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Abstract

Insect phenological lability is key for determining which species will adapt under environmental change. However, little is

known about when adult insect activity terminates, and overall activity duration. We used community-science and museum

specimen data to investigate the effects of climate and urbanization on timing of adult insect activity for 101 species varying in

life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response

to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations

regardless of regional temperature. Multivoltine and univoltine species both extended their period of adult activity similarly

in warmer conditions. Longer adult durations may represent a general response to warming, but voltinism data in subtropical

environments is likely underreported. This effort provides a framework to address drivers of adult insect phenology at continental

scales, and a basis for predicting species response to environmental change.

Introduction

Shifts in phenology, i.e., the timing of seasonal biological events, are among the most noticeable impacts
of human-caused global change (Cleland et al., 2007; Parmesan, 2007). Numerous studies have shown that
recent climate warming advances the timing of spring events, e.g., budburst, breeding of amphibians, and
arrival of migrating birds (Parmesan, 2007; While and Uller, 2014; Cohen et al., 2018). Beyond global climate
change, large-scale landscape modification can also impact phenology. For example, urbanization has been
shown to advance the timing of seasonal events such as plant flowering, in part through the urban heat
island effect (reviewed in Neil and Wu, 2006). However, more recent work has revealed that urbanization
can also delay phenological events, especially in warmer regional climates (Li et al., 2019), although the
mechanisms driving these delays have yet to be determined. Overall, there is considerable variation in
phenological responses to global change both within and among species (Edwards and Richardson, 2004;
Thompson and Clark, 2006; Park et al., 2019). If interdependent species differentially respond to human-
mediated changes, phenological mismatches may occur with potentially significant, negative demographic
consequences (Miller-Rushing et al., 2010; Renner and Zohner, 2018).

Better understanding insect phenological responses is critical given their vast diversity, temperature-
dependent developmental timing, and critical role in ecosystems and the services they provide. These services
include dung burial, pest control, pollination, and wildlife nutrition and are valued at over $57 billion annu-
ally in the United States (Losey and Vaughan, 2006). Further, several recent papers have reported dramatic
declines in insect populations (Hallmann et al., 2020; Wagner, 2020), potentially due to human-caused land-
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. use change, climate change, introduced species, and pollution (Wagner et al., 2021). Phenological shifts may
exacerbate losses due to mismatches, but might provide a means to adapt to warmer temperatures and could
even lead to overall population growth rates, particularly in species that can successfully add a generation
due to extended growing seasons (Kerr et al., 2020).

Most insect phenological studies focus on how climate drives theemergence of insects. In general, warmer-
than-average years cause adult insects to emerge earlier (Bartomeus et al., 2011; Roy et al., 2015; Villalobos-
Jiménez and Hassall, 2017). Much less is known about what determines termination or total duration of insect
activity (Forrest, 2016). Given extended growing seasons for many plant species (Steltzer and Post, 2009),
it might be expected that insects also delay termination of adult insect activities in warmer regions. Longer
growing seasons are increasing the number of generations per year (voltinism) of some insects (Altermatt,
2010a; Pöyry et al., 2011), but many species are obligate univoltine across their entire range, including warm
regions (Forrest, 2016). For these reasons, life history traits, known to be important in determining insect
activity (Diamond et al., 2011; Zografou et al., 2021), may strongly determine adult insect termination.
For example, Stemkovski et al. (2020) found that timing of bee emergence was most influenced by climatic
variation, but termination of adult bee foraging was better explained by life history traits. Specifically,
bee species that nest below ground ended foraging earlier than species nesting above, but bee species that
overwinter as prepupae ended foraging later than those that overwinter as pupae (Stemkovski et al., 2020).

