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Abstract

Comparisons of microsatellite and single-nucleotide polymorphisms (SNPs) have found that SNPs outperform microsatellites
in population genetic analyses, calling into the question the continued utility of microsatellites in population and landscape
genetics. Yet highly polymorphic markers may be of value in species that have reduced genetic variation. This study repeated
analyses previously done using microsatellites with SNPs developed from ddRAD sequencing in the black-capped vireo source-
sink system. SNPs provided greater resolution of genetic diversity, population differentiation, and migrant detection but could
not reconstruct parentage relationships due to insufficient heterozygosities. The biological inferences made by both sets of
markers were similar: asymmetrical gene flow from source populations to the remaining sink populations. With the landscape
genetic analyses, we found different results between the two molecular markers, but associations of the top environmental
features (riparian, open habitat, agriculture, and human development) with dispersal estimates were shared between marker
types. Despite the higher precision of SNPs, we find that microsatellites effectively uncover population processes and patterns
and are superior for parentage analyses in this species with reduced genetic diversity. This study illustrates the continued

applicability and relevance of microsatellites in population genetic research.

Introduction

Molecular markers allow us to answer an array of population genetic questions about gene flow (Edelaar
& Bolnick, 2012; Hudson, 1992), parentage (Garcia et al., 2002), and population structuring (Cockerham
& Weir, 1993; Narum et al., 2008). The toolbox of molecular markers has rapidly changed with advancing
technologies in the last 30 years, progressing from mitochondrial markers to microsatellites to SNP (Single
Nucleotide Polymorphisms) markers, each with progressively higher statistical power (Andrews & Luikart,
2014; Luikart et al., 2003; Morin et al., 2004). With this higher resolution of microsatellites and SNPs,
their usage has extended to landscape genetics (Sork et al., 2010), adaptation and selection (Ahrens et al.,
2018), hybridization (Toews et al., 2016), outbreeding and inbreeding depression (Steiner et al., 2013), and
epigenetics (Harrisson et al., 2014). Of particular interest is the relatively recent interdisciplinary field of
landscape genetics that combines the theory and methods from landscape ecology and population genetics
to study how landscape (or seascape) features affect population processes such as gene flow (Zeller et al. |
2012). Landscape genetics bridges the gap between environmental factors and species’ responses, providing
important insight into ecological and evolutionary processes. Information gleaned from molecular markers
offers crucial insights for application in conservation and management efforts.

Microsatellites and SNPs are the most commonly used markers for population genetic studies, each with
its pros and cons (Morin et al., 2009). Microsatellites are highly polymorphic, providing relatively high
statistical power per locus, but suffer from null alleles, homoplasy, and complex and variable mutation



processes that can confound results (Defaveri et al., 2013; Putman & Carbone, 2014). The distribution of
microsatellite markers genome-wide is also unknown across many species. Still, they are likely not distributed
evenly across the genome, potentially yielding a poorer representation of overall genetic variation than SNPs
(Narum et al., 2013). While microsatellites were once the most used marker in population genetics, SNPs
are quickly replacing other molecular markers in ecological, evolutionary, and conservation studies (Baruch
& Weller, 2008). SNPs are biallelic and thus have a simple mutation model but have less information
per locus, requiring more loci than that for microsatellites to get equal statistical power (Helyar et al.,
2011). SNPs also have lower error rates than microsatellites, and with next-generation sequencing, have
lower genotyping costs per marker (Morin et al., 2009; Weinman, Solomon, & Rubenstein, 2015). SNPs
occur across the genome, giving a better representation of genome-wide variation (Puckett & Eggert, 2016).
Comparative assessments of the two markers found that SNPs outperform microsatellites with estimates of
genetic diversity and population structure (Morin et al., 2009; Mufioz et al., 2017), and perform equally
or poorer with parentage analyses (Flanagan & Jones, 2019; Thrasher et al., 2018; Weinman et al., 2015).
Nevertheless, microsatellites are still useful in landscape genetics, and can yield comparable results (Liu et
al., 2005; Vili et al., 2008). While many microsatellite and SNP comparisons exist for population genetic
analyses, few papers (Hall & Beissinger, 2014; Puckett & Eggert, 2016) have compared them in a landscape
genetics context. Furthermore, microsatellites have been demonstrated to perform well relative to older
codominant markers in cases following bottlenecks (Spencer et al., 2000), but it is not clear if this advantage
of these highly polymorphic loci persist when large numbers of SNP loci can be assessed (Morin et al., 2012;
Zimmerman et al., 2020). We need such direct comparisons for understanding the biases, strengths, and
weaknesses associated with different marker types both for accurate interpretation of data and to inform the
adoption of new marker types in long-term studies.

