy	allergy
as a	as a	as a	as a	as a	as a	as a	as a	as a
field	field	field	field	field	field	field	field	field
began	began	began	began	began	began	began	began	began

Topic ence) Title Author(s) Allergy tions lation Type Evider
--

 Table 1B: Major Milestones in Studying the Prevention of Atopy

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommendat	Notable ci dris nitations	Population Studied	Type of Study	Level o Eviden
Cutaneous Sensitization	1994 ¹⁹⁰	Increased airways respon- siveness in mice depends on local chal- lenge with antigen	Saloga J, et al.	First evidence to support that sensiti- zation could occur through skin	Murine skin differs from human skin	Murine model	Mechanistic	Level 5
Cutaneous Sensitization	2003 ¹⁹¹	Avon Longitu- dinal Study of Parents and Chil- dren (ALSPAC)	Lack G, et al.	Peanut allergy associ- ated with topical use of peanut oil infants, but not with mater- nal consumption		UK, general population	Population- based, longitu- dinal birth cohort	Level 2

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommenda	Notable tid uis nitations	Population Studied	Type of Study	Level o Eviden
The Role of Filaggrin in AD	2006 ⁹³	Common loss-of- function variants of the epidermal barrier protein filaggrin are a major predispos- ing factor for atopic dermatitis	Palmer CNA, et al.	AD was more common in homozy- gous or compound heterozy- gous for FLG null alleles, and nearly absent in those without	Only 2 mutations had been identified and analyzed, both common in those of European ancestry, but rare in other ethnicities	9 Irish families with icthyosis vulgaris and/or AD; 2 cohorts of Scottish children with and without asthma; Danish children from the COPSAC study	Multiple cohorts	Level 2

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommenda	Notable tid nis nitations	Population Studied	Type of Study	Level o Eviden
The Role of Filag- grin in FA	2011 ⁶⁶	Loss-of- function variants in the filaggrin gene are a signif- icant risk factor for peanut allergy	Brown SJ, et al.	FLG loss-of- function muta- tions signifi- cantly increase the risk of peanut allergy, suggest- ing a role for epithe- lial barrier dysfunction	Different defini- tions of AD and criteria for diag- nosing peanut allergy were used in the different popula- tions; difficult to dis- tinguish the role of AD from FLG status, and other vari- ables affecting the develop- ment of peanut allergy; the effect varied in different popula- tions despite all being predom- inantly white and of Euro- pean ancestry	English, Dutch, and Irish subjects with peanut allergy and controls; repli- cated in a white, Cana- dian case- control population	Case- control study	Level 3

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommenda	Notable tid uis nitations	Population Studied	Type of Study	Level o Eviden
Skin barrier Dys- function and Tran- scuta- neous Sensiti- zation in FA	2014 ²⁷	Peanut allergy: Effect of environ- mental peanut exposure in children with filaggrin loss-of- function muta- tions	Brough HA, et al.	Exposure to peanut protein in house- hold dust demon- strated a dose- response relation- ship with mea- sures of peanut sensiti- zation and allergy at 8 and 11y in children with FLG muta- tions, when control- ling for other factors; no effect of expo- sure was seen in children with WT- FLG	Peanut allergy not challenge- proven in all sub- jects; overall small number of subjects with peanut allergy, FLG gene status, and ex- posure history; ex- cluded non- Caucasians as the 6 FLG muta- tions studied were only defined in Caucasians	UK, high risk infants (family history of atopy)	Observational study within random- ized con- trolled study	l Level 3

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommendat	Notable i dnis nitations	Population Studied	Type of Study	Level of Evidence
Topical in- tervention for AD	2014 ¹⁹²	Application of moisturizer to neonates prevents develop- ment of atopic dermatitis	Horimoku K, et al.	Daily application of an emulsion- based moisturizer starting at 1week of life prevented AD in 1/3 of infants at 8m	Control group could use petroleum jelly if desired, which may be beneficial for SB, limiting the impact of the intervention	Japan, high risk	RCT	Level 2
Oral Tolerance Induction	$2015^{193} \& 2016^{194}$	LEAP & LEAP-On	du Toit, et al.	Early intro- duction and regular consump- tion of peanut in infants at high risk for FA prevents peanut allergy, and likely induces durable, and long-lasting tolerance	Excluded infants with peanut SPT>4mm at entry	UK, high risk cohort	Randomized, open-label, controlled trial	Level 2

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommendat	Notable id nis nitations	Population Studied	Type of Study	Level o Eviden
Preventative Emollient Therapy for AD and FA	2018 ¹⁹⁵	A randomised trial of a barrier lipid re- placement strategy for the prevention of atopic dermatitis and allergic sensitisa- tion: The PEBBLES Pilot Study	Lowe AJ, et al.	Twice daily application of emollient rich in ceramides to infants in the first 3weeks of life through 6m demon- strated a trend towards less AD and food sensitiza- tion at 12month; infants who had emollient applier BID for at least 5/7 day per week did have a significant reduction in food sensitization	Food sensi- tization only assessed at 1y, not later in life and not challenge- proven; Small n=80), pilot study.	Australia, high risk infants (parental history of atopy)	Pilot ran- domized, parallel, single- blind, controlled trial	Level 3

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommendat	Notable ci dris nitations	Population Studied	Type of Study	Level o Eviden
Assessing Skin Barrier Dysfunction	2019 ¹⁹⁶	The nonle- sional skin surface distin- guishes atopic dermati- tis with food allergy as a unique endotype	Leung DYM, et al.	Using a non- invasive, well- tolerated skin tape strip- ping method, identi- fies unique imma- ture skin barrier charac- teristics in the stratum corneum that dis- tinguish between children with AD and FA $(AD+FA+)$ from those with AD but without FA $(AD+FA-)$)	Results require valida- tion in larger, diverse popula- tions with challenge- proven allergy to a variety of foods, not just peanut	62 US children classi- fied as AD+FA+, AD+FA- or controls	Blinded, prospec- tive mecha- nistic study	Level 3

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommenda	Notable tid uis nitations	Population Studied	Type of Study	Level of Evidence
Proactive Early AD Treat- ment and the Preven- tion of FA	2019 ¹⁹⁷	Prevention of Allergy via Cu- taneous Inter- vention (PACI) pilot	Miyaji Y, et al.	Earlier aggres- sive treat- ment of AD short- ened its duration in infants, and resulted in fewer food allergies at 2 years of life	Smaller, retro- spective pilot study; cohorts had sig- nificant differ- ences in baseline characteristic	Japan	Retrospective cohort	Level 4

