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Abstract

Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is a special
subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B).
Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and
photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently
provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin’s role in increasing several
physiological and biochemical processes in under stress and non-stress environments. Additionally, this review briefly assesses
quercetin’s role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids,
their signaling pathways, and quercetin’s role in plant signaling are also discussed.
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Abstract

Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure.
Quercetin is a special subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure
nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed
germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant
growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against
several biotic and abiotic stresses. This review highlights quercetin’s role in increasing several physiological
and biochemical processes in under stress and non-stress environments. Additionally, this review briefly
assesses quercetin’s role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress).
The biosynthesis of flavonoids, their signaling pathways, and quercetin’s role in plant signaling are also
discussed.
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1. Introduction

Plants produce huge amounts of different primary and secondary metabolites. Primary metabolites are
directly involved in photosynthesis; energy expenditure process; fat, protein, and carbohydrate metabolisms;
and the vital activities of cells. Primary metabolites are used up by plant cells, while secondary metabolites
perform several activities in different parts of the plant, either in situ or ex situ. The synthesis of secondary
metabolites is restricted by its location, as every organ has a different need for secondary metabolites. Light,
ultraviolet radiations, drought, salinity, and numerous other sorts of stresses also modulate the production
of secondary metabolites (Yanqun Li, Kong, Fu, Sussman, & Wu, 2020; Nabavi et al., 2020).

Shikimic acid and glycolytic pathways are the initial steps for secondary metabolite synthesis. The subsequent
variations, including the involvement of different enzymes and cell type, are responsible for synthesizing
diverse kinds of secondary metabolites (Yanqun Li et al., 2020). Several extrinsic factors also modify the
biosynthesis of these metabolites. Developmental factors alter the initiation and differentiation of plant parts
responsible for secondary metabolites synthesis and storage. On the other hand, various extrinsic factors also
regulate these processes. Sanchita (2018) observed that fluctuating environments greatly influence the gene
responsible for secondary metabolites biosynthesis, so these metabolites’ quantity and quality get modified.
According to their synthesizing pathway, as many as 100,000 secondary metabolites are present in different
plant species. They were categorized into three distinct categories, i.e., terpenes (isoprenoids), nitrogen-
containing compounds (i.e., alkaloids, cyanogenic glycosides, and glucosinolates), and phenolic compounds
(i.e., phenylpropanoids and flavonoids) (Fang et al., 2016).

Among several secondary metabolites, flavonoids are broadly recognized as compounds carrying an aromatic
ring with a minimum single hydroxyl group. Around 8000 phenolic compounds have been identified so far
from various plants, half of which are flavonoids found as glycosides, aglycone, and methylated derivatives.
The synthesis of flavonoids is done via the polypropanoid pathway, where phenylalanine acts as a startup
molecule. Flavonoids, which were initially named vitamin P, in combination with vitamin C, were reported
as valuable for maintaining the integrity of the capillary wall and capillary resistance (Havsteen, 1983). The
nature of flavonoids depends on their degree of hydroxylation and polymerization, structural class, other
conjugations, and substitutions (Ahmed et al., 2016; Kumar & Pandey, 2013). Flavonoids are classified
into several subclasses comprising flavonols (e.g., quercetin, myricetin, fisetin, and kaempferol), flavones
(e.g., apigenin, luteolin, and flavones), isoflavonoids, flavanones (e.g., naringenin, flavanone, and hesperetin),
isoflavones, catechins, and anthocyanidins. The free radicals scavenging property of flavonoids, is considered
in medicine (Cook & Samman, 1996; Van Acker et al., 1996).

This review highlights quercetin’s role in plants, and its biosynthesis and regulation. It also focuses on the
role of quercetin in signal transduction, as well as its potential role in providing plant stress tolerance by
modulating diverse physio-biochemical traits.

2. Occurrence

Quercetin, a plant pigment widely present in tea and onion, works as an antioxidant. The name quercetin
derives from the Latin wordquercetum, which means Quercus robur (oak). Quercetin has medical prop-
erties, including anti-allergy, anti-inflammatory, anti-cancer, cardiovascular protection, anti-tumor, anti-
viral, anti-diabetic, immunomodulatory, anti-hypertensive, and gastroprotective effects (Lakhanpal & Rai,
2007). Quercetin is yellow-colored, a crystalline insoluble solid substance having a bitter taste. Despite
its general insolubility, it is slightly soluble in alcohol, aqueous alkaline solutions, and glacial acetic acid.
The fluctuation in photosynthetic photon flux density (43-230 μmol m-2s-1) regulates the quercetin con-
tent in plants (Becker, Klaering, Schreiner, Kroh, & Krumbein, 2014). Plants sources of quercetin in-
clude Morus alba (Moraceae),Camellia sinensis (Theaceae), Calamus scipionum(Calamoidaceae), Allium
fistulosum (Amaryllidaceae),Centella asiatica (Apiaceae), Moringa oleifera (Moringa),Hypericum perfora-
tum (Hyperiaceae), Hypericum hiricinum(Clusiaceae), Nasturtium officinale (Brassicaceae),Brassica oleo-
racea var. italic (Brassicaceae),Brassica oleoracea var. sabellica (Brassicaceae),Apium graveolens (Api-
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. aceae), Coriandrum sativum(Apiaceae), Allium cepa (Liliaceae), Lactuca sativa(Asteraceae), Capparis
spinosa (Capparaceae), Asopargus officinalis (Aspargaceae), Prunus domestica (Rosaceae),Malus domestica
(Rosaceae), Prunus avium (Rosaceae),Vaccinium oxycoccus (Ericaceae), Solanum lycopersicum(Solanaceae),
Vitis vinifera (Vitaceae), Ginkgo biloba(Ginkgoaceae), and Sambucus canadensis (Adoxaceae), where it can
also be present as glycones or conjugates of carbohydrates (Lakhanpal & Rai, 2007; Yao Li et al., 2016).