In this study, we repeated microsatellite-based population and landscape genetic analyses (Hauser & Leberg,
2020; Hauser et al., 2019) with SNPs developed from ddRAD sequencing (Peterson et al., 2012). The black-
capped vireo (Vireo atricapilla; BCVI) source-sink metapopulation in central Texas (Hauser et al., 2019;
Walker et al., 2016) serves as an ideal non-model system for marker comparison. The species is recovering
from a demographic and genetic bottleneck (Athrey et al., 2012; Grzybowski et al., 1994; McFarland et
al., 2013) that resulted in small fragmented populations. Further, the range of the species habitat is highly
fragmented through land conversion from their breeding habitat, scrub habitat, to agriculture and human
development, resulting in most of the remnant population restricted to protected habitats and military bases.
The highest density of BCVI exists around Fort Hood in central Texas, where the species has been monitored
carefully as a protected species (ESA Endangered from 1970-2018; Cimprich & Kostecke, 2006; Wilsey et
al., 2014). The source-sink system comprises fragmented habitat patches driven by brown-headed cowbird
parasitism (Walker et al., 2016) and mediated by riparian corridors (Hauser & Leberg, 2020).

Methods

We collected DNA samples (toenail clips and/or pin feathers) from 338 black-capped vireos from 6 sites
throughout central Texas including Fort Hood [East Range (ER), Maxdale (MD), West Range (WR), San
Saba Property (SS), Balcones Canyonlands National Wildlife Refuge (BC), and Colorado Bend State Park
(CB; see Hauser et al. 2019 for more details)]. These sites span the source-sink system identified by
demography (Walker et al., 2016) and microsatellite analyses (Hauser et al., 2019; Figure 1). We extracted
DNA from the samples using the Qiagen QIAamp Micro DNA Kit (Qiagen Inc, Hilden, Germany) following
the Protocol for Isolation of Genomic DNA from Small Volumes of Blood. We also used these 338 samples
in the microsatellite analysis using 12 species-specific loci (Barr et al., 2007; Hauser et al., 2019), and to
which we compared the results from the following SNP analysis.

We used 185 of the best quality BCVI samples for de-novo SNP discovery and genotyping. We followed
the ddRAD library preparation using the restriction enzymes spel and nlalll for paired-end 150 bp reads
(Peterson et al., 2012) and sequenced the libraries on an Illumina HiSeq lane. Library preparation, quality
control, and sequencing were performed at the Texas A&M AgriLife Genomics core facility in College Station,
Texas. Sequence reads (total sequence reads = 802,466,640) were demultiplexed and filtered for poor quality



using the process_radtags function in Stacks v2.0 (Rochette et al., 2019), retaining 1,960,156 reads. We
optimized parameters for the de novo pipeline, resulting in the following parameters: m =3, M =2, n = 1,
r = 0.80, min_maf = 0.05. We filtered the dataset further in VCFtools for minor allele count (mac = 3) and
genotyping rate (80%, Danecek et al., 2011). For direct comparison, the microsatellite dataset (n = 338)
was subsampled to the same 185 individuals for which SNP data was produced. We designed the following
analysis methods to parallel the microsatellite analyses described in Hauser et al. (2019) and Hauser &
Leberg (2020) with minor modifications for large SNP datasets.

