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Abstract

Background and Purpose: Individualized assessment of the activity of cytochrome P450 2D6 (CYP2D6), a highly variable drug-
metabolizing enzyme, is performed through phenotyping during which a probe drug is administered to measure the enzyme’s
activity. In order to avoid any iatrogenic harm (allergic drug reaction, dosing error) related to the probe drug, the development
of non-invasive tools for real-time phenotyping of CYP2D6 could significantly contribute to the expansion of precision medicine
in clinical practice. This study focuses on the identification of endogenous markers of the CYP2D6 enzyme in human biofluids
using a liquid chromatography (LC)-high-resolution mass spectrometry (HRMS)-based metabolomics approach. Experimental
Approach: Data from a control session were compared to data from an inhibition session. Before the latter, healthy volunteers
(extensive and ultrarapid metabolizers) received a daily dose of paroxetine 20 mg over seven days. CYP2D6 genotyping and
phenotyping, using single oral dose of dextromethorphan 5 mg, were also performed in all participants. Key Results: In
CYP2D6 extensive and ultrarapid metabolizers (n = 37), mean relative intensities of five features were significantly reduced
during the inhibition session compared to the control session (fold changes [?] 0.67, FDR-adjusted P < 0.0001). Furthermore,
mean relative intensities of these candidates were significantly higher in the CYP2D6 extensive-ultrarapid metabolizer group (n
= 37) compared to the poor metabolizer group (n = 6) (fold changes [?] 0.67, P < 0.0001). Conclusion and Implications: The
applied untargeted metabolomics strategy was able to identify five CYP2D6 endogenous metabolites, a promising discovery for
non-invasive phenotyping and personalised medicine.
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Gaëlle Magliocco1,2, Alain Matthey1,3, Nasim Bararpour4,5, Timothée Joye4,5, Yvonne Gloor1, Jules
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BULLET POINT SUMMARY

What is already known ?

CYP2D6 shows significant interindividual variability in activity due to genetic polymorphism and environ-
mental causes.

Current CYP2D6 phenotyping methods require xenobiotics administration with risk of adverse events and
time constraint.

What this study adds

Five endogenous urinary and plasma compounds were characterized as promising CYP2D6 biomarkers.

Mean relative intensities decreased significantly during drug-induced inhibition and in poor versus extensive
metabolizers.

Clinical significance

Replacing CYP2D6 probe drugs with endogenous biomarkers is a step forward towards personalized medicine.

This methodology eliminates any risks due to exogenous substances and facilitates phenotyping in vulnerable
populations.
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ABSTRACT

Background and Purpose : Individualized assessment of the activity of cytochrome P450 2D6 (CYP2D6), a
highly variable drug-metabolizing enzyme, is performed through phenotyping during which a probe drug is
administered to measure the enzyme’s activity. In order to avoid any iatrogenic harm (allergic drug reaction,
dosing error) related to the probe drug, the development of non-invasive tools for real-time phenotyping of
CYP2D6 could significantly contribute to the expansion of precision medicine in clinical practice. This study
focuses on the identification of endogenous markers of the CYP2D6 enzyme in human biofluids using a liquid
chromatography (LC)-high-resolution mass spectrometry (HRMS)-based metabolomics approach.

Experimental Approach : Data from a control session were compared to data from an inhibition session. Before
the latter, healthy volunteers (extensive and ultrarapid metabolizers) received a daily dose of paroxetine 20
mg over seven days. CYP2D6 genotyping and phenotyping, using single oral dose of dextromethorphan 5
mg, were also performed in all participants.

Key Results : In CYP2D6 extensive and ultrarapid metabolizers (n = 37), mean relative intensities of
five features were significantly reduced during the inhibition session compared to the control session (fold
changes [?] 0.67, FDR-adjusted P < 0.0001). Furthermore, mean relative intensities of these candidates
were significantly higher in the CYP2D6 extensive-ultrarapid metabolizer group (n = 37) compared to the
poor metabolizer group (n = 6) (fold changes [?] 0.67, P < 0.0001).

Conclusion and Implications : The applied untargeted metabolomics strategy was able to identify five
CYP2D6 endogenous metabolites, a promising discovery for non-invasive phenotyping and personalised
medicine.

KEY WORDS

CYP450, phenotyping, metabolomics, CYP2D6, endobiotics

ABBREVIATIONS

AS Activity score

CYP2D6 Cytochrome P450 2D6

DDIs Drug-drug interactions

DEM Dextromethorphan

DOR Dextrorphan

EM Extensive metabolizer

PM Poor metabolizer

UM Ultrarapid metabolizer

UMR Urinary metabolic ratios

INTRODUCTION

Interindividual and intraindividual variability in drug response can lead to insufficient therapeutic efficacy
or life-threatening adverse events (Kaddurah-Daouk et al., 2014). In this context, precision medicine aims
to improve therapeutic outcomes by integrating the entire genetic and phenotypic knowledge specifically

3
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. related to an individual. Pharmacogenomics and pharmacometabolomics are both major and complementary
approaches to precision medicine (Beger et al., 2016).