3. Biosynthesis of quercetin

Quercetin biosynthesis takes place via the phenylpropanoid metabolic pathway. Initially, cinnamic acid is
synthesized from phenylalanine; this reaction is catalyzed by the crucial enzyme phenylalanine ammonia-
lyase (PAL) (Fig. 1). In particular, cinnamic acid undergoes the action of chief enzyme cinnamate 4-
hydroxylase (C4H) to producep -coumaric acid. This synthesized p-coumaric acid with carboxylic group
undergoes ligation with CoA and produces 4-coumaroyl-CoA. This particular reaction is catalyzed with
the help of enzymep -coumarate:CoA ligase (4-CL). The enzyme chalcone synthase (CHS) produces the
naringenin chalcone from one p -coumaroyl-CoA and three malonyl-CoA molecules to produce essential
A- and B-rings of flavonoid skeleton (i.e., C6-C3-C6). The construction of the heterocyclic C-ring occurs
via chalcone isomerase (CHI), which produces naringenin (a flavanone), which serves as an intermediary
compound. Meanwhile, the flavanone 3β-hydroxylase (F3H) undergoes hydroxylation of naringenin and
synthesizes dihydrokaempferol. Likewise, the flavonol 3’-hydroxylase undergoes the hydroxylation reaction
on dihydrokaempferol to construct dihydroquercetin. Finally, the action of the enzyme flavonol synthase
on dihydroquercetin catalyzes the biosynthesis of an active and crucial flavonol : quercetin (Alrawaiq &
Abdullah, 2014; Lakhanpal & Rai, 2007; Nabavi et al., 2020).

Differences in flavonoids arise by following the processes like methylation (more often in B-ring than A-
ring), hydroxylation, acylation, and glycosidation (with mono- or oligosaccharides such as glucose, galactose,
xylose, rhamnose, arabinose) at different ring positions (Fig. 1). One hydroxyl group might be present in
A-ring at the ortho-position to the side chain, which can be glycosylated, methylated, or carry other groups.
The existence or lack of carbonyl group at the C-4 position in ring C is also used to categorize flavonoids.
Substitution of hydroxyl groups mainly occurs at C-5 and C-7 position in A-ring, and at C-4’ in B-ring,
which often results in the formation of catechol function group when hydroxylation further proceeds to C-3’
position in the B-ring. Flavonoid compounds with different substituents induce unique physical and chemical
properties resulting in several biological activities (Brodowska, 2017; Kutchan, Gershenzon, Møller, & Gang,
2015; W. A. Peer & Murphy, 2006).

Regulation of the flavonoid biosynthetic pathways is carried out by interacting with various transcription
factors (TFs) of different families. Gene participating in the anthocyanin pathway are differentially moni-
tored in monocot (e.g., in maize) and dicot (e.g., inArabidopsis thaliana ) plants by basic helix-loop-helix
(bHLH), WD 40 proteins, and R2R3-MYB transcription factors (Petroni & Tonelli, 2011). The combina-
tion and interaction of R2R3-MYB, bHLH, and WD 40 TFs (form MYB-bHLH-WD 40 complex) perform
the activation and temporal and spatial expression of the structural genes of anthocyanin biosynthesis. In
developing seeds of A. thaliana , TT2, TT8 and TTG1 form a ternary complex followed by activation of
proanthocyanidin biosynthesis, while TTG1 (a WD40 TFs), various bHLH (GL3, EGL3, and TT8), and
MYB TFs (PAP1 and PAP2) interact with each other for activating anthocyanin biosynthesis in the vege-
tative tissue (Baudry et al., 2004; Feller, Machemer, Braun, & Grotewold, 2011). In Zea mays , bHLH and
MYB proteins are encoded by two multi-gene families (B/R andPL/C1 , respectively). Each member has a
distinct tissue and developmental- pattern. In contrast, a WD40 protein, PAC1, is needed by both the B1
and R1 proteins for the complete activation of genes (in roots and seeds) of the anthocyanin biosynthetic
pathway. Functionally active A. thaliana TTG1 is needed for anthocyanin pigment accumulation during the
development of trichomes and roots (Galway et al., 1994), and maize PAC1 could complement ttg1 mutants
ofA. thaliana ; however, pac1 maize mutants only perform decrement in the anthocyanin pigmentation in
specialized tissues (Carey, Strahle, Selinger, & Chandler, 2004). Regulation of biosynthesis shows distinctive
alteration in A. thaliana and maize. Three R2R3-MYB proteins (MYB11, MYB12, and MYB111) of A.
thaliana perform spatial differential expression patterns, modulate the expression ofAtFLS1 in tissue, and
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. dictate specific developmental pattern (Stracke et al., 2007). ZmFLS1/2 are modulated by anthocyanin (R/B
and C1/PL1) and P1 (R2R3-MYB) regulators (Falcone Ferreyra et al., 2012). Flavonols are required for the
germination of pollen and conditional male-fertility in Zea mays (Mo, Nagel, & Taylor, 1992), while maize
without P1 and C1/PL1+R/B regulators are infertile (Neuffer, Coe, & Wessler, 1997). In A. thaliana , a
PFG1-3-independent flavonol accumulation starts in pollen and seeds/siliques, indicating the involvement of
some unknown regulators in the flavonoid regulation and accumulation (Stracke et al., 2010).

The bHLH and MYB families have been studied to analyze their evolution from several structural and
functional changes. It was found that in gymnosperm Picea mariana (black spruce), C1 like (MBF1) regulator
controls the anthocyanin pathway; supporting the notion that the C1 like the class of R2 R3 MYB proteins
precedes the evolutionary separation of angiosperms from the gymnosperms (Xue, Charest, Devantier, &
Rutledge, 2003). The presence of both MYB and bHLH proteins in the mosses strengthens this hypothesis,
suggesting the early evolution of the bHLH-MYB complex during the development of land plants (Pires &
Dolan, 2010).