Interannual regional climate variation is not the only driver of insect phenology. Urbanization is in general
leading to earlier flowering in many plant species due to the urban heat island effect, although these responses
may be complex and context dependent (Jochner and Menzel, 2015). Less is known about insects’ phenolo-
gical response to urbanization. The emergence of some insect species appears to be advancing in urbanized
areas (Diamond et al., 2015; Chick et al., 2019), but other studies have found no change in phenology across
urbanization gradients, despite phenological advances in co-occurring plant species (Seress et al., 2018; Fiso-
gni et al., 2020). The interaction between urbanization and regional temperature can be an important driver
of spatial phenology patterns, as urbanization appears to advance plant phenology in cold areas but causes
delays in warm areas (Li et al., 2019). Diamond et al. (2014) also demonstrated that the urbanization effect
on phenological responses of butterflies depends on regional temperature. This expected interaction between
urbanization and temperature remains untested at larger spatial scales and across a broader range of insect
groups.

Establishing generalities about determinants of emergence, termination, and duration of adult insect activity
is challenging because most phenological research relies on surveys that provide much needed information on
species’ population abundance but are limited spatially and taxonomically. Recent enormous growth in open
and freely accessible and curated community science photographs, such as those available via the iNaturalist
platform, are allowing researchers to ask novel phenological questions at greater spatial and taxonomic scales
(Li et al., 2021). However, careful data curation and specialized analytical methods must be used to generate
biologically meaningful results (Larsen and Shirey, 2021).

Here we use community science generated digital vouchers and digitized museum specimens to investigate
how the emergence, termination, and total duration of adult insects varies spatially in response to climate
and urbanization. We also examine how such responses differ across species-specific life history traits. We
predict strong interactions between traits and key climate predictors. For example, we expect the seasonal
activity of insects with thermally buffered larval stages to be less sensitive to variation in temperature than
species without thermally buffered larval stages, aligning with a recent study on bees (Stemkovski et al.,
2020). We further predict adult duration to vary based on voltinism, with multivoltine species showing
stronger responses to temperature than univoltine species. Lastly, we predict adult insect termination to be
later and adult duration longer in warmer and urbanized areas, consistent with recent studies in plants (Li
et al., 2021).

Methods

Insect species selection and data acquisition

2
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. We focused on the five most speciose orders with highly distinct adult forms: Coleoptera (beetles), Diptera
(flies), Hymenoptera (bees, wasps, ants, and sawflies), Lepidoptera (butterflies and moths), and Trichoptera
(caddisflies). We also include the order Odonata (dragonflies and damselflies) and Cicadidae (cicadas), for
which nymphs or larvae are visually distinct from adults and occupy infrequently-surveyed habitats (aquatic
and subterranean, respectively). A detailed explanation on the species selection protocol can be found in the
Supporting Information.

Within these seven higher-level taxonomic groups, we used overall record counts in iNaturalist to select an
initial set of candidate species. We limited searching to research-grade observations (verifiable observations
with at least two independent species identifications) and included all insect species in focal groups that had
at least 1,000 observations within Canada, the United States, and Mexico as of April 8, 2020. Four-hundred
and seventy insect species met our search criteria, representing all our focal higher taxonomic groups except
for Trichoptera.

We then further filtered to species primarily observed as adults and maintained those for which at least 99.5%
of annotated observations had the life stage annotated as “Adult” by iNaturalist users. Because Lepidoptera
are commonly observed as juveniles, we only kept records annotated as adults in our final dataset. Using our
final species list, we collected data from GBIF and iDigBio, which aggregate iNaturalist records along with
other biological collections. In total, we collected records for 435 species across six insect orders. We limited
the temporal scope of our study to the recent years of 2015-2019.

Phenology estimates

We gridded our study area into 25 x 25-km equal area cells using the North America Albers Equal Area
Conic projection. Community science observations can be biased by organized, public observation events
(e.g., iNaturalist’s City Nature Challenge) generating an unusually high number of observations that do
not reflect the actual seasonal abundance of a species. We therefore filtered our dataset to include only
one observation per day of each species in a year, given each cell. Next, the number of observations for
each cell-by-year-by-species combination was counted and deemed usable if at least 10 observations were
documented. For each unique cell-year-species combination, we estimated the 0.05 and 0.95 sample quantiles
using the quantile() function within the stats R package (R Core Team, 2020) to represent the emergence
(first appearance) and termination (last evidence) of adult insect activity. These quantiles are demonstrated
to be more robust estimates of phenology than estimating the absolute bounds of a phenophase (Belitz
et al. 2020). We calculated the duration of adult insect activity as the difference between the termination
and emergence. In total, we used 228,423 records to generate 5,469 emergence, termination, and duration
estimates across 626 unique grid cells for 284 species. Over 97% had a basis of record listed as human
observation, indicating the vast majority of the data were generated by community scientists.