Pharmacogenomics is the use of patient-specific information associated with the genome to study individual
response to drugs, while pharmacometabolomics focuses on the metabolome (profile of low molecular weight
molecules within a biological system) (Schrimpe-Rutledge et al., 2016; Pang et al., 2019; Wake et al.,
2019). Metabolomics allows identification and understanding of pathways involved in drug-response variation
(Kaddurah-Daouk et al., 2014). It is also an important tool in the discovery of biomarkers that can be applied
to personalized medicine (Villasenor et al., 2014; Jensen et al., 2017; Ivanisevic and Thomas, 2018; Yeung,
2018). Biomarkers help monitor the evolution of a disease and the corresponding response to drugs, as well
as better predict the clinical outcomes (Kohler et al., 2017). For instance, testosterone glucuronide, when
normalized by androsterone glucuronide, can be used as a urinary biomarker of an androgen- and drug-
metabolizing enzyme (i.e. UGT2B17), as recently shown through targeted metabolomics analysis (Zhang et
al., 2020). Five ω- and (ω-1)-hydroxylated medium-chain acylcarnitines have also been identified as novel
CYP3A biomarkers using an untargeted metabolomics approach (Kim et al., 2018).

The cytochrome P450 2D6 (CYP2D6) is responsible for the metabolism of around 25% of all drugs used in
clinical practice including antidepressants, analgesics, β-blocking agents and antipsychotics (Gaedigk, 2013).
Prescribing CYP2D6 drug substrates is often challenging for physicians because of the large variability in the
activity of this enzyme. CYP2D6 is a highly polymorphic gene locus and genotyping assays can be used to
predict enzyme activity (Nofziger et al., 2020). However, relying only on genotyping has several limitations.
First, it does not take into account environmental factors such as concomitant medications, food intake and
disease-related factors (Gaedigk et al., 2018). Second, depending on the technology and database used, some
of the rare variants may not be screened or even identified, and an allele may be erroneously categorized as
functional (Gaedigk et al., 2018). And third, when duplication or multiplication is detected, a majority of
copy number tests do not distinguish which of the two allele has several copies (Langaee et al., 2015; Shah
et al., 2016). Therefore, in clinical practice, precision medicine must rely on both real-time phenotyping
and genotyping in order to provide the best possible recommendations. Currently, CYP2D6 phenotyping
requires the administration of an exogenous probe drug specifically metabolised by this isoenzyme (Samer et
al., 2013; Magliocco et al., 2019). Microdosing of the probe drug and enhanced detection capacities of mass
spectrometry have lowered the risk of probe-related side effects. However, potential iatrogenic harm (allergic
reaction, dosing errors) would only be totally eliminated if endogenous probes were available (Magliocco et
al., 2019; Magliocco and Daali, 2020). A recent review summarized human endogenous compounds that
have been tagged as potential CYP2D6 markers (Magliocco et al., 2019). One of them stands out. It is a
very promising urinary biomarker named M1 (m/z 444.3102). It was characterised, but not yet structurally
identified in a non-targeted metabolomics study (Tay-Sontheimer et al., 2014). Some in vitro and animal
studies have also demonstrated that CYP2D6 metabolizes the endocannabinoid anandamide (Snider et al.,
2008).

Our main objective in this study was to explore the presence of CYP2D6 biomarkers in human urine and
plasma, using an untargeted metabolomics approach. For this purpose, healthy volunteers were invited to
two sessions (control vs inhibitory). Prior to the inhibitory session, volunteers received over 7 days, a daily
dose (10 or 20 mg) of the strong CYP2D6 inhibitor paroxetine. The CYP2D6 genotype and phenotype were
also integrated in the data analysis.

METHODS

Study design and population

This study protocol (NCT04188028) was approved by the Geneva Research Ethics Committee and the
Swiss Agency for Therapeutic Products (Swissmedic). All participants provided written informed consent
before inclusion. Protocol conception and trial conduct were performed in accordance with the Declaration

4
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. of Helsinki ethical principles and the Good Clinical Practice guidelines of the International Congress of
Harmonization.

Inclusion criteria were the following: age between 18-65 years, body mass index between 18-27 kg m-2,
CYP2D6 genotype activity score (AS) = 0 or [?] 1 (Gaedigk et al., 2008), reliable contraception during the
whole study, including a barrier method.

Exclusion criteria included: pregnancy/breastfeeding, any pathology, drug or food affecting CYP activity,
tobacco consumption ([?] 10 cigarettes/day), alcohol intake 2 days prior to session 1 and during paroxetine
intake, hepatic impairment, medical history of chronic alcoholism or abuse of psychoactive drugs, regular use
of psychotropic substances, drug sensitivity, psychiatric disorders, and Beck Score [?] 10 (question related
to suicide >0).

Forty-three healthy volunteers participated in this study, which was conducted in two sessions. Each ses-
sion included the oral administration of 5 mg dextromethorphan (DEM) (BEXIN syrup, Spirig Healthcare,
Egerkingen, Switzerland) to participants after an overnight fast and urine collection for 4 hours following the
administration of DEM for CYP2D6 phenotyping. For metabolomic analyses, prior to DEM administration,
urine samples were also collected over a full 24-hour period and venous blood samples were collected in tubes
containing EDTA (BD Vacutainer, Plymouth, UK) immediately before DEM ingestion. Breakfast was served
1 hour after DEM intake. At session 2, the study course was similar but participants were asked to take 20
mg (10 mg for poor metabolizer (PM) subjects) of paroxetine (PAROXETIN-MEPHA, Basel, Switzerland),
a time-dependant inhibitor, every morning for one week (7 doses in total) with the breakfast (Storelli et
al., 2019). Participants were specifically asked about the time at which paroxetine tablets were taken and
were asked to bring back empty blister packs to verify compliance. For women participating in the study,
a pregnancy test was performed at inclusion and at each session prior to any medication administration.
Plasma was obtained through centrifugation at 2,750g for 10 min. All blood and urine samples were stored
at -80°C until analysis.