4. Quercetin-derived compounds

Quercetin is a bioactive natural compound, built upon the flavon structure: C6(A-ring)-C3(C-ring)-C6(B-
ring) (Fig. 1). The structural differences in the various flavonoid are due to the changeover of the differentially
located hydrogen ion with other groups, including hydroxyl, methoxyl, and glycosyl. Additional structural
variations come about due to the C-ring oxidation and its association with the B-ring. Isoquercetin is a
quercetin-derived compound having attached glucose instead of the 3-OH group of quercetin. Attachment of
galactose at the same portion generates another derivative, named quercetin 3-O galactoside or hyperoside.
Likewise, the rhamnosyl group addition to the 3-OH or 7-OH group results in the development of quercetin
3-O-rhamnoside and quercetin 7-O-rhamnoside, respectively. Disaccharides like glucose and rhamnose are
also attached to quercetin and form another derivative known as rutinose or α-L-rhamnopyranosyl-(1-6)-
β-D-glucopyranose. Rutin is also a vital derivative, having disaccharides at the 3-OH position. Similarly,
attachment of arabinofuranose to the above same position forms avicularin. Enzymatically-altered iso-
quercetin has ten glucose residues fixed to the 3-OH position of quercetin, while the oligoglucosylated rutin
can contain up to five more residues of glucose joined to the glucose moiety of rutin. Methylated quercetin
derivatives are also found (i.e., quercetin 4’-methyl ether and tamirixetin possess an additional methyl at
4’-position). Likewise, rhamnetin 7-O-methyl quercetin also has a methyl group at the 7-OH position.
Furthermore, rhamnazin is a dimethylated quercetin derivative with a methyl group at 3’- and 7-OH po-
sitions. Another methylated flavonol is isorhamnetin (3-methylquercetin), the glycosylation of which leads
to narcissin (isorhamnetin 3-O-rutinoside), isorhamnetin 3-O-rutinoside-4’-O-glucoside, and isorhamnetin
3-O-rutinoside-7-O-glucoside. Quercetin derivatives having both methyl and glycosyl groups illustrate more
structural distinctions (e.g., tamarixetin 3-O-β-D-glucoside has glucose at 3-position and a methyl group at
4’-position) (Magar & Sohng, 2020).

Investigations of the biological activities of quercetin and its derivatives revealed that they possess distinct
efficiencies and activities due to several modifications at significant positions of the quercetin molecule.
Glycosylation usually occurs at 3- and 7-OH positions; however, methyl groups are generally associated at
3’-, 4’-, and 7-positions. Lesjak et al. (2018) studied the structural activity relation of quercetin and its
derivatives on anti-inflammatory and antioxidant activities. They observed that the adjustment in quercetin
structure trims down its antioxidant potential; thus the authors conclude that quercetin shows the high-
est potential in terms of antioxidant property, followed by tamarixetin and isorhamnetin (show equal ac-
tivity) quercetin-3-O-glucuronide, isorhamnetin-3-O-glucoside, quercetin-3,5,7,3’,4’-penthamethylether, and
quercetin-3,4’-di-O-glucoside. Therefore, it can be concluded that the 3-OH group plays a crucial function
in antioxidant activity (Rice-Evans, Miller, & Paganga, 1996). In terms of lipid-peroxidation inhibition,
tamarixetin, and isorhamnetin (both are methylated derivatives) showed higher activities than quercetin
(Lesjak et al., 2018; Santos et al., 1998).

5. Quercetin in phytohormone signaling
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. Several changes have occurred in the past, making the recent flora more adaptive than earlier. One of
them is replacing of mycosporine-like amino acid (MAA) with flavonol metabolism. Marine flora started
producing MAA as a UV-protectant material. Gradual evolution pushed vegetation towards nutrient-poor
land, and MAA (being an N-containing compound) became costly for them; this marks the turning point
where the flavonol takes over MAA’s function. Flavonols proved themselves as powerful in shielding UV-
radiations, as the MAA (Agati et al., 2013; Cockell & Knowland, 1999), but the C-skeletal of flavonols makes
them more cost-efficient for land plants (Pollastri & Tattini, 2011). In the meantime, flavonol, particularly
quercetin derivatives, improved the water and nutrient taking ability of land plants by interacting with soil
chemistry (Cesco et al., 2012) and also enabled them to build a string relationship with N-fixing bacteria
and mycorrhizal fungi (Hassan & Mathesius, 2012; Wasson, Pellerone, & Mathesius, 2006); the mycorrhizal
association with plants considered to be a peculiar event in the evolution of land flora (Field, Pressel,
Duckett, Rimington, & Bidartondo, 2015). During nodulation, flavonol acts as an auxin transport inhibitor
(Ng et al., 2015), thereby enhancing the local auxin levels, further boosting nodule organogenesis (Hassan
& Mathesius, 2012). The association of land flora with bacteria and fungi using the flavonoids supports
Jorgensen’s hypothesis (Jorgensen, 1993).