Population Genetics

We tested loci and samples for Hardy-Weinberg equilibrium (HWE) deviations and linkage disequilibrium
(LD). Loci found to be in LD or deviating from HWE were omitted from further analysis. We calculated
observed and expected heterozygosity (H, and H,, respectively) using basic.stats function in hierfstat R
package (v 3.5.0) and allelic richness (A;) using the allel.rich function in hierfstat R package (v 3.5.0) to
estimate genetic diversity across the populations (Goudet, 2005). To evaluate how populations differed
across these three metrics (H,, Ho and A;), we performed a randomized block ANOVA, blocking by locus,
using the ’aov’ function in R with a post-hoc Tukey HSD test using the TukeyHSD R function. In these,
and subsequent analyses, we corrected alpha levels for multiple comparisons using a standard Bonferroni
correction (Hauser et al., 2019; Rice, 1989; Sethuraman et al., 2019). Wherever calculating p-values with
iterations were computationally impossible for our resources, we assessed significance using 95% confidence
intervals (Altman & Krzywinski, 2016; Gardner & Altman, 1986).

We estimated population genetic differentiation (pairwise Fgr) using the pairwise. WCfst function in R pack-
age hierfstat (v 3.5.0), estimating 95% confidence intervals with the boot.ppfst function in the same R package
(Goudet, 2005). We assessed population structure using the Bayesian clustering program STRUCTURE (v
2.3.4). We used the admixture model with population as a prior to determine the number of unique genetic
clusters (k) present within our system, testing k values ranging from 1 to 6. We performed these runs with 10
iterations, 500,000 burn-in period, and 500,000 MCMC (Monte Carlo Markov Chain) repetitions. We then
submitted the STRUCTURE results to STRUCTURESELECTOR and used the Evanno and Puechmaille
methods to determine k (Li & Liu, 2018; Puechmaille, 2016).

We used several approaches to investigate patterns of gene flow among the populations, specifically to
determine if there was directional gene flow. Using GENECLASS (v 2.0), we detected first generation
migrants using ‘L_home/L_max’ likelihood ratio, the Paetkau et al. (1995) criterion, 0.01 allelic frequency,
and 0.01 p-value threshold. We could not estimate migration in BayesAss as it does not allow for large SNP
datasets (maximum of 40 loci). We used parentage assignments in CERVUS (v 3.0.7) to directly observe
migration among populations (Kalinowski et al., 2007). Second-year (SY) individuals disperse and establish
their first breeding territories, while older individuals have strong site fidelity and stay in the same population
for subsequent years. Therefore, we assigned parents after-second-year age or older (ASY) to SY individuals
as offspring assuming that if a SY is in a different population than their assigned parent, then that the
offspring was a migrant. SY individuals found to be in the same population as their parents were considered
residents. For both programs, we assigned 81 of the SY offspring to candidate mothers (n = 21) and fathers
(n = 56) using a SNP dataset with a 90% genotyping rate. A more stringent genotyping rate was used to
avoid biases associated with missing data and parentage analyses (Hammerly et al., 2016) and to ensure that
the program could accommodate the dataset (Kalinowski et al., 2007).

Landscape Genetics

For all landscape genetics analyses, we used the proportion of shared alleles (Dps) as a metric of gene flow,
as Dps is more directly related to gene flow than other metrics of genetic differentiation (Landguth et al.,
2010). We tested for isolation by distance at an individual and population level using the mantel.randtest
function in the R package adegenet (Jombart, 2008).

We used the same between-site and at-site variable database as Hauser et al (2020) including elevation, Eu-
clidean distance, water, development, forest, scrub, open, agriculture, riparian, proportion of scrub habitat,



and brown-headed cowbird (BHCO) management at the sites. Between-site variables (elevation, Euclidean
distance, water, development, forest, scrub, open, agriculture, and riparian) were transformed into resis-
tance surfaces in CIRCUITSCAPE (McRae, 2006). We optimized the valuation of each resistance surface
(see Hauser et al., 2020) for more details on optimization) using a linear-mixed effect model (R package
lmed; Bates et al., 2015) with Dps as the response variable, each resistance value as the fixed effect, and site
as the random effect. Only the optimized resistance values for a given variable, the value with the lowest
AICc score via the univariate linear-mixed effect models, were then used in subsequent hypotheses testing.