Quantification of dextromethorphan and dextrorphan

Subsequent to chemical hydrolysis and liquid-liquid extraction (Daali et al., 2008), DEM and dextrorphan
(DOR) were quantified in urine by liquid chromatography-tandem mass spectrometry (Sciex, Darmstadt,
Germany). CYP2D6 phenotype was determined based on the urinary metabolic ratio dextromethorphan to
dextrorphan (UMRDEM/DOR) as follows: PM phenotype (UMRDEM/DOR [?] 0.3), intermediate metabolizer
(IM) phenotype (UMRDEM/DOR between 0.03-0.3), extensive metabolizer (EM) phenotype (UMRDEM/DOR

between 0.003-0.3) and ultrarapid metabolizer (UM) phenotype (UMRDEM/DOR < 0.003) (Gaedigk et al.,
2008).

CYP450 genotyping

Genomic DNA was extracted from whole blood (200 μl) using the QIAamp DNA Blood Mini Kit (Qia-
gen, Hombrechtikon, Switzerland). Fourteen CYP2D6 allelic variants were screened using the TaqMan®
OpenArray® PGx Panel (Thermo Fisher Scientific, Waltham, USA) performed on the QuantStudio 12K
Flex real-time PCR system in compliance with the manufacturer’s instructions. The following mutations
were considered: 2850C>T, 4180G>C, 2549delA (*3), 100C>T (*4, *10), 1846G>A (*4A). 1707delT (*6),
2935A>C (*7). 1758G>T (*8), 2613 2615delAGA(*9), 124G>A (*12), 1758G>A (*14). 1023C>T (*17),
3183G>A (*29), 2988G>A (*41). Regarding CYP2C9 the following mutations were measured: 430C>T,
3608C>T (*2), 1075A>C, 42614A>C (*3). CYP2C19*2 (681G>A, 19154G>A), CYP2C19*3 (636G>A,
17948G>A) and CYP2C19*17 (806C>T) were also determined, as well as CYP3A4*22 (15389C>T) and
CYP3A5*3 (6986A>G).

CYP2D6 Taqman(r) Copy Number Assay (assay ID: Hs00010001 cn targeting exon 9, Applied Biosystems,
Foster City, USA) was performed on a 7900HT Fast Real-Time PCR System (Applied Biosystems, Thermo
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. Fisher Scientific, CA, USA) instrument for the detection of gene deletion (*5 allele) and duplication.

CYP2C9, CYP2C19, CYP2D6 and CYP3A activity scores were assigned using previously developed scoring
system (Gaedigk et al., 2008; Elens et al., 2011; Karnes et al., 2020; Lima et al., 2020). Values of 0, 0.5, 1
and 1.5,were assigned to the non-functional, reduced function, fully functional and gain-of-function alleles,
respectively (Tay-Sontheimer et al., 2014). In the case of CYP2D6, the values for alleles with two or more
gene copies are multiplied by the number of gene (Gaedigk et al., 2018). Summing the values of the two
alleles gives the AS of a genotype (Gaedigk et al., 2018).

Untargeted metabolomics analysis by LC-HRMS

300 μL of methanol/ethanol (50:50) containing hydrocodone-D6 and phenobarbital-D5 100 ng/mL (internal
standards for positive and negative modes, respectively) were added to 100 μL of urine or plasma for protein
precipitation. Samples were centrifuged for 20 min at 16,000g. The supernatant was then evaporated under
a stream of nitrogen, reconstituted in 100 μL of 10% methanol and 5 μL were injected into the LC-MS
system.

Non-targeted metabolomics analyses were carried out using a LC system Ulimate 3000 coupled to a Q
Exactive Plus system (Thermo Scientific Fisher, Bremen, Germany).(Forchelet et al., 2018; Kowalczuk et
al., 2018) Separation was performed with a Kinetex® C18 column (50 × 2.1 mm, 2.6 μm) from Phenomenex
(Brechbühler, Switzerland) with mobile phases consisting of water (A) and methanol (B) both containing
0.1% formic acid. The flow rate was fixed at 0.3 mL/min over 13 minutes. Gradient program was set as
follows: 2% B (0-0.3 minutes), 2-98% B (0.3-6 minutes), 98-100% B (6-9 minutes), 100-2% B (9-9.1 minutes),
and 2% B (9.1-13 minutes). Quality controls (i.e. pooled aliquots of all clinical study samples) were included
in the analytical sequence at regular intervals. Data was acquired in a full scan mode in both positive and
negative polarities. The parameters were set as follows: the capillary voltage at 3.2 kV and 2.5 kV in positive
and negative mode, respectively, sheath and auxiliary gas flow rate at 40 and 10 respectively, capillary
temperature at 320 degC and S-lens RF level at 50.