5.1. Quercetin-mediated auxin signaling

Flavonols are well suited for altering auxin transport and signaling. They have the power of modifying the
activities of a huge amount of proteins (Wendy Ann Peer, Blakeslee, Yang, & Murphy, 2011; W. A. Peer
& Murphy, 2006; Santelia et al., 2008) and function as powerful reactive oxygen species (ROS) scavengers
(Agati, Matteini, Goti, & Tattini, 2007; Agati & Tattini, 2010; Wendy Ann Peer, Cheng, & Murphy, 2013).
Quercetin disturbs the activity of serine-threonine PINOID (PID) proteins, which are responsible for the
localization of PINFORMED (PIN) auxin-efflux facilitator proteins (Adamowski & Friml, 2015; Michniewicz
et al., 2007; W. A. Peer & Murphy, 2006). Flavonoids determine the auxin gradient in the auxin level at
both cellular or tissue stage by affecting auxin’s catabolism (Wendy Ann Peer et al., 2011; Wendy Ann Peer
et al., 2013; Zhang & Peer, 2017), i.e., performing the function of ROS scavengers. It is still unclear whether
there is an impact of flavonols-induced ROS scavenging ability on the auxin signaling (Gayomba, Watkins,
& Muday, 2017). Flavonols regulate the IAA oxidation by retarding the activity DIOXYGENASE for
AUXIN OXIDATION1 (DAO1) proteins that belong to the 2-oxoglutarate and Fe(II) dependent oxygenase
superfamily (Fig. 2). Besides, flavonols can reduce the level of IAA radicals generated in IAA oxidation and
chelate its cofactor Mn(II) ion (Mathesius, 2001); hence, flavonols can be responsible for modulating auxin
level, and the respective growth progresses. Previous studies also support that a hike in IAA level enhances
ROS production and promotes IAA oxidation, hence repressing the auxin signaling. At the cellular level,
flavonoids might perform a local buffer role for the ROS gradient and boost the plant response against the
changing environment (Wendy Ann Peer et al., 2013; Zhang & Peer, 2017). Environmental stresses induce
H2O2 production (ROS), which triggers the specific MAP kinase such as NPK and ANP1 kinase, in tobacco
and A. thaliana, which divert the auxin-related signaling oxidative stress signaling (Kovtun, Chiu, Tena, &
Sheen, 2000). In short, H2O2 activates the MAPK cascade, which represses auxin-induced activities and
promotes stress protection mechanisms (Fig. 2).

Severe alterations in cellular redox-homeostasis that promote flavonol biosynthesis have been noted(Akhtar
et al. 2010); this synthesized antioxidant flavonol might also regulate signaling of auxin as a large amount of
flavonoids have been found near sites of high auxin concentration (Grunewald et al., 2012; Lewis et al., 2011).
This is further supported by the finding that flavonoids are synthesized in the nucleus (Agati, Azzarello,
Pollastri, & Tattini, 2012; Watkins, Hechler, & Muday, 2014), making it easy to influence MAP kinase
activities. It becomes significant under stressed conditions, as re-organization of MAP kinases occurs from
the cytoplasmic portion to the nuclear region for assisting the cellular re-programming (Komis, Šamajová,
Ovečka, & Šamaj, 2018).

A subclade of PIN proteins (such as PIN5, PIN6, PIN8) characterized by relatively short hydrophilic domain
than the PINs of plasma membrane (PM) are found at endoplasmic reticulum (ER) (Mravec et al., 2009),
and the metabolic pathways of auxin is also compartmentalizes in the same cellular structure; favored by
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. the presence of different auxin metabolism related enzymes and regulatory proteins in ER (Friml & Jones,
2010; Woodward & Bartel, 2005). PIN proteins localized on ER are also present in earlier land plants
suggesting that auxin homeostasis is the ancestral function of the PIN proteins (Viaene et al., 2014). PIN5
escorts auxin from cytoplasmic portion of ER (auxin synthesis site) to lumen of ER; hence involved in both
auxin compartmentation and developing auxin gradient in the cell (Kriechbaumer, Seo, Park, & Hawes,
2015; Mravec et al., 2009). The correlation between auxin transport and flavonoids is further supported as
the cytoplasmic face of ER is the main site for flavonoid biosynthesis (Burbulis & Winkel-Shirley, 1999).
Flavonoid transportation inside the ER lumen is done by both ABC (ATP binding cassette) type and MATE
(multidrug resistance and toxic ion extrusion) proteins (Fig. 2) (Kitamura, 2006).

Brunetti, Fini, Sebastiani, Gori, and Tattini (2018) hypothesized the ROS-mediated regulation of auxin
transport and signaling by flavonoids. They related the quercetin concentration with auxin signaling. Dur-
ing the evolution of land plants, flavonoid signaling became the primary flavonoid function. In colonized
land plants, signaling by flavonoid plays a significant role; it can alter organ functions and even the entire
plant’s entire morphology. For example, A. thalianatransparent testa (tt) mutants lacking flavonoid syn-
thesis, have high auxin transport, and show phenotypes with heavily impaired apical dominance (Brown et
al., 2001). It is also hypothesized that UVR8 is responsible for the initiation of quercetin biosynthesis for
auxin signaling modulation and resulting in the busy phenotype of high UV-exposed plants (Hayes, Velanis,
Jenkins, & Franklin, 2014; Hectors, van Oevelen, Guisez, Prinsen, & Jansen, 2012). Antioxidant flavonoids
can potentially modulate the morphology (Buer, Imin, & Djordjevic, 2010; Jansen, 2002) of the plant in
both stressed (exceptionally high light exposure) and non-stresses conditions (Potters, Pasternak, Guisez, &
Jansen, 2009; Potters, Pasternak, Guisez, Palme, & Jansen, 2007; M. Tattini, Gravano, Pinelli, Mulinacci,
& Romani, 2000; Massimiliano Tattini et al., 2017). Plants exposed to UV-radiation induced several modi-
fications in individual organs and even in the whole plant, together with a high level of quercetin derivatives
(Agati et al., 2012). Both moss (Physcomitrella patens ) and angiosperm (A. thaliana ) respond similarly
against UV exposure, particularly increasing the production of quercetin-derivatives (Wolf, Rizzini, Stracke,
Ulm, & Rensing, 2010). Recent evidence suggested that in P. patens andMarchantia polymorpha (liverwort),
UVR8 mediates HY5 (ELONGATED HYPOCOTYL 5) transcription expression and accumulation of CHS
(CHALCONE SYNTHASE) protein under UV-B exposure. Notably, this HY5 regulates the expression of
genes MYB12 and MYB111, called PFG (PRODUCTION OF FLAVONOL GLYCOSIDES) (Stracke et al.,
2010) in both UV-B and high white light exposure. PIN-flavonoid was found to alter the plant’s architecture
(particularly bryophytes). However, some researchers reported that ‘ancestral’ PIN6 protein in A. thaliana
and the PINA present inP. patens could be localized in ER and PM (Friml & Jones, 2010; Simon et al.,
2016). Bennett et al. (2014) reported that PINs protein in the P. patens gave a very high response to flavonol
naringenin and regulated the shoot growth; thus, it opened the door towards the PIN/flavonoid-mediated
plant shape regulation in bryophytes and angiosperms. Quercetin-derivatives are also reported to strongly
influence the signaling pathways of ABA; as it antagonizes ABA-regulated stomatal closure in both tomato
and A. thaliana . Guard cells ofA. thaliana with high quercetin concentration show greater aperture of
stomata compared to quercetin-deficient cells (Watkins et al., 2014). Likewise, tomato mutants with low
flavonol show high ROS content and a small aperture of stomata compared to another tomato mutant having
high quercetin content (Watkins, Chapman, & Muday, 2017). H2O2 is an important secondary messenger in
the ABA-signaling network and is considered essential for closing stomata (P. Wang & Song, 2008). Watkins
et al. (2014) observed the cytoplasmic and, more specifically, the nuclear position of flavonol distribution in
A. thaliana guard cells; both quenching of H2O2 and inhibition of MAP kinase activities by quercetin act
against the ABA-induced guard cell regulation (Fig. 3) (Danquah, de Zelicourt, Colcombet, & Hirt, 2014;
Jammes et al., 2009).

