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Abstract

1.

Models of host-pathogen interactions help to explain infection dynamics in wildlife populations and to predict and
mitigate the risk of zoonotic spillover. Insights from models inherently depend on the way contacts between hosts are
modelled, and crucially, how transmission scales with animal density.

Bats are important reservoirs of zoonotic disease and are among the most gregarious of all mammals. Their population
structures can be highly heterogenous, underpinned by ecological processes across different scales, complicating assump-
tions regarding the nature of density-transmission scaling. Although models commonly parameterise transmission using
metrics of total abundance, whether this is an ecologically representative approximation of host-pathogen interactions is
not routinely evaluated.

We collected a 13-month dataset of roosting Pteropus spp. from 2,522 spatially referenced trees across eight roosts to
compare density estimates across scales (roost-level, subplot-level, tree-level). We then focus on tree-level measures of
abundance and density, the scale most likely to be relevant for virus transmission between tree-roosting Pteropus , and
evaluate whether roost features at different scales are predictive of local dynamics.

Our density estimates varied greatly by scale. Mean density ofPteropus at the roost level was 13-fold lower than at
a subplot-level that accounted for heterogenous distributions of bats (0.38 bats/m? vs 5.13 bats/m?). Additionally,
roost-level measures (roost abundance and roost area) did not represent tree-level abundance or tree-level density, with
models explaining minimal variation in tree-level measures.

This indicates that basic measures, such as roost-level population counts, may not provide adequate approximations for
population dynamics at scales relevant for transmission, and that alternative measures are needed to compare transmission
potential between roosts. From the best candidate models, the best predictor of local population structure was tree
density within roosts, where roosts with low tree density had a higher abundance but lower density of bats (more spacing
between bats) per tree.

Together, these data highlight unpredictable and counterintuitive relationships between abundance and density, and
between measures at different scales. More nuanced modelling of transmission, spread and spillover from bats likely
requires alternative approaches to integrating contact structure in host-pathogen models, rather than simply modifying
the transmission function.

Keywords: Contact rate; density-dependent transmission; frequency-dependent transmission; heterogeneity;
mass action; nonlinearities; pseudo-mass action

Introduction

A central aim of disease ecology is to understand how pathogens spread within host populations (Brandell
et al. 2020). Implicit to this is the elucidation of a pathogen’s transmission dynamics (Smith et al. 2009).
For directly transmitted pathogens, transmission is effectively the product of the contact rate between
hosts, the proportion of contacts that are between susceptible and infectious hosts, and the proportion of
effective contacts that result in infection (McCallum, Barlow & Hone 2001). In models of infectious diseases,
transmission mechanisms are typically combined into a single term, the transmission coefficient (), and



modelled with one of two simplified functions that describe how infectious contacts scale with population
size: that scaling is linear (‘density-dependent’) or independent (‘frequency-dependent’) (McCallum, Barlow
& Hone 2001; Begon et al. 2002; McCallum et al. 2017). Selecting a function that provides a useful
approximation for modelling transmission has been debated extensively (e.g. McCallum, Barlow & Hone
2001; Begonet al. 2002; Lloyd-Smith et al. 2005; Cross et al.2013), although in practice, the model is often
based on the transmission route of the pathogen: density-dependent for direct transmission, and frequency-
dependent for vector-borne or sexual transmission. While this approach may accurately reflect transmission
at the local scale where contacts happen (though see Ryder et al.2005), there is growing evidence to suggest
this may not scale correctly to describe transmission in the population as a whole (the ‘global’ scale) (Smith
et al. 2009; Ferrari et al. 2011; Cross, Caillaud & Heisey 2013). For example, transmission may be
density-dependent at the local scale, but appear more consistent with frequency-dependent transmission at
the global scale (Ferrari et al. 2011; Cross, Caillaud & Heisey 2013). Two interrelated questions arising
from this paradox need to be answered to more thoroughly consider the nature of transmission in wildlife
populations: how should density in natural populations be defined and measured, and what spatial scales are
appropriate for understanding transmission in particular host pathogen systems (De Jong 1995; McCallum,
Barlow & Hone 2001; De Jong 2002). Understanding how transmission scales with density is especially
important for wildlife populations, in comparison with human infections, where population size may change
by orders of magnitude over relatively short periods.

Quantifying animal density can be complex, however. Animal behaviour and heterogeneity in the environ-
ment can create aggregate distributions of animals that are not adequately represented in estimates when
divided by total inhabited area (Krebs 1999). Defining and measuring density is additionally complicated
if animals are distributed in three dimensions (i.e. across horizontal and vertical space). Finally, aggrega-
tive distributions of animals may also deviate from the random-mixing assumption that underlies density-
dependent and frequency-dependent transmission models, if contacts between neighbours are more frequent
than contacts between distantly spread animals (McCallum, Barlow & Hone 2001). An imperative question,
therefore, lies in determining the appropriate ‘local’ scale at which transmission occurs, and where contacts
may be more homogenous (McCallum, Barlow & Hone 2001). In addition, for highly aggregative species,
where local groups form within the global population, processes that drive transmission within groups may
not match processes that drive transmission between groups. In such species, transmission within groups
may be driven by local group size, while transmission between groups by the structure of the population and
the connectivity between local groups (Jong, Diekmann & Heesterbeek 1995; Ferrari et al. 2011).