Untargeted metabolomics Data and Statistical Analysis

The raw UPLC-HRMS files were converted to .mzXML format using MSConvert (ProteoWizard 3.0,
http://proteowizard.sourceforge.net/) and pre-processed using the XCMS Online platform for features detec-
tion, chromatogram alignment, isotope annotation and data visualization (https://xcmsonline.scripps.edu).

All data transformation and statistical analyses were performed using MetaboAnalyst
(https://www.metaboanalyst.ca/). Data were sum-normalized, Pareto-scaled and log-transformed.
Subsequently, features were filtered, and only those with a CV less than 20% in the QC samples were
selected. Isotopes were filtered out and finally (Kim et al., 2018), ions of zero intensity in >20% of all
participants in both sessions were excluded.

Zero values were replaced by the half of the minimum value found for the corresponding hit (Xia and Wishart,
2011). Principal Component Analysis (PCA) was performed using QC samples to assess performance and
stability of the system. Data Volcano plots were generated in order to filter metabolites that displayed
both significant fold changes ([?] 1.5 or [?] 0.67) and statistical significance (FDR adjusted P -value <
0.05) between the control and the inhibition session in non-PM subjects (n = 37). The significant features
obtained were then filtered out according to genotype: fold changes of relative intensity in the CYP2D6 EM-
UM group (n = 37) compared to the PM group (n = 6) [?] 0.67 or [?] 1.50 (P -value < 0.05). The data and
statistical analysis comply with recommendations of the British Journal of Pharmacology on experimental
design and analysis (Curtis et al., 2018).
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. CYP2D6 biomarkers identification

Metabolites molecular formulas were investigated further using MS fragmentation and isotope pattern anal-
ysis with SIRIUS 4.0.1 (Duhrkop et al., 2019). The glucuronide metabolites were enzymatically deconju-
gated prior to MS fragmentation using the β-Glucuronidase /Arylsulfatase mixture from Roche Diagnostics
(Mannheim, Germany) in sodium acetate buffer (1 M, pH 5.0) at 37°C (Schmidt et al., 2013). Main meta-
bolomics databases: LIPID MAPS® (https://www.lipidmaps.org/), METLIN (https://metlin.scripps.edu/)
and HMDB (http://www.hmdb.ca/) were then used to assist in the identification of molecular structures of
significant features on the basis of the available experimental data (i.e. exact molecular weights, molecular
formulas, fragmentation patterns).

Production Reaction Monitoring analysis

To improve sensitivity, validate and refine results, a semi-quantitative method using HRMS-based PRM
was developed. The chromatographic separation was performed using a LC system Vanquish coupled to
a Q Exactive Focus system (Thermo Scientific, Bremen, Germany). The preparation of urine and plasma
samples as well as the chromatographic and mass spectrometry conditions were identical to those of the
metabolomics analyses, except that the extracts were concentrated twice (reconstitution in 50 μL of 10%
methanol). Hydrocodone-d6 at 15 ng/mL was used as internal standard. The resolution was set at 17’500 for
the fragmentation experiments with an AGC target of 5e4 and a maximum IT of 100 ms. The NCE values for
each compound were set individually and urinary creatinine concentration was used for data normalization.

Production Reaction Monitoring Data and Statistical analysis

Comparisons of two dependent and independent groups were performed using paired and unpaired t test
(two-tailed), respectively. Measures of associations were established using Spearman’s rank correlation. The
statistical analyses were performed using GraphPad Prism 8.0.1 software (San Diego, USA). A P value below
0.05 was considered statistically significant. The data and statistical analysis comply with recommendations
of the British Journal of Pharmacology on experimental design and analysis (Curtis et al., 2018).

Nomenclature of Targets and Ligands

Key protein targets and ligands in this article are hyperlinked to corresponding entries in
http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHAR-
MACOLOGY (Harding et al., 2018), and are permanently archived in the Concise Guide to PHARMACOL-
OGY 2019/20 (Alexander et al., 2019).

RESULTS

Healthy subjects

A total of 43 healthy subjects were enrolled (Table 1 ). Forty-two completed the study while one among the
PM subjects only attended the control session. The mean age was 24 (range 19-29) with a slightly higher
proportion of females (55.8 %, n = 24). Among women participants, 45.8% used oral contraceptive pill (n
= 11).

CYP2D6 genotype and phenotype

Based on genotyping analyses, 6 participants were classified as PM subjects (genetic-predicted activity score
(gAS) = 0), 33 as EM subjects (1 [?] gAS [?] 2) and 4 as UM subjects (gAS > 2) (Gaedigk et al., 2008; Crews
et al., 2014). UMRDEM/DOR were measured to establish CYP2D6 phenotype. As illustrated in Figure 1a ,
mean CYP2D6 activity was significantly reduced after paroxetine intake compared to control session (P <

7
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. 0.0001), demonstrating an effective inhibition of CYP2D6 activity by paroxetine. In addition, a significant
Spearman’s rank correlation coefficient ofr s = 0.791 (P < 0.0001) was found between the logarithm of
UMRDEM/DOR and AS groups (Figure 1b ).