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommenda	Notable tid us nitations	Population Studied	Type of Study	Level of Evidence
Preventative Emol- lient Therapy for AD and FA	2020 ¹⁹⁸	Barrier En- hance- ment for Eczema Preven- tion (BEEP)	Chalmers JR, et al.	No evidence for pre- vention of AD at 2y with daily emol- lient use, but possible slight increase in infection risk, and non- signifi- cant increase in FA (largely to egg) in the inter- vention group	Choice of emol- lient; limited FA assess- ment; median time to initia- tion of skin care at 11 days of life	UK, high risk	Pragmatic, parallel group RCT	Level 2

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommendar	Notable ti dris nitations	Population Studied	Type of Study	Level o Eviden
Oral Toler- ance Induction	2020 ¹⁹⁹	Preventing food allergy in infancy and childhood	de Silva D, et al.	Early intro- duction of cooked egg (not raw or pasteur- ized egg) likely helps prevent egg allergy; avoiding supple- menta- tion with cow's milk- based formula in the first week of life may slightly reduce milk allergy; nearly every other dietary inter- vention re- viewed has little to no effect	Many are small studies of lower cer- tainty of evi- dence, findings need to be vali- dated in large, hetero- geneous populations	n/a	Systematic review with meta- analysis	Level 2

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommenda	Notable tid uis nitations	Population Studied	Type of Study	Level o Eviden
Preventative Emol- lient Therapy for AD and FA	2020 ²⁰⁰	Preventing Atopic Der- matitis and AL- Lergies in Chil- dren (PreventADA	Skjerven HO, et al.	Found no decrease in AD or FA at 12m with skin emol- lient use, early comple- mentary feeding or both	Skin inter- vention started at 2 weeks of life using a bath oil and cream; early food intro- duction began with peanut butter at 3m; overall poor ad- herence in the inter- vention groups; low sta- tistical power to assess FA (results for FA at 3y forthcoming)	Scandinavian stan- dard risk birth cohort	Prospective inter- ven- tional, cluster- randomized con- trolled trial	Level 2

Area of Focus	Year (Reference)	Study Name or Publication Title	Author	Key findings or recommendat	Notable idnisnitations	Population Studied	Type of Study	Level of Evidence
Link between Emollient use and Food Allergy	2021 ¹⁷¹	Association of frequent moisturizer use in early infancy with the develop- ment of food allergy	Perkin M, et al.	Observed an increased risk of food allergy with the application of moisturizer more frequent than once daily	All but 1 case of FA developed in children with at least 1 atopic parent; AD assessed at 3m enrolment visit only; the cohort frequently used oils for baby massage, which may prevent formation of an intact skin barrier; unable to control for some potential confound- ing factors	UK, exclusively breastfed standard risk cohort enrolled in the EAT study and randomized to standard vs early in- troduction of 6 foods with poor protocol adherence	Retrospective analysis of question- naire data	Level 3

Box 1: Topics for future research

- Definitions of disease that are easy to apply, widely accepted and clinically relevant
- Accurate estimates of the global epidemiologic burden of atopy
- Incorporate patient-relevant outcomes for food allergy and AD into trial designs
- Earlier timing of interventions to address skin barrier dysfunction (SBD)
- Randomized trials focusing on maternal and early life nutrition with robust measurements of food, macro and micronutrient intake and clearly defined study outcomes
- Current efforts should be broadened to more fully understand the mechanisms underlying initiation, maintenance, loss, and redevelopment of tolerance
- Fully characterize the molecular mechanisms underlying the phenotypes of SBD that place some, but not all patients with AD at a significantly increased risk for atopy, particularly food allergy
- Distinguish other SBD phenotypes, as seen in seborrheic dermatitis and psoriasis from those in AD identifying potential targets to maintain tolerance later in life
- Identify targeted treatment approaches to heal the SBD associated specifically predisposing to atopy

- Ongoing evaluation of environmental exposures including irritants, pollution, pollen, bacteria, viruses and fungi
- Begin to better understand the complex interaction of the commensal microbiome of the gut and skin with potentially pathogenic bacteria and fungi
- Focus the study of environmental and microbial factors on identifying modifiable risks for manageable public health interventions benefiting the majority of the global population

References

1. Loh W, Tang M. The Epidemiology of Food Allergy in the Global Context. Int J Environ Res Public Health. 2018;15.

2. Lowe A, Leung D, Tang M, Su J, Allen K. The skin as a target for prevention of the atopic march. *Ann Allergy Asthma Immunol.* 2018;120(2):145-151.

3. Dharmage S, Lowe A, Matheson M, Burgess J, Allen K, Abramson M. Atopic dermatitis and the atopic march revisited. *Allergy*. 2014;69(1):17-27.

4. Davidson WF, Leung DY, Beck LA, et al. Report from the National Institute of Allergy and Infectious Diseases workshop on "Atopic dermatitis and the atopic march: Mechanisms and interventions". *J Allergy Clin Immunol*.2019;143(3):894-913.

5. Perkin M, Logan K, Tseng A, Raji B, Ayis S, Peacock J. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants. *N Engl J Med.* 2016;374(18):1733-1743.

6. Gupta R, Warren C, Smith B. The Public Health Impact of Parent- Reported Childhood Food Allergies in the United States. *Pediatrics*. 2018;142(6).

7. Osborne NJ, Koplin JJ, Martin PE, et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. *J Allergy Clin Immunol.* 2011;127(3):668-676.

8. Peters R, Koplin J, Gurrin L. The prevalence of food allergy and other allergic diseases in early childhood in a population-based study: HealthNuts age 4- year follow-up. *J Allergy Clin Immunol.* 2017;140(1):145-153.

9. Tang M, Mullins R. Food allergy: is prevalence increasing? Intern Med J. 2017;47(3):256-261.

10. Warren C, Jiang J, Gupta R. Epidemiology and Burden of Food Allergy. *Curr Allergy Asthma Rep.*2020;20(2).

11. Lyons SA, Clausen M, Knulst AC, et al. Prevalence of Food Sensitization and Food Allergy in Children Across Europe. J Allergy Clin Immunol Pract. 2020;8(8):2736-2746 e2739.