These issues are prevalent across most wildlife disease systems. Indeed, it has been suggested that seal
colonies are one of the few natural situations where transmission can be adequately modelled with popu-
lation abundance rather than animal density (possibly owing to uniform distancing between individuals)
(De Koeijer, Diekmann & Reijnders 1998; McCallum et al. 2017). Issues surrounding the definition and
estimation of density are particularly problematic in models of zoonotic pathogens that have bat reservoirs.
Bats are among the most gregarious of all mammals — a high proportion of species are social, with some
forming the largest aggregations of resting mammals known (Kerth 2008). Bats typically gather together
during inactive periods of the diurnal cycle, either in natural habitat (e.g. tree foliage, tree hollows and
caves) or anthropogenic structures (e.g buildings, mines and bat boxes) (Kerth 2008). Some species switch
roosts frequently (e.g. Rhodes 2007) while others regularly return to the same roost space, or even to specific
locations within the roost (Nelson 1965; Lewis 1995; Markus & Blackshaw 2002). This can also be variable
among individuals within species (e.g. Welbergen 2005; Welbergen et al. 2020). Spatio-temporal changes
to roost structure and organisation are often observed in response to ecological factors like season, mating
and gestation, food availability, thermoregulation, parasite accumulation, or site disturbance (Lewis 1995;
Kerth 2008). By altering rates of contact, spatial and temporal changes in bat aggregations can contribute to
spatio-temporal dynamics of transmission, infection, and risk of disease spillover (Altizeret al. 2006). Fram-
ing transmission in ecologically relevant contexts will therefore be important for accurate infection modelling
in these species, where population size often changes dramatically.

In models of bat viral transmission where contact rate is assumed to be density-dependent, and where



pathogen transmission occurs within the roost (generally the case if individuals forage independently), the
transmission coefficient is often parameterised with total roost abundance (George et al. 2011; Plowright
et al. 2011; Wanget al. 2013; Hayman 2015; Jeong et al. 2017; Colombiet al. 2019; Epstein et al. 2020).
Likewise in statistical models, population size is often fit with total abundance (Serra-Coboet al. 2013; Giles
et al. 2016; Pdez et al. 2017). If the population size is modelled to be constant (e.g., Plowrightet al. 2011;
Wang et al. 2013) it is irrelevant how transmission scales with population size. If population size is variable
however, parameterisation with total abundance implicitly assumes that the area occupied remains constant
with increasing population size (so that roost abundance scales linearly with bat density), and that this is
consistent across scales. Whether this occurs in reality is not routinely evaluated. Indeed, changes to density
may be multifaceted and hard to predict. In tree-roosting Pteropus , for example, new individuals arriving
into the roost could be accommodated by an expansion of the total roost area, by increasing the number
of trees occupied within the roost perimeter, or by crowding more animals into occupied individual trees.
These processes may all occur simultaneously.

Over what spatial scale transmission can reasonably be expected to occur within roosts is also a critical
question, and one that will define the scale at which density is ecologically relevant to infection dynamics. This
is likely to depend on: (i) the mode of pathogen transmission, (ii) animal behaviour and (iii) the structural
heterogeneity in the roost environment. First, the mode of transmission will determine the distance over
which transmission can occur and will frame the scale relevant for population measures — transmission via
aerosols or droplets, or indirect contact with infectious excretions has a greater potential for spread over large
distances compared with transmission via direct contact, meaning that a larger scale of density estimation
may be warranted. Second, animal behaviour, specifically range of movement, site fidelity, and tendency to
aggregate, will influence the spatial extent of contact throughout populations, and so also the scale relevant
for population measures. Animals that constantly move through their environment will be likely to contact
other animals over a greater area than animals that are more sedentary, for example. Finally, environmental
heterogeneity can influence the probability and rate of movement between groups in highly aggregative
populations, and so influence the rate and extent of spread over space. Currently, there is little empirical
evidence available to understand how viral transmission depends on density in bat populations, or the spatial
scale on which density might be relevant. Moreover, there is little empirical support for traditional density-
dependent viral transmission in bats, which may reflect complexity in transmission underpinned by ecological
processes across different scales (Plowright et al. 2015; McCallum et al. 2017).