Untargeted metabolomics analysis

Using untargeted metabolomics assays, the goal of this project was to identify biomarkers of CYP2D6 in
urine and plasma reflecting the activity of the enzyme. Figure 2 shows the flowchart of the data analysis,
from data extraction to statistical analysis. After the filtering steps, 8926 and 5997 ions in plasma and
urine, respectively, were processed for statistical analysis, including sum-normalisation, log-transformation
and Pareto scaling. PCA scores plot revealed a tight clustering of QC samples (Supplementary Figure
S1 ) indicating high experimental quality for both urine and plasma samples.

As seen in Table 2 , five endogenous metabolites were significantly decreased in urine and/or plasma
during the CYP2D6 inhibition phase relative to baseline with the following m/z in positive mode: 220.1545,
416.3159, 432.3108, 444.3108 and 597.3382 (595.3236 in negative mode). The largest reduction was observed
form/z 597.3382 (0.13-fold). In parallel, their intensity was significantly lower in PM subjects than in
EM-UM volunteers (fold changes [?] 0.67). These observations strongly imply that these five features are
metabolites produced via the CYP2D6 enzyme.

Structure identification

All MS/MS fragmentation patterns are shown in Figure 3 . Due to the presence of a glucuronide moiety,
the feature m/z 597.3382 was also enzymatically hydrolysed prior to MS/MS fragmentation, resulting in
m/z 421.3061 (-176.0321 Da).

MS/MS fragmentation of m/z 220.1543 was difficult to obtain because several compounds with close mass
(i.e. m/z 220.0966, 220.1329) co-elute. At 10 eV it is however possible to observe four losses of water
(-18.0109 Da): 202.1436, 184.1331, 166.1226 and 148.1120.

The compounds m/z 416.3159, 432.3108 and 444.3108 have identical fragmentation patterns, with a major
fragment at 98.0967. The skeletal structure appears therefore similar for these three compounds, which
differ by one or two atoms: carbon loss between 444.3108 and 432.3108 (-12.0000 Da), oxygen loss between
432.3108 and 416.3159 (-15.9949 Da), and carbon-oxygen loss between 444.3108 and 416.3159 (-27.9949 Da).
Regarding the feature m/z 444.3108, we observed the same MS/MS fingerprint described by Tay-Sontheimer
et al. (fragment ions atm/z: 98.0967, 370.2733, 206.1900, 56.0501, 55.0549, 150.1275 and 81.0703) (Tay-
Sontheimer et al., 2014).

As described above, one of the major fragments of m/z 597.3382 is 421.3061, which corresponds to neutral
loss of a glucuronide moiety. Chromatograms before and after hydrolysis shown in Supplementary Figure
S2 confirm the presence of a glucuronide since the conjugated peak (m/z 597.3382) decreases and the
deconjugated peak (m/z 421.3061) increases after hydrolysis.

Molecular formula for all compounds was obtained through fragmentation and isotope pattern analysis using
SIRIUS 4.0.1. Results are described in Table 3. Fragmentation trees are presented inSupplementary
Figure S3-S8 . Interestingly, all the features contain one or two nitrogen atoms. Using exact mass, mass
spectral databases were employed for potential features annotation and identification as shown in Table
3 . Results were, however, inconclusive in HMDB (no results for the query masses). In LIPID MAPS,
only m/z 416.3159 showed a potential match: N-linoleyl dopamine. Nonetheless, this lipid normally has
a characteristic and predominant fragment at 137, which was not observed, making this finding unlikely
(Thomas et al., 2009). In METLIN, the feature m/z 444.3108 matches a prostaglandin derivative: 17-phenyl
trinor PGF2α diethyl amide. However, MS/MS fragmentation patterns are not concordant.
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. Based on these findings and the physicochemical properties of these compounds, in particular their high re-
tention times and molecular weight, it is likely that they belong to lipid species, including a lipid glucuronide.

Relative quantification using a PRM method

MS parameters were first optimized to enhance data quality using parallel reaction monitoring (PRM)
mode. In order to obtain the optimal collision energy (CE) for each metabolite, the NCE were considered
individually using a step of 10. The results are presented inTable 4 . All analytes were detectable in the
urine samples of EM and UM subjects, with the exception of PM volunteers regardingm/z 432.3108 and
444.3108. Metabolites corresponding tom/z 220.1543 and 432.3108 were not measurable in any of the plasma
samples. Also, metabolites with m/z 416.3159 and 444.3108 were not detectable in plasma samples of PM
participants.

The results confirmed the significant down-regulation observed after paroxetine intake compared to the
control session for all five hits in both urine and plasma samples (Figure 4a and 5a ). Likewise, the
compounds were not detectable or significantly down-regulated in PM subjects compared to EM-UM partic-
ipants(Figure 4b and 5b ). Going even further, significant correlations were observed between log(area) and
log(UMRDEM/DOR) (Figure 4c and 5c ). Significant correlations between log(area) and CYP2D6 activity
score were also described, with UM subjects (gAS > 2) having the highest mean intensities (Figure 4d and
5d ). AllP were < 0.05.

Mean relative intensity of m/z 220.1543, 416.3159 and 597.3382 was unchanged in PM subjects after parox-
etine intake compared to baseline, indicating that changes are solely due to CYP2D6 inhibition (Figure 6)
. Indeed, PM individuals do not express the enzyme CYP2D6. Therefore, a down-regulation in PM subjects
would indicate the presence of false positives rather than changes due to CYP2D6 inhibition.