12. Venter C, Pereira B, Voigt K, et al. Prevalence and cumulative incidence of food hypersensitivity in the first 3 years of life. *Allergy*. 2008;63(3):354-359.

13. Prescott S, Pawankar R, Allen K. A global survey of changing patterns of food allergy burden in children. *World Allergy Organ J.* 2013;6(1).

14. Du Toit G, Katz Y, Sasieni P. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. *J Allergy Clin Immunol*.2008;122(5):984-991.

15. Togias A, Cooper SF, Acebal ML, et al. Addendum guidelines for the prevention of peanut allergy in the United States: Report of the National Institute of Allergy and Infectious Diseases-sponsored expert panel. *J Allergy Clin Immunol.* 2017;139(1):29-44.

16. Fleischer DM, Chan ES, Venter C, et al. A Consensus Approach to the Primary Prevention of Food Allergy Through Nutrition: Guidance from the American Academy of Allergy, Asthma, and Immunology;

American College of Allergy, Asthma, and Immunology; and the Canadian Society for Allergy and Clinical Immunology. J Allergy Clin Immunol Pract. 2021;9(1):22-43 e24.

17. Halken S, Muraro A, de Silva D, et al. EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update). *Pediatr Allergy Immunol.* 2021.

18. Warren C, Otto A, Walkner M, Gupta R. Quality of Life Among Food Allergic Patients and Their Caregivers. *Curr Allergy Asthma Rep.* 2016;16(5).

19. Macdougall JD, Burks AW, Kim EH. Current Insights into Immunotherapy Approaches for Food Allergy. *ImmunoTargets Ther.* 2021;10:1.

20. Brough H, Nadeau K, Sindher S. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? *Allergy*.2020;75(9):2185-2205.

21. Odhiambo J, Williams H, Clayton T, Robertson C, Asher M. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J Allergy Clin Immunol. 2009;124(6):1251-1258.

22. Strid J, Hourihane J, Kimber I, Callard R, Strobel S. Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization. *Clin Exp Allergy*. 2005;35(6):757-766.

23. Lack G, Fox D, Northstone K, Golding J. Factors Associated with the Development of Peanut Allergy in Childhood. N Engl J Med. 2003;348(11):977-985.

24. Fox A, Sasieni P, du Toit G, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. *J Allergy Clin Immunol*.2009;123(2):417-423.

25. Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: Shifting paradigms in treatment approaches. J Allergy Clin Immunol.2014;134(4):769-779.

26. Leung DY, Berdyshev E, Goleva E. Cutaneous barrier dysfunction in allergic diseases. J Allergy Clin Immunol. 2020;145(6):1485-1497.

27. Brough HA, Simpson A, Makinson K, et al. Peanut allergy: effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J Allergy Clin Immunol. 2014;134(4):867-875 e861.

28. Brough H, Liu A, Sicherer S. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol. 2015;135(1):164-170.

29. Brough H, Kull I, Richards K, Hallner E, Soderhall C, Douiri A. Environmental peanut exposure increases the risk of peanut sensitization in high-risk children. *Clin Exp Allergy*. 2018;48(5):586-593.

30. Guttman-Yassky E, Krueger J, Lebwohl M. Systemic immune mechanisms in atopic dermatitis and psoriasis with implications for treatment. *Exp Dermatol*.2018;27(4):409-417.

31. Ewald D, Malajian D, Krueger J. Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways. *BMC Med Genomics.* 2015;8(1).

32. Suárez-Fariñas M, Ungar B, Correa da Rosa J, Ewald D, Rozenblit M, Gonzalez J. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. *J Allergy Clin Immunol.* 2015;135(5):1218-1227.

33. Renert-Yuval Y, Thyssen JP, Bissonnette R, et al. Biomarkers in atopic dermatitis-a review on behalf of the international eczema council. J Allergy Clin Immunol.2021.

34. Brunner P, Guttman-Yassky E, Leung D. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol.2017;139(4s):S65-s76.

35. Czarnowicki T, Krueger J, Guttman-Yassky E. Skin Barrier and Immune Dysregulation in Atopic Dermatitis: An Evolving Story with Important Clinical Implications. J Allergy Clin Immunol. 2014;2(4):371-379. 36. Guttman-Yassky E, Suárez-Fariñas M, Chiricozzi A. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol. 2009;6(124):1235-1244.

37. Berdyshev E, Goleva E, Bronova I, et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. *JCI insight.* 2018;3(4).

38. Danso M, Van Drongelen V, Mulder A. TNF- α and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. *J Investigative Derma*. 2014;7(134):1941-1950.

39. Wang F, Kim B. A Paradigm of Neuroimmune Crosstalk. Immunity. 2020;52(5):753-766.

40. Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber C. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. *J Allergy Clin Immunol*.2013;2(132):446-454.

41. Saleem M, Oussedik E, D'Amber V, Feldman S. Interleukin-31 pathway and its role in atopic dermatitis: a systematic review. *J Dermatolog Treat.* 2017;28(7):591-599.

42. Oetjen LK, Mack MR, Feng J, et al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic. *Cell.* 2017;1(171):217-228.

43. Raap U, Weibmantel S, Gehring M, Eisenberg A, Kapp A. Fölster-Holst R. IL-31 significantly correlates with disease activity and Th2 cytokine levels in children with atopic dermatitis. *Pediatr Allergy Immunol.* 2012;3(23):285-288.

44. Neis M, Peters B, Dreuw A. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. *J Allergy Clin Immunol*.2006;4(118):930-937.

45. Nograles K, Zaba L, Guttman-Yassky E. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. *Br J Dermatol.* 2008;159(5):1092-1102.

46. Sa S, Valdez P, Wu J. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. *J Immunol.* 2007;178(4):2229-2240.

47. Suarez-Farinas M, Dhingra N, Gittler J, Shemer A, Cardinale I, de Guzman Strong C. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol.2013;132(2):361-370.

48. Nomura T, Wu J, Kabashima K, Guttman-Yassky E. Endophenotypic Variations of Atopic Dermatitis by Age, Race, and Ethnicity. J Allergy Clin Immunol. 2020;8(6):1840-1852.

49. Noda S, Suarez-Farinas M, Ungar B. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol. 2015;136(5):1254-1264.

50. Chan T, Sanyal R, Pavel A. Atopic dermatitis in Chinese patients shows T(H)2/T(H)17 skewing with psoriasiform features. J Allergy Clin Immunol.2018;142(3):1013-1017.