ABA is also involved in flavonol biosynthesis (Berli, Fanzone, Piccoli, & Bottini, 2011; Berli et al., 2010),
and ABA-induced signaling is correlated with light signaling (Bechtold et al., 2008; F. Wang et al., 2018).
This correlation supports the increased flavonol synthesis under high light conditions (with or without UV-
radiation). Enhanced foliar ABA level under high luminance is due to increases in the de-glucosylation
process of inactive ABA-glucoside (ABA-GE), rather than from newly synthesized ABA molecules (Lee et
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. al., 2006; Massimiliano Tattini et al., 2017). The main concept is that β-glucosidase (BG1), responsible
for the removal of free ABA molecule from its glucoside bounded (ABA-GE) form, is ER-localized (Lee
et al., 2006); viz. the flavonoid synthesizing site. It is proposed that excessive light initiates ABA’s from
ABA-GE and enhances the level of local ABA, including flavonol biosynthesis (Fig. 3). Flavonol-mediated
ABA-signaling regulation provides an extra modulator for stomatal movement. Availability of auxin, ABA,
and quercetin at the vicinity of ER connects themselves for flavonol mediated signaling regulating both
Auxin and ABA. However, the actual mechanism of ABA-flavonol-mediated acclimation of plants against a
drastically changing environment is further under investigation (Leng, Yuan, & Guo, 2013).

5.2. Quercetin-mediated ABA signaling

Flavonols-mediated regulation of ABA signaling pathway is considered to be executed by countering oxidative
burst, and substantial H2O2 production, leading to more ABA synthesis (Choudhury, Rivero, Blumwald, &
Mittler, 2016; Tossi, Lamattina, & Cassia, 2009; Watkins et al., 2017; Watkins et al., 2014). In A. thaliana
, ethylene-stimulated flavonol accumulation was found to act against ABA-encouraged stomatal shutting
(Watkins et al., 2014). Watkins et al. (2017) observed that the tomato anthocyanin without (aw) mutant
supports flavonols at the cost of anthocyanin synthesis, and showed a high amount of open stomata than wild-
type tomato. Moreover, protein UVR8 was observed to control stomatal movements via regulating important
components of flavonol-synthetic machinery (such as HY5) and ABA-signaling pathways, for example, NO
and H2O2 (Tossi, Lamattina, Jenkins, & Cassia, 2014). This encourages the concept of participation of ABA-
signaling in UV-B irradiated metabolic re-programming, and this might involve NO-motivated upregulation
of early flavonoid genes that results in flavonoid biosynthesis (Fig. 3) (A.-H.-Mackerness, John, Jordan, &
Thomas, 2001; Tossi, Cassia, Bruzzone, Zocchi, & Lamattina, 2012).

Guard cells have a high quercetin content low H2O2, which is needed for ABA-induced stomatal closure (P.
Wang & Song, 2008). Generally, quercetin remains distributed in the nucleus and slightly lower in subcellular
organelles, except for guard cell vacuoles (Watkins et al., 2017). It can be hypothesized that the antagonistic
effect of quercetin on ABA-mediated stomatal shutting might not only be due to its potential of edging H2O2

accumulation but also via suppressing MAPKs activities that work downstream of H2O2 to confer stomatal
movements (Fig. 3) (Danquah et al., 2014; Jammes et al., 2009).

Flavonols remain located in the nucleus (Agati et al., 2012; Feucht, Schmid, & Treutter, 2014). Their partic-
ipation in the re-orientation of cellular metabolism in response to the high light irradiance is well-described,
including cytoplasm to nucleus re-allocation of MAPKs (Komis et al., 2018). Additionally, flavonols can ma-
nipulate the ABA signaling pathway by interfering with members of the SnRK2 family (primary signaling
components). Flavonols are strongly opposed to the activity of serine/threonine protein kinases (e.g., PID
(PINOID) proteins that participate in the differential circulation of PIN-formed proteins) (Kuhn et al., 2017).
It is evident that the PP2A (protein phosphatases type 2C) and PID proteins function antagonistically on
phosphorylation of PIN proteins (Michniewicz et al., 2007) and, it was hypothesized that quercetin might
place a similar kind of control on the ABA-SnRK2-PP2C signaling network (Fig. 3) (Brunetti et al., 2018).
Although modulation of protein kinase activities by the action of quercetin has been observed in animals,
this modulating activity in plant cell metabolism remains un-elucidated and faces major methodological
problems, particularly in the case of guard cell metabolism.

