The size and the age of the metabolically active carbon in tree roots

Boaz Hilman¹, Jan Muhr², Juliane Helm¹, Iris Kuhlmann¹, Erst-Detlef Schulze¹, and Susan Trumbore¹

April 9, 2021

Abstract

Little is known about the sources and age of C respired from tree roots. Previous research in tree stems has identified two functional pools of non-structural carbohydrates (NSC): an 'active' pool supplied directly from canopy photo-assimilates that supports metabolism and a 'stored' pool used when fresh C supplies are limited. We compared the C isotope composition of water soluble NSC and respired CO_2 for aspen roots (*Populus tremula* hybrids) that were cut off fresh C supply via stem-girdling and prolonged incubation of excised roots. We used bomb radiocarbon to estimate the time elapsed since C fixation for respired CO_2 , water-soluble C, and structural α -cellulose. While freshly excised roots respired CO_2 with mean age <1 yr, within a week the age increased to 1.6-2.9 yr. Freshly excised roots from trees girdled $\tilde{}$ 3 months previously had similar respiration rates and NSC stocks as un-girdled trees, but respired older C ($\tilde{}$ 1.2 yr). We estimate the NSC in girdled roots must be replaced 5-7 times by reserves remobilized from root-external sources. Using a mixing model and observed correlations between $\Delta^{14}C$ of water-soluble C and α -cellulose, we estimate $\tilde{}$ 30% of C is 'active' ($\tilde{}$ 5 mg C g⁻¹).

Hosted file

Hermannsberg paper 10.pdf available at https://authorea.com/users/406763/articles/517309-the-size-and-the-age-of-the-metabolically-active-carbon-in-tree-roots

¹Max Planck Institute for Biogeochemistry

²University of Goettingen