51. Wen H, Czarnowicki T, Noda S. Serum from Asian patients with atopic dermatitis is characterized by T(H)2/T(H)22 activation, which is highly correlated with nonlesional skin measures. J Allergy Clin Immunol. 2018;142(1):324-328.

52. He H, Bissonnette R, Wu J. Tape strips detect distinct immune and barrier profiles in atopic dermatitis and psoriasis. *J Allergy Clin Immunol.* 2020.

53. Pavel A, Renert-Yuval Y, Wu J. Tape-strips from early-onset pediatric atopic dermatitis highlight disease abnormalities in non-lesional skin. *Allergy.* 2020.

54. Guttman-Yassky E, Diaz A, Pavel A. Use of Tape Strips to Detect Immune and Barrier Abnormalities in the Skin of Children With Early-Onset Atopic Dermatitis. *JAMA Dermatol.* 2019.

55. Esaki H, Brunner P, Renert-Yuval Y. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. *J Allergy Clin Immunol.* 2016;138(6):1639-1651.

56. Brunner P, Israel A, Zhang N, Leonard A, Wen H-C, Huynh T. Early- onset pediatric atopic dermatitis is characterized by TH2/TH17/TH22-centered inflammation and lipid alterations. *J Allergy Clin Immunol.* 2018;141(6):2094-2106.

57. Brunner P, He H, AB, Pavel The blood proteomic signature of early-onset pediatric atopic dermatitis shows systemic inflammation and is distinct from adult long-standing disease. J Am Acad Dermatol. 2019;81(2):510-519.

58. Chinthrajah R, Hernandez J, Boyd S, Galli S, Nadeau K. Molecular and cellular mechanisms of food allergy and food tolerance. *J Allergy Clin Immunol.* 2016;137(4):984-997.

59. Werfel T, Allam J, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. *J Allergy Clin Immunol.* 2016;138(2):336-349.

60. Humeniuk P, Dubiela P, Hoffmann-Sommergruber K. Dendritic cells and their role in allergy: uptake, proteolytic processing and presentation of allergens. *Int J Mol Sci.* 2017;18(7):1491.

61. Satitsuksanoa P, Daanje M, Akdis M, Boyd SD, van de Veen W. Biology and dynamics of B cells in the context of IgE-mediated food allergy. *Allergy*. 2020.

62. Palomares O, Akdis M, Martin-Fontecha M, Akdis C. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. *Immunol Rev.*2017;278(1):219-236.

63. Leyva-Castillo J-M, Galand C, Kam C, et al. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. *Immunity.* 2019;50(5):1262-1275. e1264.

64. Chinthrajah S, Cao S, Liu C, et al. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. *JCI Insight.* 2019;4(22).

65. Leung DY, Calatroni A, Zaramela LS, et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. *Sci Transl Med*.2019;11(480).

66. Brown SJ, Asai Y, Cordell HJ, et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol.2011;127(3):661-667.

67. Keet C, Pistiner M, Plesa M, et al. Age and eczema severity, but not family history, are major risk factors for peanut allergy in infancy. J Allergy Clin Immunol.2021;147(3):984-991. e985.

68. Martin P, Eckert J, Koplin J. Which infants with eczema are at risk of food allergy? Results from a population-based cohort. *Clin Exp Allergy*. 2015:255-264.

69. Park HY, Kim CR, Huh IS, et al. Staphylococcus aureus Colonization in Acute and Chronic Skin Lesions of Patients with Atopic Dermatitis. *Ann Dermatol*.2013;25(4):410-416.

70. Blicharz L, Rudnicka L, Samochocki Z. Staphylococcus aureus: an underestimated factor in the pathogenesis of atopic dermatitis? *Postepy Dermatol Alergol*.2019;36(1):11-17.

71. Nguyen HLT, Trujillo-Paez JV, Umehara Y, et al. Role of Antimicrobial Peptides in Skin Barrier Repair in Individuals with Atopic Dermatitis. *Int J Mol Sci.*2020;21(20).

72. Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. *Pediatrics*.2009;123(5):e808-814.

73. Simpson EL, Villarreal M, Jepson B, et al. Patients with Atopic Dermatitis Colonized with Staphylococcus aureus Have a Distinct Phenotype and Endotype. *J Invest Dermatol*.2018;138(10):2224-2233.

74. Broberg A, Faergemann J. Topical antimycotic treatment of atopic dermatitis in the head/neck area. A double-blind randomised study. *Acta Derm Venereol*.1995;75(1):46-49.

75. Back O, Bartosik J. Systemic ketoconazole for yeast allergic patients with atopic dermatitis. J Eur Acad Dermatol Venereol. 2001;15(1):34-38.

76. Lintu P, Savolainen J, Kortekangas-Savolainen O, Kalimo K. Systemic ketoconazole is an effective treatment of atopic dermatitis with IgE-mediated hypersensitivity to yeasts and Asthma Proceedings. *Allergy*.2001;56:512-517.

77. Kanda N, Enomoto U, Watanabe S. Anti-mycotics suppress interleukin-4 and interleukin-5 production in anti-CD3 plus anti-CD28-stimulated T cells from patients with atopic dermatitis. *J Invest Dermatol* 2001;117:1635-1646.

78. Kaffenberger BH, Mathis J, Zirwas MJ. A retrospective descriptive study of oral azole antifungal agents in patients with patch test-negative head and neck predominant atopic dermatitis. *J Am Acad Dermatol.* 2014;71:480-483.

79. Halkjaer LB, Loland L, Buchvald FF, et al. Development of atopic dermatitis during the first 3 years of life: the Copenhagen prospective study on asthma in childhood cohort study in high-risk children. Arch Dermatol. 2006;142(5):561-566.

80. Jagielski T, Rup E, Ziolkowska A, Roeske K, Macura AB, Bielecki J. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. *BMC Dermatol.* 2014;14:3.

81. Kato H, Sugita T, Ishibashi Y, Nishikawa A. Detection and quantification of specific IgE antibodies against eight Malassezia species in sera of patients with atopic dermatitis by using an enzyme-linked immunosorbent assay. *Microbiol Immunol.* 2006;50(11):851-856.

82. Watanabe S, Kano R, Sato H, Nakamura Y, Hasegawa A. The effects of Malassezia yeasts on cytokine production by human keratinocytes. *J Invest Dermatol*.2001;116(5):769-773.