To investigate how landscape features influence gene flow in this system, we used a multivariate linear mixed
effect model approach using candidate models that were driven by a priori hypotheses. All candidate models
were checked for multicollinearity using a variance inflation factor (VIF) threshold of 4 before fitting the
models. We used the linear mixed effect models in the R package Ime4 using the full maximum likelihood with
D, as the response variable, landscape features as fixed effects, and site as the random effect (Bates et al.,
2015). We evaluated our candidate models with AIC., AAIC,, and AIC.weights (R package GeNetlt). We
considered models with a AAIC, < 2 to be competitive (Burnham & Anderson, 2002). Across all methods
we compared results from the SNP data, the subsampled microsatellite data, and the full microsatellite data
(n= 338) presented in Hauser et al. (2019).

Results
Population Genetics

After filtering, the genomic dataset included 11,507 SNP loci for 178 individuals with a mean coverage of
18.2x. The microsatellite dataset was also subsampled to the same 178 individuals. For both datasets, we
found no deviations from HWE or LD after a Bonferroni correction at any of our study sites.

For the SNPs, we found significant differences for H,, He and A, among populations (P < 0.001; Figure 2,
bottom panel). All sites except SS had significantly lower H, than H,. There were significant differences in
H, across populations in three broad groupings: CB had the lowest H, values, BC, MD and WR had the
intermediate values, and ER and SS had the highest H, values. There were also significant differences in
A, among populations, namely that ER and WR were significantly higher than the rest of the populations
(Figure 2). Values for all genetic diversity metrics and their variances calculated using microsatellites were
much higher than those using SNPs (Table 1). For the microsatellites, we found significant differences for
H, and A, among populations (P < 0.001) but not for H, (P = 0.549). All sites except BC and CB had
significantly lower H, than H, (Figure 2, top panel). MD was the only population with an estimate of H,
that was significantly different from the other 6 populations. Across populations, there were no significant
differences in He or A,, with the exception of a significant difference in A,between BC and ER. The full
microsatellite data from Hauser et al. (2019) exhibited no differences in any of the genetic diversity metrics
across populations.

All pairwise Fgr values based on SNPs were statistically significant, except between ER and WR (Figure
3). We found the largest population differences between central Texas site CB and the Fort Hood sites.
Central Texas sites were differentiated from WR, ER and MD (increasing in that order). There was no
overall pattern that central Texas sites were more similar with other central Texas sites than with Fort Hood
sites or vice versa. Fgr values calculated with microsatellites were an order of magnitude higher than those
calculated with SNPs. The full microsatellite dataset showed that most genetic differentiation was between
central Texas sites and Fort Hood sites (Table 2; Hauser et al., 2019). WR and ER, Fort Hood sites, were
the only significantly differentiated populations relative to the rest of the source-sink system. Likewise, the
full microsatellite analysis showed that most differentiation was between central Texas sites and Fort Hood
sites (Hauser et al., 2019). The Puechmaille method, which accounts for uneven sampling (Li & Liu, 2018;
Puechmaille, 2016), showed two unique genetics clusters for the microsatellite data and the full microsatellite
dataset (Hauser et al., 2019) while the same approach using SNP markers identified only one cluster. All
sets of STRUCTURE barplots based on SNPs showed no population subdivision and considerable mixing
regardless of marker across k values ranging from 2 to 6 (Figure 4; Hauser et al., 2019).



Using SNPs, we found 82 migrants, with 33 detected in central Texas sites and 49 detected in Fort Hood
sites using GENECLASS2 (Table 3). All migrants detected were from WR. Migrants in central Texas sites
comprised a much larger proportion of the total population (14.7 — 29.5%) compared to those detected in
Fort Hood (<1% - 6.9%). Using the subsampled microsatellite data, we found 125 migrants, 25 detected in
central Texas and 100 detected in Fort Hood. Of these detected migrations, 79 were between central Texas
and Fort Hood, 9 were among central Texas sites, and 37 were among Fort Hood sites. Similar to the SNP
data, migrants found in central Texas sites comprised a substantially greater portion of the estimated census
population size (13.2 - 20.5%) than those in Fort Hood sites (1.8 - 3.0%). Hauser et al (2019) detected
fewer migrants overall (n = 22), but similar patterns in proportion of migrants in populations were found.
Regardless of dataset, proportions of migrants in central Texas populations were an order of magnitude
higher than those in Fort Hood.