Here, we investigate the roosting characteristics of AustralianPteropus bats. Australian Pteropodid bats are
the reservoir hosts for Hendra virus (HeV), an emerged paramyxovirus in the genus Henipavirus that causes
lethal disease in horses and humans in eastern Australia (Plowright et al. 2015). We present a 13-month
dataset of roosting Pteropus spp. from 2,522 spatially referenced trees across eight roost sites, to compare
estimates of density across scales (roost-level, subplot-level, and tree-level). We focus on tree-level measures
of abundance and density to then evaluate whether roost features at the different scales relate to these local
dynamics. We focus our analyses on tree-level measures of abundance and density, as this is the scale at
which the majority of contacts are likely to occur, given the nature of viral transmission between bats, and
aspects of bat behaviour — i.e. while vertical transmission of Hendra virus has been documented (Halpin et
al. 2000), transmission between bats is assumed to be primarily horizontal through contact with infectious
urine, either through close contacts with individuals, contacts through the vertical tree column (e.g. with
excretion from bats roosting above), or exposure to clouds of aerosolised urine over small distances (Fieldet
al. 2001; Plowright et al. 2015). In addition, flying-fox activity within roosts is limited - bats rarely move
from their roosting position after they return at dawn, and diurnal activities primarily consist of roosting,
sleeping and grooming (Markus & Blackshaw 2002). Moreover the roosting positions of individuals can be
highly consistent, with animals often returning to the same branch of a tree over many weeks or months
(Markus 2002; Welbergen 2005). Considered together, it is plausible that tree-level measures of abundance
or density will be the most relevant for understanding transmission in these species. Through these analyses
we aim to provide data on ecologically relevant estimates of density for these species and highlight predictors
of the local density most important for transmission of Hendra virus. Understanding gained on the nature



of animal density will be important to give more realistic predictions of pathogen invasion and persistence
within bat populations. To this end, we also propose a framework to help guide incorporation of heterogenous
contact structures into bat infectious disease models more generally.

Methods

Data collection

We collected data on roosting structure of three species (black flying-fox: P. alecto , grey-headed flying-fox:
P. poliocephalus and little red flying-fox: P. scapulatus ) from eight roost sites in south-east Queensland and
north-east New South Wales, Australia (Fig. 1).P. alecto are believed to be the primary reservoir for Hendra
virus in this study region (Goldspink et al. 2015), however a newly-identified Hendra virus variant has been
detected in P. poliocephalus and P. scapulatus tissues (Veterinary Practitioners Board of New South Wales
2021). All sites were previously documented as having continuous occupation by at least one species of
flying-fox (National Flying-Fox Monitoring Program 2017). Roosting surveys were repeated once a month
for 13 months (August 2018 - August 2019).

Methodological details are described in Lunn et al. (2021). Briefly, we mapped the spatial arrangement of
all overstory, canopy and midstory trees in a grid network of 10 stratified random subplots (20 x 20 meters
each) using an ultrasound distance instrument (Vertex Hypsometer, Haglof Sweden). Trees were mapped and
tagged using tree survey methods described in the “Ausplots Forest Monitoring Network, Large Tree Survey
Protocol” (Wood et al. 2015). This approach allowed for precise spatial mapping of trees, with locations of
trees within subplots accurate to 10-30 cm. Tagged trees were revisited monthly, and the number of bats per
tree was visually estimated and recorded per species using a quasi-logarithmic index: 0: no bats, 1: 1-5 bats,
2: 6-10 bats, 3: 11-20 bats, 4: 21-50 bats, 5: 51-100 bats, 6:101-199 bats and 7: 2004 bats. In total 2,522
trees were mapped across the eight sites. For a subset of trees (60 per site, consistent through time) absolute
counts, minimum roosting height, and maximum roosting height of each species were recorded. The roost
perimeter boundary (defined as the outermost perimeter delimitating occupied space, as per Clancy and
Einoder (2004)) was mapped with GPS (accurate to 10 meters) immediately after the tree survey by walking
directly underneath roosting flying-foxes. This track was used to calculate perimeter length and occupied
roost area (QGIS 3.1). Total abundance at each roost was estimated with a census count of bats where
feasible (i.e. where total abundance was predicted to be <5,000 individuals), or by counting bats as they
emerge in the evening from their roosts (“fly-out”), as per Westcott et al.(2011). If these counts could not be
conducted, population counts from local councils (conducted within “a week of the bat surveys) were used, as
total abundance of roosts are generally stable over short timeframes (Nelson 1965). Because roost estimates
become more unreliable with increasing abundance, we converted the total estimated abundance into an
index estimate, as per values used by the National Flying-Fox Monitoring Program (2017). Index categories
were as follows: 1: 1-499 bats; 2: 500-2,499 bats; 3: 2,500-4,999 bats; 4: 5,000-9,999 bats; 5: 10,000-15,999
bats; 6: 16,000-49,999 bats; and 7: 50,000+ bats.