83. Devos SA, van der Valk PG. The relevance of skin prick tests for Pityrosporum ovale in patients with head and neck dermatitis. *Allergy*. 2000;55(11):1056-1058.

84. Brasch J, Morig A, Neumann B, Proksch E. Expression of antimicrobial peptides and toll-like receptors is increased in tinea and pityriasis versicolor. *Mycoses*.2014;57(3):147-152.

85. Baroni A, Orlando M, Donnarumma G, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. *Arch Dermatol Res.* 2006;297(7):280-288.

86. Ishibashi Y, Sugita T, Nishikawa A. Cytokine secretion profile of human keratinocytes exposed to Malassezia yeasts. *FEMS Immunol Med Microbiol*.2006;48(3):400-409.

87. Kroger S, Neuber K, Gruseck E, Ring J, Abeck D. Pityrosporum ovale extracts increase interleukin-4, interleukin-10 and IgE synthesis in patients with atopic eczema. *Acta Derm Venereol.* 1995;75(5):357-360.

88. Goleva E, Calatroni A, LeBeau P, et al. Skin tape proteomics identifies pathways associated with transepidermal water loss and allergen polysensitization in atopic dermatitis. *J Allergy Clin Immunol.* 2020;146(6):1367-1378.

89. Imayama S, Ueda S, Isoda M. Histologic changes in the skin of hairless mice following peeling with salicylic acid. Arch Dermatol. 2000;136(11):1390-1395.

90. Wu J, Guttman-Yassky E. Efficacy of biologics in atopic dermatitis. *Expert Opin Biol Ther*.2020;20(5):525-538.

91. Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. *Biochim Biophys Acta*. 2014;1841(3):280-294.

92. Van Smeden J, Bouwstra JA. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients. *Curr Probl Dermatol.* 2016;49:8-26.

93. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. *Nat Genet.* 2006;38(4):441-446.

94. Sandilands A, Sutherland C, Irvine AD, McLean WI. Filaggrin in the frontline: role in skin barrier function and disease. *J Cell Sci.* 2009 122(9):1285–1294.

95. Van Zuuren E, Fedorowicz Z, Arents B. Emollients and moisturizers for eczema: abridged Cochrane systematic review including GRADE assessments. Br J Dermatol. 2017;177(5):1256-1271.

96. van Zuuren EJ, Fedorowicz Z, Christensen R, Lavrijsen A, Arents BWM. Emollients and moisturisers for eczema. *Cochrane Database Syst Rev.* 2017;2(2):Cd012119.

97. Sindher S, Alkotob SS, Shojinaga MN, et al. Increases in plasma IgG4/IgE with trilipid vs paraffin/petrolatum-based emollients for dry skin/eczema. *Pediatr Allergy Immunol.* 2020;31(6):699-703.

98. Miller DW, Koch SB, Yentzer BA, et al. An over-the-counter moisturizer is as clinically effective as, and more cost-effective than, prescription barrier creams in the treatment of children with mild-to-moderate atopic dermatitis: a randomized, controlled trial. J Drugs Dermatol.2011;10(5):531-537.

99. Czarnowicki T, Dohlman AB, Malik K, et al. Effect of short-term liver X receptor activation on epidermal barrier features in mild to moderate atopic dermatitis: A randomized controlled trial. Ann Allergy Asthma Immunol. 2018;120(6):631-640 e611.

100. Renert-Yuval Y, Guttman-Yassky E. New treatments for atopic dermatitis targeting beyond IL-4/IL-13 cytokines. Ann Allergy Asthma Immunol. 2020;124(1):28-35.

101. Li R, Hadi S, Guttman-Yassky E. Current and emerging biologic and small molecule therapies for atopic dermatitis. *Expert Opin Biol Ther.* 2019;19(4):367-380.

102. Diaz A, Guttman-Yassky E. Topical agents for the treatment of atopic dermatitis. *Expert Rev Clin Immunol.* 2019;15(4):369-382.

103. He H, Guttman-Yassky E. JAK Inhibitors for Atopic Dermatitis: An Update. Am J Clin Dermatol.2019;20(2):181-192.

104. Simpson E, Imafuku S, Poulin Y. A Phase 2 Randomized Trial of Apremilast in Patients with Atopic Dermatitis. *J Investigative Derma.* 2019;139(5):1063-1072.

105. Wollenberg A, Howell MD, Guttman-Yassky E, et al. Treatment of atopic dermatitis with tralokinumab, an anti–IL-13 mAb. J Allergy Clin Immunol.2019;143(1):135-141.

106. Olesen C, Pavel A, Wu J. Tape-strips provide a minimally-invasive approach to track therapeutic response to topical corticosteroids in atopic dermatitis patients. *J Allergy Clin Immunol.* 2020.

107. Bissonnette R, Pavel A, Diaz A. Crisaborole and atopic dermatitis skin biomarkers: An intrapatient randomized trial. J Allergy Clin Immunol. 2019;144(5):1274-1289.

108. Pavel A, Song T, Kim H-J, Del Duca E, Krueger J, Dubin C. Oral Janus kinase/SYK inhibition (ASN002) suppresses inflammation and improves epidermal barrier markers in patients with atopic dermatitis. *J Allergy Clin Immunol*.2019;144(4):1011-1024.

109. Guttman-Yassky E, Pavel A, Zhou L. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. *J Allergy Clin Immunol.* 2019;144(2):482-493.

110. Hamilton J, Suarez-Farinas M, Dhingra N. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. *J Allergy Clin Immunol.* 2014;134(6):1293-1300.

111. Bissonnette R, Maari C, Forman S, et al. The oral Janus kinase/spleen tyrosine kinase inhibitor ASN002 demonstrates efficacy and improves associated systemic inflammation in patients with moderate-

to-severe atopic dermatitis: results from a randomized double-blind placebo-controlled study. Br J Dermatol.2019;181(4):733-742.

112. Callewaert C, Nakatsuji T, Knight R. IL-4Rα Blockade by Dupilumab Decreases Staphylococcus aureus Colonization and Increases Microbial Diversity in Atopic Dermatitis. J Invest Dermatol. 2020;140(1):191-202.

113. Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol. 2012;5(3):232-239.

114. Hadis U, Wahl B, Schulz O, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. *Immunity*.2011;34(2):237-246.

115. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle R. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. *J Exp Med.* 2007:1765-1774.

116. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. *J Exp Med*.2007;204(8):1757-1764.

117. Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. *J Exp Med*.2007;204(8):1775-1785.

118. Kim KS, Hong SW, Han D, et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. *Science*. 2016;351(6275):858-863.

119. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. *Science*. 2011;331(6015):337-341.

120. Iweala OI, Nagler CR. The Microbiome and Food Allergy. Annu Rev Immunol. 2019;37:377-403.

121. Feehley T, Plunkett CH, Bao R, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. *Nat Med.* 2019;25(3):448-453.

122. Bao R, Hesser LA, He Z, Zhou X, Nadeau KC, Nagler CR. Fecal microbiome and metabolome differ in healthy and food-allergic twins. *J Clin Invest.* 2021;131(2).

123. Stefka AT, Feehley T, Tripathi P, et al. Commensal bacteria protect against food allergen sensitization. *Proc Natl Acad Sci U S A*.2014;111(36):13145-13150.

124. Wesemann DR, Nagler CR. The Microbiome, Timing, and Barrier Function in the Context of Allergic Disease. *Immunity.* 2016;44(4):728-738.

125. Tan JK, McKenzie C, Marino E, Macia L, Mackay CR. Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation. *Annu Rev Immunol.* 2017;35:371-402.

126. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces differentiation of colonic regulatory T cells. *Nature*. 2013;504(7480):446-450.

127. Tan J, McKenzie C, Vuillermin PJ, et al. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. *Cell Rep.* 2016;15(12):2809-2824.

128. Donohoe DR, Garge N, Zhang N, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. *Cell Metab.* 2011;13(5):517-526.

129. Byndloss MX, Olsan EE, Rivera-Chavez F, et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. *Science*.2017;357(6351):570-575.

130. Macia L, Mackay CR. Dysfunctional microbiota with reduced capacity to produce butyrate as a basis for allergic diseases. *J Allergy Clin Immunol*.2019;144(6):1513-1515.

131. Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. *Immunity.* 2013;39(2):372-385.

132. Hang S, Paik D, Yao L, et al. Bile acid metabolites control TH17 and Treg cell differentiation. *Nature*. 2019;576(7785):143-148.

133. Garcia-Larsen V, Lerodiakonou D, Jarrold K. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. *PLoS Med.* 2018;15(2).

134. Du Toit G, Roberts G, Sayre PH, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. *N Engl J Med.* 2015;372(9):803-813.

135. du Toit G, Sayre PH, Roberts G, et al. Allergen specificity of early peanut consumption and effect on development of allergic disease in the Learning Early About Peanut Allergy study cohort. J Allergy Clin Immunol.2018;141(4):1343-1353.

136. Perkin MR, Logan K, Tseng A, et al. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants. *N Engl J Med.* 2016;374(18):1733-1743.

137. de Silva D, Halken S, Singh C, et al. Preventing food allergy in infancy and childhood: systematic review of randomised controlled trials. *Pediatr Allergy Immunol*.2020;31(7):813-826.

138. Obbagy JE, English LK, Wong YP, et al. Complementary feeding and food allergy, atopic dermatitis/eczema, asthma, and allergic rhinitis: a systematic review. Am J Clin Nutr. 2019;109(Suppl_7):890s-934s.

139. Burgess JA, Dharmage SC, Allen K, et al. Age at introduction to complementary solid food and food allergy and sensitization: A systematic review and meta-analysis. *Clin Exp Allergy*. 2019;49(6):754-769.

140. Urashima M, Mezawa H, Okuyama M, et al. Primary Prevention of Cow's Milk Sensitization and Food Allergy by Avoiding Supplementation With Cow's Milk Formula at Birth: A Randomized Clinical Trial. *JAMA Pediatr.* 2019;173(12):1137-1145.

141. Fisher HR, Du Toit G, Bahnson HT, Lack G. The challenges of preventing food allergy: Lessons learned from LEAP and EAT. Ann Allergy Asthma Immunol.2018;121(3):313-319.

142. Perkin MR, Logan K, Marrs T, et al. Enquiring About Tolerance (EAT) study: Feasibility of an early allergenic food introduction regimen. *J Allergy Clin Immunol*.2016;137(5):1477-1486.e1478.

143. Koplin JJ, Peters RL, Dharmage SC, et al. Understanding the feasibility and implications of implementing early peanut introduction for prevention of peanut allergy. *J Allergy Clin Immunol.* 2016;138(4):1131-1141.e1132.

144. Venter C, Agostoni C, Arshad SH, et al. Dietary factors during pregnancy and atopic outcomes in childhood: a systematic review from the European Academy of Allergy and Clinical Immunology. *Pediatr Allergy Immunol.* 2020;31(8):889-912.

145. Netting M, Middleton P, Makrides M. Does maternal diet during pregnancy and lactation affect outcomes in offspring? A systematic review of food-based approaches. *Nutrition.* 2014;30:1225-1241.

146. Grimshaw K, Maskell J, Oliver E. Diet and food allergy development during infancy: birth cohort study findings using prospective food diary data. J Allergy Clin Immunol. 2014;133(2):511-519.

147. Venter C, Greenhawt M, Meyer R, et al. EAACI position paper on diet diversity in pregnancy, infancy and childhood: Novel concepts and implications for studies in allergy and asthma. *Allergy.* 2020;3(75):497-523.

148. Roduit C, Frei R, Depner M. Increased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol.2014;133(4):1056-1064.

149. Sausenthaler S, Heinrich J, Koletzko S. Early diet and the risk of allergy: what can we learn from the prospective birth cohort studies GINIplus and LISAplus? Am J Clin Nutr. 2011;94(6):2012-2017.

150. Zutavern A, Brockow, Schaaf B. Timing of solid food introduction in relation to eczema, asthma, allergic rhinitis, and food and inhalant sensitization at the age of 6 years: results from the prospective birth cohort study LISA. *Pediatrics*. 2008;121(1):44-52.

151. Zutavern A, Brockow I, Schaaf B. Timing of solid food introduction in relation to atopic dermatitis and atopic sensitization: results from a prospective birth cohort study. *Pediatrics*. 2006;117(2):401-411.

152. Fergusson D, Horwood L, Shannon F. Risk factors in childhood eczema. J Epidemiol Community Health. 1982;36(2):118-122.