In CERVUS, the SNP-based analysis did not assign any candidate parents to offspring. The microsatellite
analysis assigned 20 parent-offspring pairs at the 95% confidence interval (Table 4). We identified most
offspring assigned to parents as migrants (n =16), of which most were from Fort Hood (n = 14). We found
directional migration from Fort Hood to central Texas (n = 4) compared to central Texas to Fort Hood (n =
1). The full microsatellite dataset assigned more parent-offspring pairs (n = 21) at 95% confidence interval
(Hauser et al., 2019) and indicated similar patterns of directional migration from Fort Hood to central Texas
as the subsampled dataset.

Landscape Genetics

For all datasets, there was no evidence of isolation by distance at either a population or individual level
(microsatellites: P = 0.92, P = 0.492, respectively; SNPs: P = 0.092, P = 0.946, respectively; Hauser et al.,
2019; Figure 5). The null model of isolation by distance in our multivariate linear mixed effect models only
had low support via AIC evaluation for the SNPs and the full microsatellite dataset.

Top models with AAIC, < 2 for the SNP dataset were “Riparian + Water 4+ Scrub” and “Development”
(Table 5). From our analyses, riparian areas facilitated gene flow (8 = 0.022, respectively), scrub habitat
facilitated gene flow (8 = 0.0087), water impeded gene flow (8 = -0.033) and development impeded gene
flow (8 = -0.0038). The top models from Hauser et al. (2020) were ‘Agriculture + Development + Open’
and ‘Riparian +Agriculture + Open’. Hauser et al. (2020) indicated that agriculture and riparian areas
facilitated gene flow while development and open habitat impeded gene flow. Common variables across the
two datasets were riparian and development; the relationships of habitat with gene flow were similar. For
the subsampled microsatellite data, 11 of the 20 candidate models had AAIC, < 2, including the null model,
indicating a substantial loss of power using microsatellites with this reduced sample size (Table 5).

Discussion

There was overarching agreement in the inferences based on SNP and microsatellites datasets; both types
of markers detected the BCVI source-sink system with WR and ER as putative source populations and the
remaining populations as sinks. While we found agreement between the two marker types in the overall
patterns (i.e., asymmetrical gene flow, weak structuring, and admixture), specific results differed between
the datasets. Among population genetic estimates, we found statistically significant heterozygosity deficien-
cies in many populations, higher allelic richness in ER and WR, statistically significant pairwise Fg values
among population pairs, and detection of first-generation migrants. The microsatellite analyses found fewer
differences in heterozygosity or allelic richness among populations, and few pairwise Fgr tests were signifi-
cant. The SNP dataset was unsuccessful in reconstructing parentage, potentially due to insufficient power
associated with biallelic markers compared to multiallelic microsatellites. For the landscape genetic results,
the subsampled microsatellite data failed to identify any relevant top models. While the SNP and the full
microsatellite analyses (Hauser et al., 2020) yielded two important landscape variables in common (riparian
and developed), but the top models from these datasets were not in agreement for other variables.

Many of the discrepancies between the SNP and microsatellite results can be attributed to the higher
loci number and thus greater statistical power associated with SNP datasets. A large number of biallelic