Trait data

We collected trait information from literature and web sources for the 284 included insect species. We focused
on traits thought to be relevant to insect phenology, including: 1) voltinism, 2) development type, 3) habitat
of immature life stage, 4) diapause stage, and 5) larval diet. We also estimated a categorical trait for the
season of adult emergence by calculating the mean emergence for each species. Species that on average
emerge as adults prior to the 126th day of the year (DOY) were categorized as spring species, those between
the 126th and 176th (˜ end of June) DOY were categorized as summer species, and the remaining insects
were categorized as fall species. Voltinism (broods per year) was categorized as either obligate univoltine, or
not obligate univoltine (including species that are only univoltine in part of their range and semi-, parti-,
and merovoltine species). Development type was categorized as either hemimetabolous or holometabolous.
Habitat of immature life stage was categorized as above ground, freshwater, or underground. Diapause stage
was categorized as egg, larva, pupa, adult, none, or migratory. The larval diet was categorized as carnivorous,
detritivorous, or herbivorous.

Many of the species that passed initial filters for numbers of observations were missing trait data and were
excluded from further analyses (Figure 1). We also removed species that do not diapause or are migratory,
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. as these species likely have different physiological responses to temperature and urbanization than the other
species. Additionally, eusocial insects were removed, because many can thermoregulate in unique ways (Hein-
rich, 1972; Jones and Oldroyd, 2006; Menzel and Feldmeyer, 2021). Finally, we removed species that had less
than 5 unique year-by-grid cell combinations. After filtering our dataset to match these requirements, we
were left with 2,643 estimates of emergence, termination, and duration from 101 species across 412 unique
grid cells (Figure 2).

Climate and urbanization data

We included four climate and one urbanization variable in our modeling framework. The climate variables
were year-specific and included mean annual temperature, annual precipitation, temperature seasonality, and
precipitation seasonality. We obtained annual mean values of the maximum 2-m air temperature data and
annual precipitation values for North America at a 1-km spatial resolution for the five years of our study
from Daymet (Thornton et al., 2016a). We generated annual temperature and precipitation seasonality using
the monthly maximum temperature and precipitation summaries provided by Daymet at a 1-km spatial
resolution (Thornton et al., 2016b). Temperature seasonality was calculated as the standard deviation of
the monthly maximum temperature values for the corresponding year, and precipitation seasonality was the
coefficient of variation of the monthly precipitation values for the corresponding year.

We used estimated human population density for the year 2020 as a proxy for urbanization and obtained this
data from the Center for International Earth Science Information Network, which provides global estimates of
population density at a 0.25 degree resolution (˜27-km; CIESIN, 2017). Global estimates of human population
density are only available on five-year intervals, so we choose to only use the 2020 estimates as a proxy for
urbanization given our sampling temporal extent. Year-specific changes in human population density are
minimal compared to the variation across space, and therefore should have minimal impact on statistical
models.

Statistical analysis

We used linear mixed models (LMM) to examine the effects of climate, urbanization, and life history traits on
the emergence, termination, and duration of adult insect activity across North America. Estimates of emer-
gence, termination, and duration were the response variables, and we included human population density,
mean annual temperature, annual precipitation, temperature seasonality, precipitation seasonality as pre-
dictor variables along with two, two-way interactions based on previous biological knowledge. The two-way
interaction terms tested were: 1) whether the effects of annual temperature changed along a precipitation
gradient and 2) whether the impacts of human population density changed along a temperature gradient.
Areas with higher human population densities may have more incidental data records, biasing phenological
metrics and we controlled for this by including the number of observations as a fixed effect in our initial
model. We scaled variables to have a mean of zero and standard deviation (s.d.) of one to ensure compa-
rable model effect sizes across variables. Cell identity and insect species were included as random terms
for intercepts, and insect species were included as a random term for the slope of each predictor variable.
Next, we used backward model selection using the step function from the R package lmerTest(Kuznetsova
et al., 2017). If any variance inflation factor (VIF) was greater than five for a variable in the best model, we
removed the correlated variable with lower coefficient and reran our backward selection process.

