Theoretical Study on CO2 Hydrogenation Mediated by Ru-PNP Pincer Complexes: An Implication Towards Rational Catalyst Design

Shahnaz Rohman¹, Chayanika Kashyap¹, Amlan Kalita¹, Sabnam Ullah¹, Indrani Baruah¹, Lakhya Mazumder¹, and Ankur Guha¹

¹Cotton University

January 26, 2021

Abstract

Catalytic CO2 reduction mediated by Ru-PNP pincer complexes has been studied using density functional theory (DFT). Calculations clearly reveal that modification of the PNP pincer framework by introducing planar conjugation in the backbone improves the catalytic efficiency. Activation strain model reveals that reduction of strain in the transition states with modified PNP framework associated with the insertion of CO2 molecule is responsible for lowering the activation barrier. Calculations also reveal that electron withdrawing substituents at the PNP ligand improves the catalytic performance.

Hosted file

MS-IJQC.pdf available at https://authorea.com/users/297271/articles/505895-theoretical-study-on-co2-hydrogenation-mediated-by-ru-pnp-pincer-complexes-an-implication-towards-rational-catalyst-design