153. Nwaru B, Takkinen H, M, Kaila Food diversity in infancy and the risk of childhood asthma and allergies. J Allergy Clin Immunol. 2014;133(4):1084-1091.

154. Roduit C, Frei R, G, Loss Development of atopic dermatitis according to age of onset and association with early-life exposures. *J Allergy Clin Immunol*.2012;130(1):130-136.

155. Turati F, Bertuccio P, Galeone C. Early weaning is beneficial to prevent atopic dermatitis occurrence in young children. *Allergy.* 2016;71(6):878-888.

156. Sharief S, Jariwala S, Kumar J, Muntner P, Melamed M. Vitamin D levels and food and environmental allergies in the United States: results from the National Health and Nutrition Examination Survey 2005-2006. *J Allergy Clin Immunol*.2011;127(5):1195- 1202.

157. Allen KJ, Koplin J, Ponsonby A. Vitamin D insufficiency is associated with challenge-proven food allergy in infants. *J Allergy Clin Immunol.* 2013;131(4):1109-1116.

158. Hennessy Å, Hourihane JOB, Malvisi L, et al. Antenatal vitamin D exposure and childhood eczema, food allergy, asthma and allergic rhinitis at 2 and 5 years of age in the atopic disease-specific Cork BASELINE Birth Cohort Study. *Allergy.* 2018;73(11):2182-2191.

159. Thorisdottir B, Gunnarsdottir I, Vidarsdottir A, Sigurdardottir S, Birgisdottir B, Thorsdottir I. Infant Feeding, Vitamin D and IgE Sensitization to Food Allergens at 6 Years in a Longitudinal Icelandic Cohort. *Nutrients.* 2019;11(7).

160. Hollams E, Teo S, Kusel M. Vitamin D over the first decade and susceptibility to childhood allergy and asthma. J Allergy Clin Immunol. 2017;139(2):472-481.

161. Litonjua AA, Carey VJ, Laranjo N. Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in Offspring by Age 3 Years: The VDAART Randomized Clinical Trial. *JAMA Dermatol.* 2016;315(4):362-370.

162. Rosendahl J, Pelkonen A, Helve O. High-Dose Vitamin D Supplementation Does Not Prevent Allergic Sensitization of Infants. *J Pediatr.* 2019:139-145.

163. Yepes-Nunez J, Brozek J, Fiocchi A. Vitamin D supplementation in primary allergy prevention: Systematic review of randomized and non-randomized studies. *Allergy*. 2018;73(1):37-49.

164. Hawrylowicz C, Santos A. Vitamin D: can the sun stop the atopic epidemic? Curr Opin Allergy Clin Immunol. 2020;20(2):181-187.

165. Greer F, Sicherer SH, Burks A. Committee On N, Section On A, Immunology. The Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of Allergenic Complementary Foods. *Pediatrics*. 2019;143(4).

166. Greer FR, Sicherer SH, Burks AW, Committee On N, Section On A, Immunology. The Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of

Maternal Dietary Restriction, Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of Allergenic Complementary Foods. *Pediatrics*. 2019;143(4).

167. American Academy of Pediatrics. Committee on Nutrition. Hypoallergenic infant formulas. *Pediatrics*. 2000;106(2 Pt 1):346-349.

168. Greer FR, Sicherer SH, Burks AW, American Academy of Pediatrics Committee on N, American Academy of Pediatrics Section on A, Immunology. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. *Pediatrics*. 2008;121(1):183-191.

169. Gupta RS, Bilaver LA, Johnson JL, et al. Assessment of Pediatrician Awareness and Implementation of the Addendum Guidelines for the Prevention of Peanut Allergy in the United States. *JAMA Netw Open.* 2020;3(7):e2010511.

170. Joshi PA, Smith J, Vale S, Campbell DE. The Australasian Society of Clinical Immunology and Allergy infant feeding for allergy prevention guidelines. *Med J Aust.*2019;210(2):89-93.

171. Perkin MR, Logan K, Marrs T, et al. Association of frequent moisturizer use in early infancy with the development of food allergy. J Allergy Clin Immunol.2021;147(3):967-976 e961.

172. Kelleher MM, Cro S, Cornelius V, et al. Skin care interventions in infants for preventing eczema and food allergy. *Cochrane Database of Systematic Reviews*. 2021(2).

173. Group OCfE-BMLoEW. The Oxford 2011 Levels of Evidence. In:2011.

174. Cohen SG. Food allergens: landmarks along a historic trail. J Allergy Clin Immunol.2008;121(6):1521-1524, 1524 e1521.

175. Kay AB. 100 years of 'Allergy': can von Pirquet's word be rescued? *Clin Exp Allergy*.2006;36(5):555-559.

176. Schofield A. A case of egg poisoning. The Lancet. 1908;171(4410):716.

177. Schloss OM. A case of allergy to common foods. *American Journal of Diseases of Chil*dren.1912;3(6):341-362.

178. Prausnitz C, Kustner H. Studien uber die Überempfindlichkeit. Zentralbl Bakteriol. 1921;86:160-169.

179. Loveless MH. Allergy for corn and its derivatives: experiments with a masked ingestion test for its diagnosis. J Allergy. 1950;21(6):500-509.

180. Platts-Mills TAE. The continuing effect of the discovery of IgE by Kimishige Ishizaka. J Allergy Clin Immunol. 2018;142(3):788-789.

181. Immunoglobulin E, a new class of human immunoglobulin. Bull World Health Organ. 1968; 38(1): 151-152.

182. Bock SA, Lee WY, Remigio L, Holst A, May CD. Appraisal of skin tests with food extracts for diagnosis of food hypersensitivity. *Clin Allergy*.1978;8(6):559-564.

183. Bock SA, Sampson HA, Atkins FM, et al. Double-blind, placebo-controlled food challenge (DBPCFC) as an office procedure: a manual. J Allergy Clin Immunol. 1988;82(6):986-997.

184. Lack G, Golding J. Peanut and nut allergy. Reduced exposure might increase allergic sensitisation. *BMJ*. 1996;313(7052):300.

185. Sampson HA, Ho DG. Relationship between food-specific IgE concentrations and the risk of positive food challenges in children and adolescents. J Allergy Clin Immunol.1997;100(4):444-451.

186. Sampson HA. Utility of food-specific IgE concentrations in predicting symptomatic food allergy. J Allergy Clin Immunol. 2001;107(5):891-896.