SNPs deflate and restrict the range of heterozygosity, allelic richness, and Fgr values compared to those
of multi-allelic microsatellites (Weir & Hill, 2002). Regardless of marker used, most BCVI populations
had lower heterozygosity than expected, and putative source populations ER and WR, had significantly
higher allelic richness than the rest of the sites, but SNPs yielded fewer overlapping and smaller confidence
intervals with these genetic diversity estimates (higher precision). Our ability to detect fine-scale genetic
differentiation using SNPs improved with greater pairwise differentiation (Fgr). Previous studies have found
that SNPs are more accurate at estimating genetic diversity metrics (Mufloz et al., 2017; Seddon et al., 2005)
and genetic structuring (Liu et al., 2005; Morin et al., 2009; Seddon et al., 2005). However, the Bayesian
clustering approach STRUCTURE was unable to detect fine-scale population structuring for either marker.
This software has been found to perform poorly with fine-scale structure (Janes et al., 2017) and likely could
not disentangle small levels of structuring in this metapopulation. BCVIs show strong fine-scale structuring
(Athrey et al 2015), which may contribute to the results here. With high levels of gene flow characteristic of
a metapopulation (Edelaar & Bolnick, 2012), we would not expect to see strong genetic structuring in the
BCVI source-sink system.

The inability to reconstruct parentage using SNPs in the present study may be due to the lower informa-
tion content of SNP markers compared to the multiallelic microsatellites. Several studies have shown that
microsatellites outperform SNPs with parentage analyses because of their high polymorphism information
content per locus (Defaveri et al., 2013; Weinman et al., 2015). Further, parentage depends primarily upon
heterozygosity values to reconstruct relationships. As SNPs have lower heterozygosity values, they conse-
quently lose the ability to reconstruct relationships (Kaiser et al., 2017; Morin et al., 2004; Tokarska et al.,
2009; Weinman et al., 2015). Morin et al (2004) indicated that a heterozygosity minimum of 0.20 is required
for paternity exclusion analyses, but Blouin et al (1996) has found that even higher values (H, = 0.60 -
0.75) would be necessary to accurately reconstruct 15 order relationships. As the maximal heterozygosity
value possible with SNP loci is 0.50 (Tokarska et al., 2009), it is unsurprising that SNPs often provide in-
sufficient information to reconstruct parentage. Currently there is no consensus on the superior marker for
parentage analyses (Flanagan & Jones, 2019; Thrasher et al., 2018). Our other population genetic results
support the assertion that while SNP data have substantially higher statistical power than microsatellite
data, these benefits do not extend to parentage analysis due to the low heterozygosity values (0.153 — 0.176).
For this system and many other non-model systems in which low genetic diversity and/or bottlenecks have
occurred (i.e., threatened or endangered species), microsatellites may be the superior marker for parentage
reconstruction.

Despite SNPs’ purported higher resolution into population genetic processes, as seen here and many other
comparisons (Kaiser et al., 2017; Kleinman-Ruiz et al., 2017; Seddon et al., 2005), significant findings do not
necessarily translate to biologically relevant differences. Statistically significant differences found in genetic
diversity (heterozygosity and allelic richness) and structure metrics (Fgr) among the BCVI study sites
were extremely small (on the order of thousandths) and may lack biological significance. When calculating
population genetic metrics, large SNP datasets, such as ours, increase the chance of statistically significant
results (using p-values or 95% confidence intervals) and Type I error of results (Wigginton et al., 2005).
The insights gleaned from the microsatellite and SNP data were similar in terms of population dynamics:
high connectivity among sites and asymmetrical gene flow from source populations (WR and ER) to sink
populations.

This study serves as one of the first direct marker comparisons in a landscape genetic context showing
varying results between SNPs and microsatellites. Neither SNPs nor microsatellites found any evidence for
isolation by distance, as would be expected for a metapopulation with considerable admixture as found here
(Gaggiotti, 1996; Jenkins et al., 2010). Isolation-by-distance as a model in the linear mixed model analysis
consistently showed low support for the SNP and full microsatellite datasets. While both datasets identified
overlapping landscape variables (riparian and human development) we found some discrepancies between
the top models of each marker. The landscape genetic analyses with SNPs identified additional landscape
variables to the full microsatellite dataset (Hauser & Leberg, 2020): scrub and water, while not identifying
agriculture and open habitat in top models. Scrub is the breeding habitat of the BCVI and would be expected



as both a top model and an important landcover type for facilitating dispersal. Large water bodies in this
area, not associated with riparian areas, are likely driving the negative relationship between water and gene
flow. The full microsatellite analysis found that agricultural areas facilitated gene flow, opposite to predictions
and BCVI observations. The subsampled microsatellite data did not yield any significant top models as it
indicated that 11 of the 20 a priori models were equally informative and as equally as informative as the null
model, isolation by distance, for which formal testing showed no relationship. While we cannot say which
marker produces the more accurate results in this system, landscape genetic analyses using microsatellites
require higher sampling compared to SNP analyses. Nevertheless, it is promising that both markers identify
similar landscape variables (riparian and scrub) that have been corroborated by observational and telemetry
data (Dittmar et al., 2014).