Quercetin can alter the content of both primary and secondary components, and might act as a key com-
pound of the regulatory route of the ABA-signaling pathway (Hirayama & Shinozaki, 2007; Wagner, 2011).
The ABA-flavonol relationship shows some similarity with the auxin-flavonol relationship. Auxins promote
quercetin synthesis (over kaempferol synthesis) and, in-turn, quercetin efficiently alters the transportation
of auxin (Hayes et al., 2014). The UV-B radiated A. thaliana showed high HY5 levels and reduced auxin
signaling (Hayes et al., 2014), leading to more quercetin synthesis (Brunetti et al., 2018).

6. Role of quercetin in plants

Flavonoids are essential secondary metabolites synthesized in almost all plant parts under different plant-
environment communication. They are associated with numerous physiological activities, including the taste
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. and smell of fruits, flowers, and vegetables, and color development, making them that compose them essential
compounds in the context of insects, birds, and animal attraction, facilitating seed dispersal. Likewise,
flavonoids are important for plants in defending against noxious herbivores and insects (Alseekh et al., 2020).
In a few cases, they can behave as highly toxic substances (Mierziak, Kostyn, & Kulma, 2014), and in some,
they can retard the development of pathogens (Alseekh et al., 2020). Flavonoids impart an important function
in micro-organisms’ symbiotic interactions (Abdel-Lateif, Bogusz, & Hocher, 2012). For instance, chrysin
and luteolin are biosynthesized in legumes for eliciting the signaling pathway for Rhizobacteriuminduced
symbiosis or developing root nodule in nitrogen-fixing bacteria. Flavonoids also help the plants to overcome
their the competition by inhibiting the germination and growth of challenging plants (Hartwig, Joseph, &
Phillips, 1991; Reddy, Reddy, Scheffler, Wienand, & Reddy, 2007).

Hydroxylation of flavonoids has been found to slow the anti-fungal and anti-pathogenic activities. Plants
are often sessile and cannot move, so they have evolved various innovative techniques to exclude deleterious
effects developed due to environmental pressure, including thermal changes, heavy metals, drought, and
UV-irradiations. All of them forced the plants to produce many free radicals, and the flavonoids are engaged
with scavenging the stress-induced ROS production (Ryan, Swinny, Markham, & Winefield, 2002).

Flavonoids are secondary metabolites responsible for distinct red, purple, and blue (anthocyanin) pigments
of various plant tissues (Winkel-Shirley, 2001). These compounds attract and recruit the pollinators/insects
for pollination and seed dispersal. Secondary metabolites give a display to the flower, which guards leaf cells
against the photo-oxidative damage, and improves nutrient retrieval capability during senescence (Feild, Lee,
& Holbrook, 2001). Among the flavonoids, flavonols may be the most ancient metabolites, as synthesized in
ferns and even in mosses, performing a wide variety of physiological functions (Stafford, 1991).

One crucial role of quercetin is to adjust polar auxin transports, even in small quantities (Wendy Ann Peer
& Murphy, 2007). The flavonols were also reported to support the plant arbuscular mycorrhizal association
(Abdel-Lateif et al., 2012), as they act as auxin transport regulators during nodule formation (Ng et al., 2015).
It is now very evident that during shade to sun transitions, quercetin derivatives replace the hydroxycinnamic
acid derivatives in both epidermal cells and secretory trichomes (Agati, Galardi, Gravano, Romani, & Tattini,
2002; M. Tattini et al., 2000), even though hydroxycinnamates have a higher molar extinction coefficient
than the flavonols over the UV-B range of the solar spectrum (Agati et al., 2013). From this, it can be
hypothesized that supplying leaves with flexible metabolites competent of providing numerous occupations,
at the charge of highest potential to soak up the shortest solar wavelengths (Pollastri & Tattini, 2011).

Quercetin and related flavonols are always present in plants, but in differing amounts. There is a lot of
information about the effect of in-built quercetin on plant physiology. But the sitability of making concludes
based on the consequence of exogenously applied quercetin on the plants is debatable. Recent researche has
revealed more beneficial roles of quercetin on plants.

Suppression of carotenoid photobleaching by quercetin suggested quercetin-mediated improvements in carbon
assimilation (Takahama, 1984). Earlier in vitro research of Ylstra et al. (1992) using quercetin depicted its
promotive role in the development, germination, and growth of pollen tubes. In M. hupehensis , quercetin
application was observed to retard the indole 3-butyric acid-induced NO production (Gao & Yang, 2011).
Quercetin is a well-known auxin inhibitor, so their exogenous treatment was restricted to auxin transportation
(Imin, Nizamidin, Wu, & Rolfe, 2007). The researchers argued that the transport inhibition could be helpful
for the plant, as high localized auxin content might be necessary to establish root primordial (Gao & Yang,
2011). Quercetin may work as a protein kinase inhibitor (Pan et al., 2005), ATPase inhibitor (Takahashi,
Sert, Kelmer-Bracht, Bracht, & Ishii-Iwamoto, 1998), and electron transport inhibitor (Moreland & Novitzky,
1987). Transcriptional analysis was performed using quercetin treated tobacco seedlings by Mahajan and
Yadav (2013). It was reported that quercetin regulates the activity of antioxidant enzymes viz., glutathione
reductase (GR), glutathione peroxidase (GP), glutathione-S-transferase (GST), ascorbate peroxidase (APX),
superoxide dismutase (SOD) and peroxidase (POX) enzymes. The quercetin works in a dose-dependent
manner, and the optimum dose proves beneficial for the particular plant. This research further promotes
the antioxidative property of quercetin.
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. The application of quercetin was reported to promote polyamines (especially spermidine) in Eucalyptus
(Prado et al., 2015). The same experiment also revealed that the quercetin-mediated enhanced ascorbic acid
content and its antioxidant nature. Quercetin could promote the fruit loosening in oranges (Yuan, Kender,
& Burns, 2003). Experimental studies clarify that supplementation of quercetin inhibits root growth while it
enhanced lateral root formation. Quercetin application also improved the cell wall thickening of parenchyma
and cortical cell layer by increasing the lignification (Franco et al., 2015).