After selecting the best model with only climate, human population density, and number of observation
variables, we added insect traits to our models. We added two-way interaction terms between each trait
variable with the climate and human population density variables to examine if adult insect phenology along
climate and population density gradients changed for each trait. Backward model selection was performed
as described above to reduce model variables and select a best model. Again, if any VIF was greater than
five for the variables in the best model, we removed the correlated variable with the lowest coefficient and
reran our backward selection process.

LMM can lead to false conclusions and inflated type I error rates if phylogenetic relationships are ignored
(Li and Ives, 2017). We therefore generated a subtree from the Open Tree of Life for the 101 insects in
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. our analysis using the R package rotl(Michonneau et al., 2016). Branch lengths were generated by searching
the TimeTree of Life database (Kumar et al., 2017) to get the estimated divergence time of each internal
node. The branch lengths were then scaled from these ages using the ph bladj() function from the R package
phylocomr(Ooms and Chamberlain, 2019). We used this synthesis phylogeny to fit phylogenetic linear mixed
models (PLMM) using a Bayesian framework with the default uninformative INLA priors (Rue et al., 2009).
We used the R package phyr(Li et al., 2020) to fit our top LMM as PLMM. Our results differed slightly
between the PLMM and LMM, and therefore, we present the results based on PLMM in the main text.
Results of linear mixed models are included in the supporting information (Supporting Information Tables
1-3). We checked residuals of the top models to ensure models did not have any obvious deviation from model
assumptions, including spatial autocorrelations (See Supporting Information for more details and Figure S1
for residuals of the top models). We measured the goodness of fit of our PLMM using the packagerr2 (Ives
and Li, 2018) to generate partial R2 values (see supporting information for additional details).

Results

The emergence of adult insect activity is impacted by temperature, precipitation, temperature seasonality,
life history traits, and the interactions among these variables (Table 1). Species that diapause as an egg have
later emergence dates (approximately 45.7 days) than species that overwinter as adults (Table 1). A one
standard deviation (s.d.) increase in temperature (4.77 °C) led to earlier emergence of approximately 12.8
days (95% Bayesian credible intervals (CI) 3.6 - 22.0), but the effects of temperature varied with respect to
regional precipitation and human population density values. Compared to areas with high human population
density, emergence values are earlier in cool regions with low population density, but later in warm regions
with low population density (Figure 3A). Insects in warmer areas emerge earlier than in cool areas, and these
phenology shifts are more extreme in wet areas compared to drier areas (Figure 3B). The interaction between
temperature and diapause stage, and the interaction between precipitation and voltinism also impacted the
emergence of adult insect activity. The emergence of species that diapause as larva or pupa were more
sensitive to temperature than species that diapause as adults or eggs (Figure 3C). Univoltine species had
earlier emergence in areas with more precipitation, while species that are not univoltine had later emergence
in areas with more precipitation (Figure 3D). There was a phylogenetic signal of the random species-specific
intercept and the random species-specific slopes of temperature seasonality and precipitation (Supporting
Information Figure S2). The partial R2 of our best emergence model was 0.75 (Supporting Information
Figure S3).