Formal comparisons between SNPs and microsatellites have been lacking in landscape genetics, especially in
populations recovering from bottlenecks. While our comparison helps to fill said gap, it is not satisfactory in
a complete investigation of marker performance. Genetic distance metrics are often more precisely estimated
using SNPs (Morin et al., 2009; Mufioz et al., 2017) and therefore could yield more accurate landscape
genetic inferences. However, metrics such a Dps as used in the present study have not been used in formal
comparison and simulation studies. We need further investigations in landscape genetics to understand the
respective accuracy and precision of microsatellites and SNPs, especially as many contemporary landscape
genetics research is being done with one marker or the other.

We show that overall SNP and microsatellite data can infer similar biological processes and patterns. Micro-
satellites can still be used for a wide variety of population or conservation questions despite a large adoption
of genomics techniques in the field. We especially want to make this assertion for systems with existing or
legacy microsatellite panels, in which development of new markers would be costly, piecewise genotyping is
commonplace (as found in management), or where bioinformatics expertise or computational power is not
accessible. Further, microsatellites often are the marker of choice for parentage assignment as they are (at
present) better suited than SNPs, economical, and demonstrably repeatable. In species with low genetic
diversity or that have experienced bottlenecks, especially prevalent in conservation genetics, microsatellites
will provide the necessary power in parentage analyses that SNPs cannot. Nevertheless, in developing new
molecular markers for a population genetic study, SNPs are less expensive per locus than microsatellites
and have substantially more statistical power than microsatellites for most comparisons, yielding a cost-
effective approach over microsatellites. SNPs also allow for investigation into adaptive variation with loci
under selection whereas microsatellites cannot (Ahrens et al., 2018; Helyar et al., 2011). We urge researchers
to thoroughly consider the utility of each marker based on their system and urge reviewers and editors to
not disregard research using microsatellites. This comparison serves as an illustration of such a case whe-
re microsatellites and SNPs results converge in conclusions and microsatellites still maintain a function in
population genetics.
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Tables

Table 1. Summary of sample size, expected heterozygosity (He), observed heterozygosity (H,), and allelic
richness (A,) over 12 microsatellite loci. 95% confidence intervals are in parentheses. The subsampled
microsatellite analysis is featured in the top panel (n = 178) and the SNP analysis is featured in the bottom
panel (n= 178).

Microsatellites
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SNPs

Note. BC: Balcones Canyonlands National Wildlife Refuge; CB: Colorado Bend State Park; ER: East Range (Fort Hood); |

Table 2. Genetic differentiation between sites sampled for black-capped vireos. Pairwise Fgt values are
depicted on the lower left and 95% confidence intervals are depicted on the upper right. Values that are
significant, i.e., the 95% confidence interval overlaps with 0, are in bold. The subsampled microsatellite
analysis is featured in the top panel (n = 178) and the SNP analysis is featured in the bottom panel (n=
178).

Microsatellites

SS
BC
CB
ER
MD
WR
SNPs

SS

BC

CB

ER

MD

WR

Note.SS: San Saba Property; BC: Balcones Canyonlands National Wildlife Refuge; CB: Colorado Bend State Park; ER: Eas

Table 3. The total number of detected 1st generation migrants (# M), proportion of total migrants de-
tected (% M), estimated population size (N), and proportion of abundances that are migrants (%N) in each
population (GENECLASS2). The subsampled microsatellite analysis is featured in the top panel (n = 178)
and the SNP analysis is featured in the bottom panel (n= 178).