Quercetin modulates root growth by limiting cell proliferation and enhancing the cell elongation phase. It
is assumed that the meristematic region of root faces high limitations of cell proliferation under quercetin
treatment (Tohge & Fernie, 2016); it might depend on cytokinin perception. In an experiment conducted
by Kurepa, Shull, and Smalle (2016), they observed that paraquat, a ROS-producing compound, generates
a lesser amount of ROS under quercetin treatment. These authors also analyzed protein oxidation in A.
thaliana and observed the protective role, which is evident from a low accumulation of the derivatized
proteins. Even in Nicotiana tabacum andLemna gibba , they observed the counteraction of quercetin over
paraquat’s toxic effects.

7. Quercetin in stress mitigation

Flavonoids are a diverse group of secondary metabolites, performing a vast range of biological functions,
including stress protection. The fluctuating environment alters the flavonoid synthesizing pathway, indicating
flavonoid’s stress protective mechanisms in plants (Chalker-Scott, 1999). Increased flavonols under biotic and
abiotic stress indicate their stress-filter function in plants. Having OH-group at the 3-position of flavonoid
skeleton makes flavonols more efficient ROS scavengers, inhibits ROS aggregation, and allows metal chelation.
The antioxidant property of quercetin makes it a more reliable source of eradicating stress as most of the stress
harm the plant by generating oxidative stress (via ROS production). Unfortunately, only a few experiments
were performed to put forward its tremendous stress mitigation power. The cross-talk of quercetin with
ABA further confers its stress halting capabilities. The quercetin reduces the level of H2O2 (requires for
ABA-induced stomatal closure) that reduces the stomatal closure, which helps the plants to face stress in a
less savior manner (Agati et al., 2011; Agati, Stefano, Biricolti, & Tattini, 2009).

Flavonoids can resist the toxin effects generated by heavy metals. Root exudates of Zea mays exposed to
aluminum toxicity were rich in flavonoids (Kidd, Llugany, Poschenrieder, Gunsé, & Barceló, 2001), thereby
confirming flavonoid-mediated heavy metal amelioration in plants. Keilig and Ludwig-Müller (2009) noted
that both quercetin and naringenin reversed the harmful consequences caused by cadmium and zinc ions in
A. thaliana . Likewise, Parvin et al. (2019) explored the morpho-physiological traits of salt-treated tomato
and observed the encouraging role of quercetin. They indicated the enhanced production of chlorophylls and
carotenoids by quercetin, and suggest suggested that this might be due to quercetin induced lower ratio
of Na+/K+, lashed out osmotic stress, and ROS production. These authors studied several enzymatic and
non-enzymatic antioxidants and concluded the positive role of quercetin for plant health. Quercetin was
reported to reduce the activity of lipoxygenase, SOD, catalase, and it also reduced the malonyldialdehy-
de content. Meanwhile, quercetin treatment of tomato enhanced ascorbate and glutathione (GSH) content
and, in contrast, led to reduced activities of glutathione peroxidase, APX, GST, and monodehydroascorbate
reductase. Furthermore, these authors also highlighted that the quercetin improved the ratio of ascorba-
te/dehydroascorbate and glutathione/glutathione disulfide. This finding suggests that the gene GmGSTL1
(fromGlycine max ) that encodes GST plays a prominent role in stress tolerance. Stress conditions result
in up-regulation of GmGSTL1 gene responsible protection and increased survival, and the functional role of
this was also confirmed in A. thaliana and tobacco cell line model (Chan & Lam, 2014).

Phenolic compounds act as an excellent antioxidant, although phenoxyl radicals generated by antioxidative
reactions are pro-oxidative (Bartwal, Mall, Lohani, Guru, & Arora, 2012). Thus, enzymatic scavenging of
these phenoxyl radicals to rejuvenate and sustain the pool of active phenolic antioxidants is necessary for
managing homeostasis. Chan and Lam (2014) indicated that TaGSTL1 could arbitrate GSH-dependent
reduction of the derivatives for regenerating active quercetin, which works like a proton donor to the oxidative
species. Oxidized quercetin derivatives further react with GSH and water molecules to develop an adduct,
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. which is recycled as a substrate for enzyme GSTL (Dixon & Edwards, 2010). Hence, GSTL1 is considered
a possible missing bond between recycling and maintaining the antioxidative power-driven from phenolic
compounds. Experimental data supports the notion that GmGSTL1 gene codes for a serviceable protein
that hunts the ROS generated by abiotic stress. The quercetin mediated stress alleviation suggests that both
quercetin and GSTL perform a similar protective function (Chan & Lam, 2014).

Dihydroxy B ring flavonoids, like luteolin 7-O and quercetin 3-O-glycosides, participate in UV-radiation
stimulated ROS (Agati et al., 2012; Fini, Brunetti, Di Ferdinando, Ferrini, & Tattini, 2011). The capacity
of flavonoids in scavenging free radicals was directly coupled with the presence and location of -OH groups
in A- and B- rings (Mierziak et al., 2014). This effect is enhanced by the attached catechol moiety to ring
B at the double C2=C3 bond, and more still with the additional C3-OH. Moreover, flavonoid structure
with chelated metal cations (such as Cu2+, Fe2+, Al3+, and Zn2+) could resist the peroxidation of lipids
that rely on Fe2+ and Fe3+ (Arora, Nair, & Strasburg, 1998). Flavonoids further impart an important role
of modulating the transport system of auxin (Wendy Ann Peer & Murphy, 2007) that is frequently taking
place by reverse phosphorylation imparting a particular protein kinase (DeLong, Mockaitis, & Christensen,
2002). Furthermore, flavonoids are known for enriching soil present nutritional compounds when they are
inadequately accessible using ATP-binding cassette-type transporter. They also ensure the liberation of metal
cations needed for the optimum growth and development of plants (Badri et al., 2008; Sugiyama, Shitan, &
Yazaki, 2007).