The top termination model consisted of a set of predictors that included precipitation, temperature seasona-
lity, life-history traits, and the interaction between temperature seasonality and diapause stage (Table 1). A
one s.d. increase in precipitation (324 mm) led to a delay in termination of approximately 3 days (95% CI 1.1
- 4.8). Termination of activity was earlier for species that are first observed in spring or summer compared to
species that are first observed as adults in fall (Table 1). Additionally, insect species that diapause as larvae
terminate adult activity earlier than insects that diapause in other life stages (-18.4, 95% CI -35.8 - -0.7;
Table 1). The termination of species that diapause as eggs were the most sensitive to temperature seasonality
(Figure 4). Species that spend their immature life stage underground had earlier termination than species
that spend their immature life stage in freshwater or aboveground. Detritivores had later terminations than
herbivores or carnivores. Phylogenetic signal was again apparent for the species-specific random intercept and
species-specific random slope of temperature seasonality and precipitation (Supporting Information Figure
S2). The partial R2 of our best termination model was 0.58 (Supporting Information Figure S3).

The top model of adult insect duration was predicted by climate, life history traits, and the interaction
between temperature and these other variables. Areas with greater temperature seasonality had shorter
durations (Table 1). Additionally, areas with high precipitation had longer durations in warm regions but
shorter durations in cool regions (Figure 5A). In contrast to species whose immature habitat is above ground
or in freshwater, species whose immature habitat is underground were found to have consistent durations,
regardless of whether they were in a warm or cool region (Figure 5B). Diapause stage was again an important
trait, with insects that diapause as adults having the longest durations. Conversely, the durations of species

5



P
os

te
d

on
A

u
th

or
ea

18
M

ar
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

60
75

28
.8

47
17

10
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. that diapause as larvae were the shortest, 44.8 days shorter than species that diapause as adults (95% CI 26.1
- 62.7; Table 1). The duration of detritivores was strongly tied to regional temperature, with duration being
much longer in warm regions compared to cool regions (Figure 5C). In addition to there being a phylogenetic
signal in species-specific intercept and the species-specific slope of temperature, variation in duration was
also partially explained by the phylogenetic signal in the species-specific precipitation slope (Supporting
Information Figure 2). The partial R2 of our best duration model was 0.75 (Supporting Information Figure
3). The number of observations used to estimate the phenometrics was included as a predictor variable in
the top duration model, as well as in the top emergence and termination model.

Discussion

Most studies of insect phenology have focused on regional scales, and the few studies at larger spatial scales
have been constrained to species easily identified by trained volunteers such as butterflies in the United
Kingdom (e.g., Hodgson et al., 2011; Roy et al., 2015). Here, we leverage rapidly increasing, openly available
observation records to achieve the broad phylogenetic sampling necessary for finding commonalities in phe-
nological sensitivity related to climate and life history traits, both important predictors of insect phenology.
Our key finding is that timing of adult insect activity is temperature-driven but strongly conditioned by
species traits and less-so by phylogenetic relatedness. As we discuss below, these findings provide a basis for
prediction of phenological responses in the face of environmental change.

Drivers of adult insect emergence, termination, and duration

In comparison to other aspects of insect phenology, the drivers of adult emergence are relatively well un-
derstood. The emergence of many insect species is controlled by temperature because the growth rate of
immature stages increases at warmer temperatures (Gilbert and Raworth, 1996; Hodgson et al., 2011). Life
history traits, particularly diapause stage, are also known to be an important predictor of when insects
emerge (Scott and Epstein, 1987; Altermatt, 2010b). Our results confirm earlier emergence in warmer areas
and in species that diapause as adults.

Less is known about drivers of termination and duration of adult insects. For many insects, photoperiod is
likely predictive of activity termination since it is a primary cue in many insects to initiate diapause (Tauber
and Tauber, 1976; Denlinger, 2002). Although photoperiod is often the main driver, diapause induction has
also been related to temperature, food availability, moisture, and chemical cues (Danks, 2007). Our results
also suggest that many factors contribute to the termination of adult activity and indicate that these processes
may be linked to temperature seasonality, timing of the first fall freezes, or resource depletion caused for
example by drought. In multivoltine insects, we expected longer activity durations in warmer regions, due to
the production of additional adult generations in areas with longer growing seasons (Altermatt, 2010a; Zeuss
et al., 2017). It is less clear how temperature influences the duration of univoltine insects. Because obligate
univoltine species cannot produce additional generations in warmer regions, we expected more consistent
activity durations across temperature gradients, regardless of emergence dates. However, we did not find an
interaction between temperature and voltinism, suggesting similar temperature-driven increases in duration
regardless of voltinism. This surprising result could be explained by multiple mechanisms for extending
adult activity, including lengthening timing of activity of cohorts of adults, more generations per season, and
reduced adult synchrony of univoltine populations in warm areas. However, this result may be due to our
simplistic trait coding system labeling semi-, parti-, and merovoltine species as “not univoltine”. While this
does not impact our finding of longer activity periods for univoltine species in warmer regions, more finely
scored voltinism states may help elucidate trait-mediated phenology responses to temperature. We also note
that our understanding of life history traits, particularly voltinism and migratory behavior, is incomplete
across broad temperature gradients. Species that are documented in the literature as non-migratory and
univoltine may in fact have undescribed migratory patterns (Robinson et al., 2009) or potentially multiple
generations in warmer regions that remain unreported.