Microsatellites
Population
Central Texas

Fort Hood

SNPs
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Population
Central Texas

Fort Hood

Note. BC: Balcones Canyonlands National Wildlife Refuge; CB: Colorado Bend State Park; ERc: East Range (Fort Hood);

Table 4. The number of offspring assigned to candidate offspring (CERVUS) and designated as Migrants or
Residents (N) using the subsampled microsatellite data. Directional movement between regions (Fort Hood
(FH) and central Texas (CT) (ex: FH to CT denotes movement from Fort Hood to central Texas), percentage
of each subcategory, migrants or residents, (%) and percentage of total number of assigned offspring (% Total)
are also shown. Assignment data using SNP data not shown as there were no successful parent-offspring
assignments.

Movement Movement % % Total

Migrants 16 - 80
FH to CT 4 25 20
CT to FH 1 6 5
CT to CT 1 6 5
FH to FH 10 63 50
Residents 4 - 20
CT 0 0 0
FH 4 100 20

Table 5. Summary of linear mixed effects models results including AICc, delta AICc values and AICc weights
for the candidate models. Bolded values indicate delta AICc values less than 2. Scores for our null model,
isolation by distance are italicized. Numbers next to variable names (e.g., Agl100) indicate the optimized
value parameterized for the associated variable in CIRCUITSCAPE. The subsampled microsatellite analysis
is featured in the left panel (n = 178) and the SNP analysis is featured in the right panel (n= 178).

Microsatellites

Model

Open2

Wetland001

Agl00

Euclidean Distance (Null)
Elevation

Water100

Scrub05

Dev100

Forest001

Elevation + Wetland001
Elevation + Scrub05
Wetlands001 + Water100 + Scrub05
Ag100 + Dev100 + Open2
From_BHCO

From_Scrub

Wetland001 + Agl00 +Open2
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Wetlands001 + Water100 + Agl00 + Open2

From_Scrub + From _BHCO

Water100 + Wetland001 +Scrub05 + From_BHCO + From_Scrub

Water100 + Wetland001 + Agl00 + Open2 + From_Scrub + From_BHCO

Note: Ag: agriculture, Dev: developed, Distance: Isolation-by-distance, From_BHCO: the level of BHCO control at the emi

Figure Captions

Figure 1. Black-capped vireo study sites in central Texas (black circles) including Balcones Canyonlands
(BC), Colorado Bend State Park (CB), San Saba Property (SS) and on Fort Hood (black triangles) including
East Range combined (ER), Maxdale (MD), and West Range combined (WR). The six landscape cover types
depicted as follows: agricultural croplands in brown, human development in magenta, forest in green, open
habitat (including grazing lands) in yellow, scrub in orange, water bodies in navy blue, and wetlands in light
blue.

Figure 2. Genetic diversity estimates (dots) with 95% confidence intervals (error bars) per BCVI population:
BC, CB, ER, MD, SS, WR. Observed and expected heterozygosity (blue and orange, respectively) per
population in the left panel and allelic richness (Ar, in black) per population on the right panel. Estimates
in which their 95% confidence intervals overlap are not statistically different.

Figure 3. Pairwise Fgr estimates (dots) with 95% confidence intervals (error bars) between BCVI pop-
ulations: BC, CB, ER, SS, MD, WR. Estimates that overlap with 0 are not statistically significant and
estimates in which 95% confidence intervals overlap are not statistically different from one another.

Figure 4. Weak to no population structuring among BCVI populations (BC, CB, SS, ER, MD, and WR).
STRUCTURE barplots for k values (number of unique clusters) 2 through 4. Each vertical line represents
the genetic signature of an individual with colors representing each cluster.

Figure 5. No signature of isolation by distance at an individual (left panel) or population level (right panel).
The relationship between genetic similarity (proportion of shared alleles; Dps) on the y-axis and Euclidean
distance (in meters; m) on the x-axis.

Hosted file

BCVI_SNP_Figurel_v2.pdf available at https://authorea.com/users/392014/articles/506031-
waste-not-want-not-microsatellites-remain-an-economical-and-informative-technology-for-
conservation-genetics
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