No significant correlation was observed with any CYP450 activity score other than CYP2D6
(Supplementary Table S1).

DISCUSSION

This study analysed the metabolome of 43 healthy volunteers in order to identify novel endogenous biomarkers
associated with CYP2D6 activity, using non-targeted metabolomics assays applied to urine and plasma
samples. Drug-induced CYP2D6 inhibition and the search for CYP2D6 polymorphisms were taken into
account for the identification of endogenous metabolites. Five endogenous metabolites could potentially act
as probe for testing CYP2D6 activity as shown in Table 2 . All of them were significantly reduced after
seven days of paroxetine intake compared to baseline. These results were reinforced and validated thanks to
the significant reduction observed for the five candidates in the PM group compared to the EM-UM group.
One of them had a similar mass-to-charge ratio to the urinary biomarker M1 (m/z 444.3102) reported earlier
(Tay-Sontheimer et al., 2014). In their study, M1 was below detection limit in PM paediatric subjects and
its levels were reduced by drug-induced inhibition of CYP2D6 in adults. However, only urine samples were
tested and we hypothesise that their methodology might not have been sensitive enough to detect the four
other compounds highlighted in our study since they have lower signals than m/z444.3108. Until now, they
did not characterize the chemical structure ofm/z 444.3108. The formal identification of metabolites is
one of the main challenges of untargeted metabolomics (Alonso et al., 2015; Ivanisevic and Thomas, 2018).
Multiple databases have been developed and are regularly updated to help scientists with this process. But a
large proportion of the compounds, which have been revealed by untargeted metabolomic profiling, remains
unidentified (Blaženović et al., 2018). For structure elucidation, fragmentation mass spectra is required to
improve confidence in metabolite identification (e.g. matching of an experimental MS/MS spectrum with
a reference fragmentation spectrum) (Alonso et al., 2015). Analysis of isotope patterns is another mean
for the determination of the most likely elemental composition of metabolites. SIRIUS 4 is a software that
combines both isotope pattern and MS/MS data through fragmentation tree (Dührkop et al., 2019). It was
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. successfully used within the framework of this project, allowing the elucidation of molecular formulas. The
physicochemical properties of the five hits show that they are most likely lipids, one of them being a lipid
glucuronide. More precisely, since they all contain a nitrogen element, they could potentially belong to fatty
amides class. Interestingly, anandamide, a fatty acid amide that belongs to the class of endocannabinoids,
is known to be metabolized by the CYP2D6 enzyme into 20-hydroxyeicosatetranoic acid ethanolamide as
well as 5,6-, 8,9-, 11,12- and 14,15- epoxyeicosatrienoic acid ethanolamides as demonstrated through in vitro
experiments using recombinant CYP2D6 (Farrell and Merkler, 2008; Snider et al., 2008). Furthermore, it
is generally known that a majority of CYP2D6 substrates are lipophilic bases with a protonable nitrogen
atom (Ingelman-Sundberg, 2005). In this work, metabolomics databases (i.e. METLIN and LIPID MAPS)
revealed the following matches: N-linoleoyl dopamine for m/z 416.3159 and 17-phenyl trinor PGF2α diethyl
amide for m/z 444.3108, two fatty acid amides compounds. However, MS/MS fragmentation patterns
were not concordant. More in-depth analyses are required to achieve a detailed structure elucidation since
the monoisotopic masses and MS/MS fragmentation patterns of the five hits appear to be unknown from
the metabolomics databases used. Complete structure elucidation will require complementary analytical
methods such as nuclear magnetic resonance (NMR) after extraction and purification of samples through
preparative HPLC (Dias et al., 2016). Conveniently, all biomarker candidates are present in the urine. Large
volumes of urine are relatively easy to obtain, which makes it an optimal starting material for purification
and concentration for NMR structure identification (Whiley et al., 2019).

The targeted assay in PRM mode confirmed the results obtained from the untargeted LC-MS based
metabolomics approach. It showed a significant decrease in the intensity of the features intensity after
paroxetine intake compared to baseline. It is worth noting that signals from UM volunteers are often in-
creased rather than decreased during the inhibition phase compared to baseline especially for m/z220.1543,
416.3159, 432.3108 and 444.3108 as seen in Figure 4a and 5a . In addition of being an inhibitor of CYP2D6,
paroxetine is also a substrate for this enzyme. As demonstrated in numerous studies, UM subjects have lower
concentrations of paroxetine than EM patients (Hicks et al., 2015). CYP2D6 inhibition may therefore be
less strong in such participants and may account for inconsistent results. However, the UMRDEM/DOR does
not display such pattern. It is then likely that the identification of the structure of endogenous substrates
would allow refining these results by measuring the ratios of endogenous substrate/metabolite.