One of the challenges with understanding phenological sensitivities is that regional contexts may impact not
only the strength of sensitivity but also its direction. Li et al. (2019) showed, for example, that urbanization
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. shifts from advancing flowering in cold regions to delaying in warmer ones. Here we also find strong evidence
of these region-specific contextual effects. One of the clearest examples is that the influence of precipitation
and life history traits on insect duration varies with regional temperature. Warm, wet areas demonstrated
longer adult insect duration than cooler, wetter regions. This interaction is expected, considering that snow
contributes to annual precipitation in cool regions and snowmelt date delays the beginning of activity more
than the end (Stemkovski et al., 2020). These regional effects also included life history interactions with
temperature. We found that detritivores terminated activity later and had longer durations than carnivores,
potentially due to detritus being more available later into the fall compared to green leaf materials or prey
items. This effect is especially strong in warm environments, where detritus can accumulate year round.

We also expected a complex interaction between temperature and urbanization, similar to the results of
Diamond et al. (2014) for butterflies in Ohio, which documented earlier emergence in cold areas with high
human population density and delayed emergence in warmer, more urbanized areas. While we found such
an interaction, it was in the opposite direction than expected: insects generally emerged later in cool, urba-
nized areas and earlier in warm, urbanized areas, in comparison to corresponding rural areas. Due to our
species selection protocol, our species list likely overrepresented exploitative species since these are com-
monly observed. Exploitative butterflies showed smaller delays in first appearance in warm and urbanized
areas (Diamond et al., 2014), potentially, in part, explaining our differing results. We encourage future work
exploring how urbanization impacts insect phenology and at what spatial scales urbanization influences are
most apparent.

Ecological implications

Our results suggest that adult insects will emerge earlier under climate change scenarios due to warming
temperatures, but the termination of insect activity will be less sensitive to changing climates. This may lead
to an overall lengthening of insect duration in response to global warming, particularly in areas with high
precipitation. Longer insect activity periods may buffer against phenological mismatch of insects interacting
with other trophic levels, as long as insect abundance is sufficiently high. However, mounting evidence
suggests widespread terrestrial insect declines (van Klink et al., 2020; Wagner et al., 2021; Warren et al.,
2021), which raises the threat of reduced ecological services regardless of how much synchrony occurs between
interacting species.

One of the fundamental unanswered questions in understanding insect response to global change is which
species will thrive — the winners, and which will be most negatively impacted — the losers. Phenology
may be a key indicator of winners versus losers given recent work demonstrating that changes in insect
population sizes correlate with phenological lability. Some insects may be able to adjust and thrive in
warmer environments if additional land use changes are not occurring (Michielini et al., 2021). For example,
multivoltine Lepidoptera with early adult emergence in warm years showed increased within- and between-
year population growth in Britain (Macgregor et al., 2019). Elongated adult activity periods were also the
best predictor of increases in relative abundance of Massachusetts butterflies (Michielini et al., 2021).