All observations were made from a distance to minimise potential disturbance to bats during the survey. In
general, bats showed minimal response to the observers during the surveys, providing observers remained
quiet, did not move quickly, and kept an appropriate distance, consistent with other studies on flying-foxes
(Markus & Blackshaw 2002; Klose et al. 2009).

Abundance and density estimates

Information collected during the bat roosting surveys were used to calculate measures of bat density and
abundance at three scales: roost-level, subplot-level and tree-level. For a visual summary of metrics see Fig.
1.

Roost-level density was calculated as the total roost abundance divided by the total roost area (Fig. 1A).
Measures of subplot-level density were estimated with two methods: either as a total count per subplot



divided by the total subplot area (“subplot-level density”, Fig. 1B), or as the average of fixed-bandwidth
weighted kernel estimates, estimated using the spatstat package in R (Diggle 1985) (“subplot-level kernel
density”, Fig. 1C). Kernel values were estimated using tree locations weighted by tree-level bat abundance
with Gaussian kernel smoothing and a smoothing bandwidth of 0.6 (Baddeley 2010). Bandwidth was selected
by comparing projected kernel density values to expected density values based on within tree abundance
and canopy area. Kernel averages were calculated per subplot, and averages included only occupied pixels
in the subplot (pixel size = 0.156 x 0.156 meters). This latter approach has the advantage of explicitly
incorporating the distribution of trees into the density estimate, as well as the number of bats per tree, and
can therefore distinguish between degree of tree-level aggregation. Note that neither roost nor subplot-based
density measures consider the vertical distribution of bats.

Measures of tree-level density were estimated in either two-dimension (2-D; for comparison with other two-
dimensional estimates) or three-dimension (3-D). Tree-level 2-D density was estimated from within tree
abundance and canopy area (Fig. 1D). Tree-level 3-D density was estimated for the tree subset, as the
absolute count of bats divided by the volume of tree space occupied (i.e. per cubic metre rather than square
metre, Fig. 1E). Volume of tree space was calculated from the height range occupied (maximum height minus
minimum height) and the approximate crown area of trees. To estimate crown area of tagged trees for both
measures, we computed the area of Dirichlet-Voronoi tessellations from tree distribution maps of canopy
trees per subplot, with the spatstat package in R (Baddeley 2010). To control for edge effects we imposed a
maximum crown area of 199 m?(radius "8 m) based on mean values reported across species of eucalypts in
New South Wales (Verma et al. 2014). Overstory trees and trees outside of the canopy were also assigned
this mean value. Crown area of midstory trees was assigned as the first quartile of canopy tree crown area
(5.8 m?), to reflect observations that trees beneath the canopy were typically smaller than trees within the
canopy. Mean calculated crown area was 30.4 m? (crown radius ~ 3.1 m). To investigate whether the choice
of maximum crown area impacted results, we also repeated analyses for additional values of maximum crown
area (140 m?, 170 m? and 230 m?) chosen to cover the range in smallest to largest mean values reported for
individual eucalypt species in Verma et al. (2014).

Statistical analyses

To evaluate how roost features at different scales influence tree-level abundance and 3-D density of bats,
the measures most likely to be relevant for transmission of virus between tree-roostingPteropus , we fitted
generalized additive models (GAMs) with restricted (residual) maximum likelihood (REML) estimation,
Poisson distribution with a log link, and random effects of roost site, subplot and survey session with the
mgcv package in R (Wood 2017). Roost site and subplot were fitted with random effects smoothers to account
for high variability within and between roost sites, and survey session with a cyclic cubic regression spline to
allow for seasonal variation. We accounted for nesting of subplots within roosts by including an autoregressive
model for errors in the model (Yang et al. 2012; Laurinec 2017). We constructed a candidate set of GAMs
comprising of a null model of random site, subplot and survey session effects only, alongside models with
roost features hypothesised to impact tree-level measures: number of trees tagged within subplots, total
roost abundance, total roost area, total subplot abundance, tree preference (whether the tree was regularly
occupied: occupied in at least 80% of surveys; or irregularly occupied: occupied in less than 80% of surveys,
as referred in Lunn et al. (2021)), and proportion of trees occupied per subplot, fit with the same set of
random model effects relevant to that scale. We compared GAMs with the Akaike information criterion
(AIC) and considered models within 2 AAIC units to be competitive (Burnham & Anderson 2002). We
performed checks of standardised residuals to evaluate model fit, as per Wood (2017).

Results

The dataset includes tree-level abundance and tree-level 2-D density estimates from 2,522 spatially refer-
enced trees, and tree-level 3-D density estimates from 480 of these trees. Measures were repeated monthly



for 13 months; however, 52 tagged trees were cut or had fallen during the survey period, giving a final
dataset of 32,206 tree-level abundance and 2-D density estimates, and 6,240 tree-level 3-D density estimates.
Mean tree-level abundance was 3.75 bats per tree across all trees (interquartile range: 0.00-3.00 bats) and
13.35 bats per tree across all occupied trees (3.00-15.50). A full set of summary data are available at: <
https://github.com/TamikaLunn/FF-roost-structure >.