Even when using a more sensitive MS-based PRM experiment, we were still unable to detect signals in
PM subjects for the features m/z416.3159 in plasma, 432.3108 in urine and 444.3108 in both. The same
observation was reported for m/z 444.3108 (Tay-Sontheimer et al., 2014). Therefore, if certain metabolites
are absent among this population group, it may explain differences in behaviour (e.g. impulsivity, anxiety)
and disease susceptibility observed between PM and other individuals (Peñas-LLedó and LLerena, 2014).
Additionally, log(area/creatinine) in urine and log(area) in plasma of the 5 endogenous compounds were both
significantly correlated with CYP2D6 AS and log(UMRDEM/DOR). This confirms the potential ability of these
compounds to accurately predict CYP2D6 activity. The best correlation with CYP2D6 AS was observed for
m/z 597.3382 (rs = 0.710) in plasma (Figure 5d ). It is worth noting that the Spearman’s rank correlation
coefficients measured in this study for all five hits were always lower than that observed for UMRDEM/DOR (rs
= 0.791) (Figure 1 ). As previously explained, more significant correlations are expected once metabolites
and substrates are fully identified, since measurement of the metabolic ratio between a specific substrate
and a metabolite could be achieved similarly to UMRDEM/DOR. Additionally, the use of a normalized ratio
(substrate/metabolite), could correct for potentially highly variable metabolite concentrations due to the
influence of different factors of variability, such as circadian rhythm, diet, physiological or pathophysiological
conditions. As an example, urinary excretion of 6β-hydroxycortisol, a CYP3A metabolite, varies considerably
throughout the day, showing a strong diurnal rhythm. However, when normalized to cortisol, the variation
is no longer significant within the day (Lee, 1995). Similarly, plasma 4β-hydroxycholesterol, another CYP3A
metabolite, is ideally normalized to cholesterol in order to provide more robust data (Mao et al., 2017; Aklillu
et al., 2020).

Once the couple metabolite/substrate is fully identified and quantifiable, specificity for CYP2D6 enzyme
should be assessed using, for example, recombinant enzyme assays in order to exclude the influence of other
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. metabolic pathways. In this study, no correlation with CYP2C9, CYP2C19 and CYP3A genotypes were
observed with the identified biomarkers. In addition, no impact of oral contraceptives (moderate CYP1A2
and CYP3A inhibitor) (Samer et al., 2013) was observed on mean relative intensities of the five endogenous
CYP2D6 metabolites (data not shown). But these results provide only some preliminary insights into the
CYP2D6 specificity and further in vitro studies should be performed to fully validate specificity of the
metabolic pathway.

In conclusion, non-targeted metabolomics enabled the identification of five potential endogenous CYP2D6
metabolites presumably related structurally to the class of fatty amides, including a glucuronide compound.
Each of these candidate biomarkers could map the functionality of this enzyme. Further studies will focus
on complete structure elucidation using complementary analytical method such as NMR. Once identified
and validated, noninvasive prediction of CYP2D6 activity based on these candidates could greatly improve
current phenotyping strategies by being readily available at any time and completely bypassing the need of
administering exogenous components and thus the risk of adverse events.
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Blaženović, I., Kind, T., Ji, J., and Fiehn, O. (2018). Software Tools and Approaches for Compound
Identification of LC-MS/MS Data in Metabolomics. Metabolites 8 : 31.

Crews, K.R., Gaedigk, A., Dunnenberger, H.M., Leeder, J.S., Klein, T.E., Caudle, K.E., et al. (2014).
Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and
codeine therapy: 2014 update. Clin. Pharmacol. Ther. 95 : 376–382.

Curtis, M.J., Alexander, S., Cirino, G., Docherty, J.R., George, C.H., Giembycz, M.A., et al. (2018).
Experimental design and analysis and their reporting II: updated and simplified guidance for authors and
peer reviewers. Br. J. Pharmacol. 175 : 987–993.

Daali, Y., Cherkaoui, S., Doffey-Lazeyras, F., Dayer, P., and Desmeules, J.A. (2008). Development and
validation of a chemical hydrolysis method for dextromethorphan and dextrophan determination in urine
samples: Application to the assessment of CYP2D6 activity in fibromyalgia patients. J. Chromatogr. B 861
: 56–63.

Dias, D.A., Jones, O.A.H., Beale, D.J., Boughton, B.A., Benheim, D., Kouremenos, K.A., et al. (2016).
Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems.
Metabolites 6 : 46.
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TableS

Table 1. Demographic characteristics of participants

Parameters All subjects (n = 43)

Age (years), mean (range) 24 (19-29)
BMI (kg m-2), mean (range) 22 (19-27)
Female, n (%) 24 (56)
Oral contraceptive intake, n (%) 11 (26)
CYP2D6 allele frequencies, %
1 (wild-type) 41
2 27
4 17
5 3
6 1
9 1
10 3
17 1
41 5
CYP2C9 allele frequencies, %
1 (wild-type) 80
2 9
3 10
CYP2C19 allele frequencies, %
1 (wild-type) 65
2 13
17 22
CYP3A4 allele frequencies, %
1 (wild-type) 95
22 5
CYP3A5 allele frequencies, %
1 (wild-type) 12
3 88

BMI, body mass index

Table 2. Significant hits in urine and plasma obtained from Volcano plots, including mean fold-changes
of normalized intensity in the inhibtion session versus control session, and mean fold-change of normalized
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. intensity in the PM subjects versus EM-UM subjects.