The role of quercetin as an antioxidant compound of the cell has been analyzed from ancient times. The
specialized structure of quercetin develop impairs an antioxidant property and helps in quenching off the ROS
species generated by the cells. Flavonoids with 3-OH and 3’,4’-catechol are ten times more potent towards
the peroxynitrite, a well-known RNS scavenger (Haenen, Paquay, Korthouwer, & Bast, 1997). Enhanced
quercetin levels avoid the metal/non-metal-induced oxidative damage due to its free 3-OH group (Arora et
al., 1998; Ratty & Das, 1988) that does believe in upgrading the flavonoid-radical stability. For quercetin’s
chelating action, the catechol-group is its best partner and has been approved by different studies. This
compound slows lipid peroxidation by scavenging its free radicals (Alrawaiq & Abdullah, 2014). While
quenching the free radicals and transition metal binding, quercetin undergoes an oxidation process and
produces the semiquinone radical. These semiquinone radicals further face another oxidation and generate the
quercetin quinone. Quinone interacts with protein thiols, which is eradicated by glutathione and reduces its
level (Metodiewa, Jaiswal, Cenas, Dickancaité, & Segura-Aguilar, 1999). Compared to aglycons, glycosylated
flavonoids have reduced in vitro antioxidant property (Cavia-Saiz et al., 2010; Mishra, Priyadarsini, Kumar,
Unnikrishnan, & Mohan, 2003). Glycosylation of quercetin also slows its hypochlorite scavenging ability
(Firuzi, Mladênka, Petrucci, Marrosu, & Saso, 2004), superoxide quenching property (Sun, Fu, Chen, Jiang,
& Pan, 2010), and its potential to reduce Fe(III) to Fe (Tanigawa, Fujii, & Hou, 2007).

Being a secondary product, quercetin’s antimicrobial activities are well elucidated in plants. Quercetin inhi-
bits the synthesis of nucleic acids by repressing enzymes, e.g., DNA gyrase. Enzyme DNA gyrase is essential
for DNA replication, and this is limited to prokaryotes; making it a smart target for developing antibacterial
drugs (Plaper et al., 2003). Initially, (Ohemeng, Schwender, Fu, & Barrett, 1993) investigated the DNA gy-
rase inhibiting quercetin’s activity in Escherichia coli . Further research based on in-silico analysis revealed
that the B subunit of DNA gyrase of bacteria Mycobacterium tuberculosis andMycobacterium smegmatis
might be the quercetin target (Suriyanarayanan, Shanmugam, & Santhosh, 2013). This study was further
supported when it became clear that quercetin binds to subunit B of gyrase and subsequently blocked the
ATP-binding pocket by developing a hydrogen bond through 3’, 5, and 7-OH groups to amino acids residues
of gyrase (Górniak, Bartoszewski, & Króliczewski, 2018).

Moreover, Wu, Zang, He, Pan, and Xu (2013) reported quercetin-based blockage of the ATP-binding pocket
of D-alanine-D-alanine. Similarly, the other related flavonoids, like kaempferol and chrysin much-repressed
gyrase activity in E. coli . It is concluded that the hydroxyl group of flavonoids permit a better connection
with gyrase than the methoxy groups. Molecular docking studies suggest another way of flavonoid-mediated
DNA gyrase inhibition, indicating that flavonoids suppress the supercoiling of DNA by competing with
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. the ATP binding site of the B subunit of gyrase (GyrB) (Fang et al., 2016). This might be due to the
flavonoid binding with DNA, which forms the DNA-gyrase complex and induces DNA cleavage (Plaper
et al., 2003). 3-OH, 5-OH, 7-OH, and 4-carbonyl groups of flavonoids are highly dynamic for interacting
with GyrB residues (Fang et al., 2016). Not only gyrases but also topoisomerases are necessary for DNA
replication. Recent studies have noted that these enzymes are molecular targets for flavonoids. Both flavonols
and flavones have a nucleic acid binding capacity have been propsed to block the helicase activity. Xu and
Lee (2001) found that myricetin – a quercetin-related compound – inhibits the helicases, such as DnaB and
RecBCD helicase/nuclease, in E. coli . The same flavonol has been proposed to suppress RNA and DNA
polymerases, as well as the transcriptases (Ono, Nakane, Fukushima, Chermann, & Barre-Sinoussi, 1990) and
the telomerase (Griep, Blood, Larson, Koepsell, & Hinrichs, 2007). The impact of quercetin and its related
compounds on DNA and RNA synthesis related enzymes has enhanced quercetin’s reputation flavonoids.

8. Conclusions and future prospective

Quercetin is the particular class of bioactive flavonoid built upon the flavon structure that plays a remarkable
role in facilitating numerous plant functions. However, it is still regarded as an enigmatic compound. It is
becoming highly apparent that quercetin is a multifaceted compound in plants. This review gives a better
understanding of several key characteristic features related to flavonoids, especially quercetin, including their
potential sources in plants. Interestingly, recent reports on flavonoid biosynthesis show their regulation at
the molecular level. Thus, signal transduction pathways in plants cover a significant part of this review.
Furthermore, recent detailed IAA and ABA-mediated signaling is also reviewed, providing a better under-
standing of how flavonoids, especially quercetin, play several major functions in plants (i.e., antioxidant and
antimicrobial compounds). Apart from this, quercetin also plays a critical role in triggering several plant
physiological attributes such as seed germination, growth, photosynthesis, and yield traits under healthy and
stressful environment. Quercetin plays a significant role in maintaining the balanced concentration of ROS
and lipid peroxidation and augmenting several physiological functions to confer environmental stress tole-
rance. The most remarkable role of flavonoids is providing a shield against harmful UV rays. Nevertheless,
quercetin is a potent flavonoid with a diverse function in plants.

Due to the remarkable role of quercetin in plant physio-biochemical responses under a healthy and stressful
environment, further research should be directed to more accurately identify metabolic, molecular, and
signaling regulators involved in environmental stress tolerance, as well as the cross-talk between quercetin
and plant hormones. Such work would contribute to a better understanding of the mechanisms involved in
crop improvement and sustainable agricultural practices.
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