Comparison of density estimates across scales

Density estimates varied substantially by scale, both in magnitude and pattern over time (Fig. 2). The
highest mean estimate was generated for subplot-level kernel density: 5.13 bats/m?(interquartile range:
2.71-6.09), then tree-level 2-D density: 0.71 bats/m? (0.10-0.76, subplot-level density: 0.46 bats/m? (0.16-
0.57), roost-level density: 0.38 bats/m? (0.21-0.47), and tree-level 3-D density 0.34 bats/m? (0.03-0.32)
(means across roost sites and time). Estimates per species were comparable, though temporal patterns were
variable between species over time (Appendix S1).

Drivers of tree-level 3-D density and abundance

Among subplot-level models, the most parsimonious predictors of tree-level 3-D density were (i) the total
abundance within the subplot; (ii) proportion of trees occupied within the subplot; and (iii) the density of
trees within the subplot (Table 1). Density of trees had a large and highly significant positive effect on tree-
level 3-D density (regression coefficient: 9.664 + 1.492, p <0.0001), as did the proportion of trees occupied
(regression coefficient: 1.067 £+ 0.301, p <0.0001) (Table 2). Subplot-level abundance was only a significant
contributor when interacting with the proportion of trees occupied, but the effect was small (0.001 £ 0.001,
p=0.0492) (Table 2).

Results were comparable when modelled with tree-level abundance, for all variables except density of trees
(Table 2). Density of trees had a substantial and significant negative impact on the abundance of bats per
tree (regression coefficient: -5.053 + 0.105, p <0.0001) (Table 2), suggesting that abundance per tree is
higher when fewer trees are available for bats to roost in. Bats occupy more of the tree’s vertical space when
more bats are present (a pattern consistent across tree crown classes, Appendix S2). The difference between
tree-level 3-D density and tree-level abundance indicates that bats change the height range they occupy as
total tree abundance increases.

At the roost level, density of trees was a relatively poor predictor of tree-level 3-D density and abundance
and was not in the top-ranking model sets (Table 1). All fixed terms in the roost-level model had negligible
effects on tree-level 3-D density (roost abundance: -0.084 + 0.06, p=0.159; roost area: <0.0001, p=0.014;
and the interaction term: <0.0001, p=0.021) and tree-level abundance (roost abundance: 0.447 + 0.005,
p=<0.0001; roost area: <0.0001, p<0.0001; and the interaction term: <0.0001, p<0.0001).

Roost-level predictors explained minimal variation in tree-level 3-D density, with the overall most parsimo-
nious GAM only explaining 3.8% of variation (Table 1). Models with subplot-level and tree-level predictors
explained slightly more variation (subplot-level: 11.7% of variation; tree-level: 13.6% of variation). The expla-
natory power of roost-level models with tree-level 3-D density was comparable when species were modelled
separately (Appendix S3 in the Supporting Information). Explanatory power and rankings were comparable
for models with tree-level abundance as the response variable (7.8% - 11.6% between top ranking models)
(Appendix S4 in the Supporting Information).

Neither estimated tree-level 3-D density, nor model outputs, varied substantially under different values
realistic for eucalyptus species (Appendix S5). Full model outputs for both response variables are given in
Appendix S3 and Appendix S4 in the Supporting Information.



Discussion

We evaluated animal abundance and density at multiple scales to determine what information is relevant for
understanding transmission. We used an extensive empirical dataset of roosting Pteropus spp. collected over
13 months and including 2,522 spatially referenced trees across eight roost sites. Measures most commonly
used to parameterise models of bat-pathogen interactions (roost-level abundance and area) did not reflect
the density of bats at scales where transmission is likely to take place (the abundance or density of bats
within trees). Roost-level models explained a little of the variation in these tree-level measures. Density of
trees was a better predictor of the likely conditions for transmission than was the population size of bats
at the roost, where roosts with low tree density typically had a higher abundance but lower density of bats
per individual tree. These results have implications for the structuring of infectious disease models for these
species, particularly for pathogens transmitted over small local scales (e.g. within roosting trees), as discussed
below.