187. Sampson HA. Food allergy: Past, present and future. Allergol Int. 2016;65(4):363-369.

188. Smith M. Another person's poison. Lancet. 2014;384(9959):2019-2020.

189. May CD. Food allergy: lessons from the past. J Allergy Clin Immunol. 1982;69(3):255-259.

190. Saloga J, Renz H, Larsen GL, Gelfand EW. Increased airways responsiveness in mice depends on local challenge with antigen. Am J Respir Crit Care Med.1994;149(1):65-70.

191. Lack G, Fox D, Northstone K, Golding J, Avon Longitudinal Study of P, Children Study T. Factors associated with the development of peanut allergy in childhood. *N Engl J Med.* 2003;348(11):977-985.

192. Horimukai K, Morita K, Narita M, et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):824-830 e826.

193. Du Toit G, Roberts G, Sayre PH, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. *N Engl J Med.* 2015;372(9):803-813.

194. Du Toit G, Sayre PH, Roberts G, et al. Effect of Avoidance on Peanut Allergy after Early Peanut Consumption. N Engl J Med. 2016;374(15):1435-1443.

195. Lowe AJ, Su JC, Allen KJ, et al. A randomized trial of a barrier lipid replacement strategy for the prevention of atopic dermatitis and allergic sensitization: the PEBBLES pilot study. *Br J Dermatol.* 2018;178(1):e19-e21.

196. Leung DYM, Calatroni A, Zaramela LS, et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. *Sci Transl Med.* 2019;11(480).

197. Miyaji Y, Yang L, Yamamoto-Hanada K, Narita M, Saito H, Ohya Y. Earlier aggressive treatment to shorten the duration of eczema in infants resulted in fewer food allergies at 2 years of age. J Allergy Clin Immunol Pract. 2020;8(5):1721-1724 e1726.

198. Chalmers JR, Haines RH, Bradshaw LE, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. *Lancet*.2020;395(10228):962-972.

199. de Silva D, Halken S, Singh C, et al. Preventing food allergy in infancy and childhood: Systematic review of randomised controlled trials. *Pediatr Allergy Immunol*.2020;31(7):813-826.

200. Skjerven HO, Rehbinder EM, Vettukattil R, et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. *Lancet*.2020;395(10228):951-961.

Legends:

Figure 1. Prevalence of Paediatric FA Around the World adapted from Warren C, Jiang J, Gupta

R.Epidemiology and Burden of Food Allergy. Curr Allergy Asthma Rep. 2020;20(2), Lyons SA,

Clausen M, Knulst AC, et al. Prevalence of Food Sensitization and Food Allergy in Children

Across Europe. J Allergy Clin Immunol Pract. 2020;8(8):2736-2746 e2739 and Venter C, Pereira B, Voigt K, et al. Prevalence and cumulative incidence of food hypersensitivity

in the first 3 years of life. Allergy. 2008;63(3):354-359.

Figure 2: Prevalence of Current Eczema Symptoms (ISAAC Phase III: Ages 6-7 adapted from Odhiambo J, Williams H, Clayton T, Robertson C, Asher M. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. *J Allergy Clin Immunol.* 2009;124(6):1251-1258

Figure 3: Prevalence of Current Eczema Symptoms (ISAAC Phase III: Ages 13-14) adapted from from Odhiambo J, Williams H, Clayton T, Robertson C, Asher M. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. *J Allergy Clin Immunol.* 2009;124(6):1251-1258

Figure 4: In the "outside-in" hypothesis, skin barrier defect allows penetration of allergens and

microbes leading to atopic sensitization whereas, in the "inside-out" paradigm, a polarized

immune response leads to a defective skin barrier. Adapted from Leung DY, Guttman-Yassky E.

Deciphering the complexities of atopic dermatitis: Shifting paradigms in treatment approaches.

J Allergy Clin Immunol. 2014;134(4):769-779.

Figure 5: Skin dysbiosis, especially colonization of *Staphylococcus aureus* and *Malassezia spp.*, is often seen among young children with atopic dermatitis. (a) *S. aureus* colonization on a six-month child; (b). heavy colonization of *Malassezia spp.*, also known as Pityrosporum, on the scalp of an infant.

Figure 6: Dietary compounds and their conversion by commensal bacteria influence oral tolerance. Several dietary components and digestive products contribute heavily to the function of the gut immune system. Gut-resident CD103⁺ dendritic cells (DCs) directly convert dietary vitamin A to retinoic acid (RA) for further downstream immune signaling. Conversely, tryptophan, liver-derived bile acids, and fiber must first be metabolized by commensal bacteria such as Clostridia. These bacteria degrade tryptophan into several compounds that can bind to the aryl-hydrocarbon receptor (Ahr) of ILC3s, playing a role in IL-22 production. Secondary bile acids and short chain fatty acids (SCFAs), including butyrate, signal directly to epithelial cells as well as local immune cell populations residing in the lamina propria. Collectively, these compounds enhance epithelial barrier integrity by stimulating Paneth cells to produce anti-microbial peptides, goblet cells to produce mucus, and epithelial cells to produce tight junction and adherens proteins. In addition, they induce populations of tolerogenic lymphocytes such as peripherally induced regulatory T cells (iTregs) and IgA-producing plasma cells. Together, these functions are essential for the maintenance of oral tolerance.

Figure 7: Diagram of possible causal associations between genetics, skin exposures, diet leading to eczema and/or food allergy. The interplay between genetics, diet, and skin/microbiome exposure are connected by arrows showing the direction of causality hypothesized to ultimately influence food allergy. The relevant causal factors of the dual allergen exposure hypothesis are outlined by the blue rectangle. This hypothesis postulates that allergen exposure through the skin leads to the development of food allergy. The degree of a broken skin barrier involved with eczema is thought to interact with allergen exposure to increase the probability of allergy development with increasing barrier disfunction. While early introduction of food and diet diversity has been proven to prevent food allergy (dark green), other factors such as breastfeeding, commensal bacteria metabolizing bile acids, tryptophan from dietary/commensal bacterial sources, dietary fiber, vitamins, pre-pro- and syn-biotics have weaker evidence base for this (light green). Reducing eczema severity has yet to be consistently shown as a preventative causal mechanism. Nevertheless, eczema severity exists as one of the strongest predictors of food allergy, and therapies to heal a broken skin barrier remain as a leading mechanism to mediate the prevention of food allergy.