Our results point to two life history traits that may predict winners and losers in the face of future climate
change. Detritivores and insects with larval habitats in freshwater exhibit a stronger response of activity
period to temperature than do other insects, indicating these species may be relatively better suited to
persist in novel climate scenarios. Conversely, species that have underground larval habitats may be more at
risk, as duration for these species remains relatively fixed across temperature gradients. We note that these
conclusions must be interpreted with care, as our models are primarily fit across a spatial gradient. Space-
for-time models of ecological change are controversial because ecological processes are often nonstationary
(Damgaard, 2019). Still, some empirical studies support these inferences. A recent meta-analysis found broad
declines in terrestrial insects but increases in freshwater insect populations (van Klink et al., 2020). No net
declines in detritivores were detected across five long term ecological research sites (Crossley et al., 2020),
although these results have been questioned (Welti et al., 2020).

Future work and caveats
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. Our study is unique in its spatial and taxonomic extent, yet the majority of the species used are in Odonata
and Lepidoptera. This is not surprising, since these clades have relatively large body sizes and are easy
to see and photograph. In addition to the taxonomic biases in our dataset, the 25 x 25-km grid cells that
were included in our analyses were biased geographically, with most cells occurring in metropolitan areas
in the Eastern Temperate Forests ecoregion and along the California Coast. There are noticeable sampling
gaps in the Great Plains, North American deserts, and the complex and diverse ecoregions of southern
Mexico. Finally, we note that increasing observer effort, measured as the number of observations, did show a
significant, albeit relatively weak effect on phenology estimates. Although our modeling framework attempted
to control for these effects, care must be taken when fitting estimations using community science datasets.
As the amount of available incidental data continues to grow, we expect better spatial, and phylogenetic
resolution, albeit with biases still likely, unless concerted efforts are made by community scientists to survey
more rural locations (Shirey et al., 2021).

Even if more species-specific phenology estimates can be generated for insects, our full ability to understand
drivers of insect phenology will be hampered by the lack of available trait data. We had enough incidental
intra-annual observations to generate phenological estimates for 154 species with at least five year-by-cell
combinations but could only use 101 species because of missing trait data. This is particularly problematic
because our results highlight the importance of life history traits in predicting all aspects of adult insect
phenology. Therefore, to better understand how insects will respond to climate change and urbanization, it
is imperative that continued effort goes into generating, compiling, and archiving openly available insect life
history information (e.g., Middleton-Welling et al., 2020). Improving insect trait knowledge and access will
allow researchers to better understand ecological processes using the accelerating accumulation of occurrence
and other natural history records. This research showcases a framework to gather and use these resources
to answer fundamental questions about the duration of adult activity across broad spatial and phylogenetic
scales.
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Tables

Table 1. Fixed effects coefficients for top emergence, termination, and duration models. Bolding denotes
coefficients whose 95% Bayesian credible interval does not include zero.

Term Emergence Termination Duration

(Intercept) 109.0 (94.1 - 123.8) 277.3 (247.9 - 306.4) 147.6 (119.6 - 174.8)
temp -12.8 (-22.0 - -3.6) 9.3 (-8.0 - 26.6)
pop -1.02 (-3.4 - 1.4)
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. Term Emergence Termination Duration