An important consideration for bat-pathogen interactions should be whether local abundance or density is
the more pertinent measure for transmission-relevant contact structure. In subplot-level models the best
predictor of tree-level measures (abundance and density) was density of trees within roosts, and this had
opposing effects on tree-level bat abundance and tree-level 3-D bat density. Roosts with a lower density of
trees typically had more bats per tree, but a lower 3-D density of bats within these trees. This suggests
that, while abundance per tree is higher when fewer trees are available for bats to roost in, bats are able to
decrease their local density by expanding their occupied tree area (i.e. by spacing themselves out across the
tree). Roosts with a sparse tree structure may have larger crown areas or have more foliage height available
for roosting. For pathogens transmitted by direct contact, density is likely to be the relevant measure (as
per standard mass action principles). If pathogens are transmitted indirectly through contact with liquid
urine falling downward, or via contact with aerosolised urine particles, then total abundance within trees
may be the more pertinent measure. To help illustrate this point, we provide a visual in Appendix S6 in
the Supporting Information. Distinction between these measures will be key to framing ecologically relevant
contact structures.

At the roost level, the associations between tree density, and bat density and abundance were diminished,
as density of trees was a relatively poor predictor of tree-level abundance and 3-D density. This is likely an
artefact of scale, and heterogeneity of tree density across larger areas (see similar issues of spatial heteroge-
neity and scale originally discussed in Krebs (1999)). Individual roosts in our dataset varied substantially
in their density of trees across space. As a result, the mean density of trees (as used in these roost-level
models) may not be a meaningful measure of density in roosts with a heterogenous tree structure. In other
words, the variation in tree density is important at localised scales (i.e. patches within the roost), but not if
averaged over the roost.

Measures of density also varied greatly by scale. This reflects the highly aggregative nature of bat distribution
which is captured to different extents across the scales. Estimated mean density of Pteropus at the roost level
was 13-fold lower than the subplot-level mean estimate that accounted for heterogenous distributions of
bats (0.38 bats/m? with an interquartile range of 0.21-0.47, vs 5.13 bats/m? with an interquartile range of
2.71-6.09). At the roost-level, the total roost area can encapsulate substantial unoccupied space, if trees are
sparsely distributed or not occupied, as the perimeter of the roost boundary captures the maximum extent
of inhabited roosting habitat, but not trees that are occupied and unoccupied within this boundary. This
contrasts with other scales of density estimate in this study, like subplot-level kernel density, which more
effectively delineate unoccupied and occupied space, and so generate higher estimates of density. The latter
estimates were more consistent with previous estimates of Pteropus density, which have ranged between
0-8.7 bats/m? (average 2.1 bats/m?) for tree-level visual approximations (Welbergen 2005). The finding that
spatial distributions are a function of scale is not new (e.g. see discussions of spatial distribution and scale
in Krebs (1999)), but highlights the need to consider which scale (or scales) are ecologically relevant when
considering the nature of density-transmission scaling in host-pathogen interactions.



Mean estimated tree-level 3-D density was 0.34 bats/m?(0.03-0.32). The low level of variation explained by
roost-level and subplot-level models (minimum 3.8% and maximum 13.6% of variation across top ranking
models) likely reflects the highly heterogenous spatial structuring of Pteropus bats, and indicates that neither
roost-level measures nor subplot-level measures adequately capture heterogeneity in these finer, tree-level
estimates. In Pteropusbats, ecological processes operate in complex ways to influence animal density across
different scales - at the roost level, a population can expand in area in response to increasing total abundance
(and so remain constant in density), or remain stable in area occupied (and increase in density). If a roost does
not expand its roost area in response to increasing total abundance (e.g. due to restrictions on space), bats
may either fill more trees within the perimeter of the roost (and increase the density of bats at an intermediate
subplot level by increasing the proportion of trees occupied but not the density within individual trees), or
fill already occupied trees (and so increase both intermediate subplot density and local tree-level abundance).
Whether tree-level 3-D density increases will be determined by how much bats increase their utilisation of
tree space, which will be driven by the height and crown area available for roosting. The implication is
that the relationship between total roost abundance and density at any scale may be unpredictable, and
critically, that roost and subplot measures may not provide adequate approximations for population density
at scales relevant for transmission. Tree density within roosts may provide a better standard of comparison
across roosts when reflecting the conditions for transmission, but only when considered in local scales, and
in context of whether local abundance or density is the more pertinent measure for transmission-relevant
contact structure.

We would note here that our estimates of tree-level 3-D density and 2-D density were based on overall
estimated crown area, not occupied crown area, and so may be underestimates of true density. This is an
acknowledged limitation of our approximation of crown area by Dirichlet-Voronoi tessellation. True estimates
of tree-level density would require empirical estimation of occupied crown area in the field. However, crown
area can be difficult to measure accurately (Vermaet al. 2014) and measurement of occupied area may not be
practical. Our Dirichlet-Voronoi tessellation approach allowed us to estimate crown area for a large number
of trees which would not have been feasible with field methods. While this approach could be influenced by
the choice of maximum crown area set for edge trees and trees in open areas, we show that neither estimated
tree-level 3-D density, nor model outputs, varied substantially under different values realistic for eucalyptus
species (Verma et al. 2014) (Appendix S5).