Inhibition session vs Control session (n = 37) Inhibition session vs Control session (n = 37) PM subjects (n = 6) vs EM-UM subjects (n = 37) PM subjects (n = 6) vs EM-UM subjects (n = 37) PM subjects (n = 6) vs EM-UM subjects (n = 37)

m/z RT (min) Ionization Mode Fold-change P-value (adjusted) Fold-change P-value P-value
Plasma Plasma Plasma Plasma Plasma Plasma Plasma
416.3159 4.16 + 0.60 4.48 × 10-4 5.93 × 10-3 3.28 × 10-7 3.28 × 10-7

595.3236 5.25 - 0.16 4.10 × 10-5 4.41 × 10-2 2.10 × 10-5 2.10 × 10-5

597.3382 5.25 + 0.13 9.38 × 10-8 6.52 × 10-2 2.95 × 10-5 2.95 × 10-5

Urine Urine Urine Urine Urine Urine Urine
220.1543 2.51 + 0.54 2.63 × 10-7 0.34 1.44 × 10-5 1.44 × 10-5

416.3159 4.16 + 0.67 4.53 × 10-3 1.82 × 10-2 3.94 × 10-6 3.94 × 10-6

432.3108 4.11 + 0.56 1.39 × 10-2 8.56 × 10-3 3.28 × 10-7 3.28 × 10-7

444.3108 4.35 + 0.67 3.50 × 10-5 2.06 × 10-2 3.94 × 10-6 3.94 × 10-6

Table 3. Exact mass, molecular formula and adducts obtained using SIRIUS 4.0.1, and results obtained
using METLIN and LIPID MAPS databases

Monoisotopic mass Molecular Formula Adduct Potential METLIN assignement Potential LIPID MAPS assignement

219.1471 C10H21NO4 [M+H]+ NA NA
415.3086 C26H41NO3 [M+H]+ NA N-linoleoyl dopamine
431.3036 C26H41NO4 [M+H]+ NA NA
443.3036 C27H41NO4 [M+H]+ 17-phenyl trinor PGF2α diethyl amide NA
596.3309 C30H48N2O10 [M+H]+ NA NA
420.2988 C24H40N2O4 [M+H]+ NA NA

Table 4. MS parameters in PRM mode of the five target analytes and their detectability in urine and
plasma samples

Analyte Precursor Ion, m/z Product Ion, m/z NCE, eV RT (min) Detection urine Detection plasma

Unknown 220.1543 202.1436 10 2.25 Yes No
Unknown 416.3159 98.0967 65 3.90 Yes Yes*
Unknown 432.3108 98.0967 65 3.84 Yes* No
Unknown 444.3108 98.0967 65 4.09 Yes* Yes*
Unknown 597.3382 84.0812 50 4.96 Yes Yes

*Except in PM samples

Figure legends

Figure 1. (a) 4-hour dextromethorphan/dextrorphan individual urinary metabolic ratios (UMRDEM/DOR)
at baseline (control session) and after inhibition by paroxetine (inhibition session), following intake of dex-
tromethorphan 5 mg per os (P < 0.0001). Ultrarapid metabolizers (gAS > 2, n = 4) are shown in red
and extensive metabolizers (1 [?] gAS [?] 2, n = 33) in blue. Error bars represent the standard devi-
ations of log-transformed UMRDEM/DOR. (b) Correlation between 4-hour log-transformed dextromethor-
phan/dextrorphan urinary metabolic ratios (log(UMRDEM/DOR)) and the CYP2D6 activity score (n = 43)

with whiskers indicating the 10th and 90th percentiles (P < 0.0001)

Figure 2. Flowchart of the non-targeted metabolomics approach to identify biomarkers reflecting CYP2D6
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. activity. N represents the number of metabolic features after each step with plasma biomarkers in red and
urinary biomarkers in yellow

Figure 3. Targeted Selected Ion Monitoring/data-dependent-MS2 of all features of interest in ESI+ mode

Figure 4. Log(area/creatinine) in urine off all CY2D6 biomarkers identified in metabolomics analyses
measured with product ion monitoring (a) before and after paroxetine intake, including means and standard
deviations on each side. Ultrarapid metabolizers (n = 4) are shown in red and extensive metabolizers (n
= 33) in blue.(b) EM-UM subjects (n = 37) versus PM subjects (n = 6) with whiskers indicating the 10th

and 90th percentiles. (c) Correlation with log(UMRDEM/DOR). Control session (n = 43) is represented by
square and inhibition session (n = 42) by triangle. (d)Correlation with CYP2D6 activity score score ( n =
43) with whiskers indicating the 10th and 90thpercentiles. All P < 0.0001

Figure 5 . Log(area) in plasma off all CY2D6 biomarkers identified in metabolomics analyses measured with
product ion monitoring (a) before and after paroxetine intake, including means and standard deviations on
each side. Ultrarapid metabolizers (n = 4) are shown in red and extensive metabolizers (n = 33) in blue. (b)
EM-UM subjects (n = 37) versus PM subjects (n = 6) with whiskers indicating the 10th and 90th percentiles.
(c) Correlation with log(UMRDEM/DOR). Control session (n = 43) is represented by square and inhibtion
session (n = 42) by triangle. (d) Correlation with CYP2D6 activity score (n = 43) with whiskers indicating
the 10th and 90th percentiles. All P < 0.0001

Figure 6. Log(area/creatinine) or log(area) at baseline (control session) and after inhibition by paroxetine
(inhibition session) (n = 5). On each side means values and standard deviations.
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