prec 3.3 (0.9 - 5.7) 2.9 (1.1 - 4.8) 0.6 (-1.8 - 3.1)
temp seas 6.0 (2.5 - 9.4) -5.2 (-13.1 - 2.7) -17.3 (-21.5 - -13.2)
diapause.stageEgg 45.7 (24.8 - 66.2) -16.4 (-37.5 - 5.0) -44.6 (-65.6 - 22.7)
diapause.stageLarvae 31.2 (14.0 - 48.3) -18.4 (-35.8 - -0.7) -44.8 (-62.7 - 26.1)
diapause.stagePupae 38.2 (20.0 - 56.7) -2.2 (-21.0 - 17.0) -33.2 (-51.8 - -14.1)
flightsUnivoltine 6.9 - (-3.7 - 17.5)
seasSpring -37.1 (-50.7 - .23.3)
seasSummer -24.4 (-35.5 - -13.3)
immature.habitatFreshwater 15.3 (-20.1 - 50.7) 4.6 (-29.0 - 38.2)
immature.habitatUnderground -26.9 (-47.0 - -6.6) -31.5 (-52.2 - -10.5)
larval.dietDetritivorous 37.8 (6.02 - 69.0) 35.4 (2.1 - 68.1)
larval.dietHerbivorous 14.6 (-8.6 - 37.6) -1.8 (-25.6 - 21.8)
temp:prec -2.6 (-4.5 - -0.7) 3.1 (0.6 - 5.6)
temp:pop -2.2 (-4.3 - -0.1)
temp:diapause.stageEgg -5.1 (-16.6 - 6.2)
temp:diapause.stageLarvae -9.3 (-18.7 - 0.2)
temp:diapause.stagePupae -12.7 (-23.0 - -2.5)
prec:flightsUnivoltine -5.0 (-9.8 - -0.2)
temp seas:diapause.stageEgg -15.1 (-27.0 - 3.2)
temp seas:diapause.stageLarvae -7.8 (-16.6 - 0.8)
temp seas:diapause.stagePupae -2.6 (-12.1 - 6.8)
temp:larval.dietDetritivorous 29.0 (6.3 - 51.5)
temp:larval.dietHerbivorous 6.1 (-11.0 - 23.1)
temp:immature.habitatFreshwater 12.0 (-10.4 - 34.5)
temp:immature.habitatUnderground -13.1 (-26.8 - 0.9)
numObs -3.6 (-4.5 - -2.8) 4.5 (3.5 - 5.4) 8.1 (7.0 - 9.3)

Figures
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Figure 1. Number of study species (A) and number of phenology estimates (B) included in or excluded from
our modeling framework per taxonomic group (Cicadidae, Coleoptera, Diptera, Hymenoptera, Odonata, and
Lepidoptera in top to bottom order shown above). The same species could contribute multiple phenology
estimates to the model by having enough records to generate estimates across multiple cells and years. Dark
purple indicates the number of species or phenology estimates included in the modeling framework. Light
purple indicates species or phenology estimates with enough phenology observations (> 1,000 iNaturalist
observations and available in at least five year-by-cell combinations) that were removed from the analyses
because of missing trait data. Counts do not include species that were eusocial, migratory, or do not diapause,
as these were not included in our analyses. Silhouettes of Coleoptera (vectorization by T. Michael Keesey;
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. photography by Thorsten Assmann, Jörn Buse, Claudia Drees, Ariel-Leib-Leonid Friedman, Tal Levanony,
Andrea Matern, Anika Timm, and David W. Wrase), Hymenoptera (vectorization by Melissa Broussard),
Odonata (vectorization by Maxime Dahirel), and Lepidoptera (vectorization by Mali’o Kodis, photograph
by Jim Vargo) were downloaded from www.phylopic.org. NS generated the Diptera and cicada silhouettes.

Figure 2. Locations of 25 x 25-km cells with at least one species-by-year combination with enough data to
produce phenology estimates of emergence, termination, and duration. Number of species-year combinations
are represented by the color of the cell.

Figure. 3 Two-way interactions included in the top model predicting emergence of adult insect activity.
Overall, adult emergence of adult insect activity was earlier in warmer areas and was even earlier in warm
areas with high human population densities (A). High precipitation led to earlier emergence in warm areas,
but delayed emergence in cool areas (B). The sensitivity of insect emergence to temperature differs depending
on what life stage an insect enters diapauses (C). Emergence was earlier for univoltine species in areas with
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. high precipitation compared to species that are not univoltine (D). Low, mid, and high population density
and precipitation values represent values that are one s.d. above the mean, at the mean, or one s.d. below
the mean.

Figure 4. Two-way interaction included in the top model predicting termination of adult insect activity.
Termination of adult insect activity was more sensitive in detritivorous insects.

Figure 5. Two-way interactions included in the top model predicting duration of adult insect activity. Insects
were active longer in warm areas, especially warm areas with high (one s.d. above the mean) precipitation
(A). Species with immature habitats that are underground had relatively constant durations regardless of
the regional temperature (B). Detritivores had durations that were most sensitive to temperature (C).
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