Framework for heterogenous contact structures in bat-pathogen interactions

Taken together, the information in this study emphasises that models of bat disease dynamics that assume
contact rate is density-dependent, but assume transmission scales with total roost abundance, may not
represent actual contact structures. Such inadequate specification of transmission may produce substantially
biased estimates of the basic reproductive number (Rg) and propagate error to model predictions like the
probability of pathogen invasion and persistence, predicted peak and timing of epidemics, and estimates of
the force of infection (Borremans et al. 2017; Hopkins et al. 2020).

Intermediate, non-linear or hybrid transmission functions are a possible alternative to standard density-
dependence (e.g. Antonovics, Iwasa & Hassell 1995; Ryder et al. 2007; Cross et al. 2013; Orlofske et al.
2017), but these may not reveal underlying mechanisms for the relationship, and as a result, may be hard to
selecta priori based on ecological information, and may not be generalisable or predictive between bat roosts
of the same species (Smith et al. 2009; Ferrari et al. 2011). Instead of modifying the transmission function,
it may be better to investigate alternative approaches to integrating contact structure within host-pathogen
models at ecologically relevant scales (De Jong 2002). We therefore propose a framework (Fig. 3) to help guide
the incorporation of heterogenous contact structures into infectious disease models of bats in ecologically
relevant ways — for example by structuring groups within roosts as metapopulations, with separate ecological
processes defining contacts within and between groups. Our framework prompts ecological questions that
may be relevant for specifying transmission within wildlife disease models. They include whether hosts mix
homogenously throughout the roost or mix within smaller subgroups; how population or group contacts are
expected to change with increasing abundance; and whether roost or group area fluctuates with abundance.



Given a roost has fluctuating abundance or density, the first step in the framework is to consider the nature
of mixing in bat roosts. That is, whether bats mix evenly /randomly throughout the roost, mix within smaller
subgroups, or have other structured contact networks. This will determine what scale is ecologically relevant
for transmission, and so, what scale(s) the model should consider. If bats mix throughout the roost (i.e. all
individuals have equal likelihood of coming into contact) the mechanisms driving contact rate will fall more
simply to a choice between density-dependent and frequency-dependent expected dynamics. If occupied area
changes with abundance, models will be best parameterised by density at this roost scale, otherwise, by
either abundance or density.

In cases where individuals interact within aggregate groups that include only a proportion of the population,
transmission mechanisms may need to be more nuanced to include special structuring within the roost. This
is because the structure of the host population (and the strength of coupling between local groups) may drive
transmission between groups, and be different to (and/or independent of) the nature of within-group contacts
(Jong, Diekmann & Heesterbeek 1995; Ferrari et al.2011). In other mammal systems, this paradox has led to
cases where dynamics appear to be density-dependent at the within-group scale, but frequency dependent at
the between-group scale (Ferrari et al.2011; Cross, Caillaud & Heisey 2013). In these cases, models that can
distinguish within- and between-group transmission pathways may be useful (e.g. metapopulation models).
If mixing is non-random and based on individual contact networks, individual based models may provide
a good framework. Of course, the complexity of adopted models should be driven by the objective of the
investigation, and reflect a parsimonious attempt to reproduce transmission patterns relevant to the system
and question. This need not necessarily capture every single mechanism in the real system.

Consideration of these questions will provide a more ecologically informed, mechanistic basis for specifying
transmission, but will require more data and more computational power. This may or may not be achievable
for many host species, for which basic ecological information is lacking. Even if ecologically informed spe-
cification of transmission is not possible, consideration of our framework will help to highlight cases where
traditional density-dependent transmission may fail to reproduce data, and why. If integrated into research
programmes, this could create the opportunity for a model guided fieldwork approach (Restif et al. 2012)
and represent bat-disease systems in a more holistic approach. This framework also assumes transmission
between bats is direct and occurs predominantly within the roost. This is consistent with our knowledge of
bat-virus systems of zoonotic importance (Plowright et al. 2015). Nevertheless, understanding the nature of
density at transmission-relevant scales, and building this into transmission dynamics, will be important to
gain more realistic predictions of pathogen invasion and persistence in bat populations. This will be crucial
for accurately forecasting disease risk from these animals.

Conclusion

Transmission is the focal process in host-pathogen interactions. The nature of infectious contacts, and how
transmission scales with animal density, is complex for host species whose population structures are hetero-
genous and underpinned by ecological processes across different scales. Using a high-profile bat-virus system,
we show that basic bat population measures from larger scales were not strongly predictive of local scale
measures where viral transmission occurs. We also suggest that the highly aggregative spatial structuring
of bats is likely to add substantial heterogeneity to the contact structure of roosting populations, further
complicating models of pathogen transmission. We urge researchers to carefully consider which scale and
modelling method is most relevant for transmission in bat-virus models. More broadly, we propose a fra-
mework to guide the structuring of transmission in more ecologically relevant contexts. This approach can
apply to many species that occupy communal breeding or resting sites, and has an advantage over other
statistically based approaches by allowing selection of scale and transmission structurea priori based on
ecological information. Outputs using this ecologically informed approach will be more generalisable and
predictive of infection patterns, and can be used to gain mechanistic insight into the drivers of transmission,
local epidemics and pathogen spillover risk.
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Tables and Figures

Table 1: Model comparison of candidate model set. Best candidate models, as given by Akaike information
criterion (AIC), are bolded (AAIC<2).

