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1 Energy conservation in swept field limit

For a calorimeter sample (plus addenda) weakly thermally linked to a temperature controlled reservoir,
energy conservation implies

−TdS = κ∆Tdt+ Caddenda dT (1)

where κ is the sample to reservoir thermal conductance and addenda is the heat capacity of the actual
addenda (such as the thermometer, heater, and glue or grease binding the sample to the sensors) plus the
heat capacity of the sample lattice (due to phonons).

The left hand side term is the heat released by the system — which in the case of a spin system, for example,
would be the heat released by the spins — when the field is changed by dH. The minus sign indicates
that system entropy decreases as heat is released. Most of the released heat flows to the reservoir but some
fraction heats up the addenda (to the same temperature as the system). The first term on the right hand
side describes heat flow to the reservoir. The second term describes the temperature rise of the addenda. In
a non-adiabatic relaxation-time or ac-calorimeter like that used in our swept-field measurements (Fortune
and Hannahs, 2014), the first term dominates. In contrast, in an adiabatic measurement, the first term is
negligible.

If the entropy of a system depends on temperature T and applied magnetic field H, then

dS =

(
∂S

∂T

)
H

dT +

(
∂S

∂H

)
T

dH (2)

Substituting Eq. 1 into Eq. 2,

−T
(
∂S

∂T

)
H

dT − T

(
∂S

∂H

)
T

dH = κ∆Tdt+ Caddenda dT (3)

2 Thermodynamics

We now wish to relate our expression energy conservation to the magnetocaloric effect ∆T (dH/dt), which
depends on the temperature dependence of the magnetization (T ), the system magnetic-field dependent heat
capacity CH , and thermal conductance κ.
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From classical thermodynamics, we have the definition of heat capacity (for the spin system)

CH = T

(
∂S

∂T

)
H

(4)

and the Maxwell relation (
∂S

∂H

)
T

=

(
∂M

∂T

)
H

(5)

For convenience, we have chosen “proper” units such that H is in tesla and M is the total magnetic dipole
moment (rather than the dipole moment divided by the volume).

3 Short relaxation time limit

Substituting Eqs.4 and 5 into Eq. 3, we have

−CHdT − T

(
∂M

∂T

)
H

dH = κ∆Tdt+ Caddenda dT (6)

dividing through by κ dT , and setting C = CH + Caddenda , we conclude

−T
κ

(
∂M

∂T

)
H

dH

dt
= ∆T +

C

κ

dT

dt
(7)

as in reference (Fortune et al., 2009). Note here that dT/dt = d
dt (∆T ) since the reservoir temperature is

held constant.

Notice that on the right hand side of Eq. 7, C/κ = τ , the sample to reservoir relaxation time of the
calorimeter. In the short relaxation time limit, Eq. 7 reduces to

−T
κ

(
∂M

∂T

)
H

dH

dt
= ∆T (8)

4 Stepped field limit

In stepped field (adiabatic limit) magnetocaloric measurements, the first term on the right hand side of Eq. 1
is negligible. In that limit,

−CHdT − T

(
∂M

∂T

)
H

dH = Caddenda dT (9)

Combining CH and Caddenda and replacing dT , dH with ∆T , ∆H,

−T
(
∂M

∂T

)
H

∆H = Caddenda ∆T (10)
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