Response variable Response variable
Tree-level 3-D density Tree-level 3-D den:
Model structure R?2 AIC
Roost level
Roost Index Abundance * Roost Area 0.064 8552.2
Roost Index Abundance * Roost Area + Mean density of trees in roost  0.064 8560.6
Null model 0.061 8727.2
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Response variable

Response variable

Mean density of trees in roost
Sublot level

Sublot Abundance * %Trees Occupied + Tree Density

Sublot Abundance * %Trees Occupied
Null model

Tree Density

Tree level

Null model

Tree preference

0.06

0.116
0.113
0.078
0.077

0.078
0.124

8740.7

7986.9
8011.4
8464
8470.2

8464
8493.5

Table 2: Parameter estimates for best model at each level.

Tree-level 3-D density

Tree-level 3-D density

Variable

Roost level

Intercept

Roost Index Abundance

Roost Area

Roost Index Abundance * Roost Area
Session

Site

Subplot level

Intercept

Subplot Abundance

Proportion trees occupied

Subplot Tree Density

Subplot Abundance * Proportion trees occupied
Session

Site

Subplot

Tree level

Intercept

Tree preference (irregularly occupied)
Session

Site

Subplot

Coef (£ se)

-0.345 (0.32)
-0.084 (0.059)
0(0)

0 (0)

-2.481 (0.261)
-0.001 (0.001)
1.067 (0.301)
9.665 (1.492)
0.001 (0.001)

-1.052 (0.218)

T value

-1.079
-1.409
-2.469
2.3039

-9.497
-1.31

3.5442
6.4772
1.9682

-4.8226

F value

<0.001
25.046

0.2584
13.395
10.433

43.109
15.814
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Spatial replicates Temporal replicates

Density measure Overall Per roost Per subplot

A) Roost-level density (/m?2) 8 1 NA 13

B) Subplot-level density (/m?) 80 10 1 13

C) Subplot-level kernel density (fm?) 80 10 1 13

D) Tree-level 3-D density (/fm?) 2,522* 118-474 2-75 13

E) Tree-level 3-D density (/m?) 480* 0% 6% 13
Abundance measure

Tree-level abundance 2,522% 118-474 2-75 13

*Up to this number of replicates. Some measures could not be calculated where there were either no bats or a

single bat in the tree (e.g. height range). Some trees were also removed or fell during the survey period (N=52).

Figure 1: Schematic summarising the scales of data collection (roost, subplot and tree) and density measures
(A-E) with table highlighting spatial and temporal replicates of density measures within the data. Roost-level
density (A) was calculated by dividing the total roost abundance by roost area. Subplot-level density was
calculated either from total subplot count and subplot area (B), or from fixed-bandwidth kernel estimates
(C), calculated from tree locations weighted by abundance (index values). For (C) shading showing the
kernel density estimates (light shading = lower density, dark shading = higher density). Average kernel
density per subplot was calculated from occupied pixels only. Tree-level 2-D density (D) was estimated from
within tree abundance and canopy area (estimated by Dirichlet-Voronoi tessellations), while tree-level 3-D
density (E) was calculated as the absolute count of bats in a single tree divided by the approximate volume
of tree occupied (height range occupied multiplied by crown area). Tree-level 3-D density was calculated
for the randomly selected subset of trees in the full dataset for which absolute count and height measures
were available. The total number of datapoints for each measure can be calculated by the number of spatial
replicates per roost multiplied by the number of temporal replicates. Grey colouring in measure visuals
indicates where bats were absent and not included in mean calculations. Grey colouring on the map shows
urban areas.
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Figure 3: Suggested framework for incorporating contact structure (abundance and density data) into in-
fectious disease models in ecologically informed ways. Whilst the framework is based on our particular
bat—virus system, it should be broadly applicable, with minor modifications, to other systems. Suggestions
for transmission structure are in grey. Continue the length of the decision tree for the full suggestion on
transmission specification (i.e. to get combined scale and parameter choice). This framework is not ex-
haustive but instead aims to highlight the types of ecological questions that may be relevant for specifying
contact structure within models. This framework assumes transmission is through direct contact. Note that




this framework focusses on contact structure only as a driver of transmission, but other heterogeneities in
the transmission process could exist (e.g. viral load and the probability of an individual becoming infected
given an infective dose, see Lunnet al. (2019) and McCallum et al. (2017)).
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