Walker and Syers enter the critical zone: Integrating decadal scale root development with longer term soil development to understand terrestrial nutrient cycling

Emma Hauser¹, Jon Chorover², Charles Cook³, Daniel Markewitz⁴, Craig Rasmussen², Daniel Richter³, and Sharon Billings¹

¹The University of Kansas ²The University of Arizona ³Duke University ⁴The University of Georgia

January 13, 2021

Abstract

Most terrestrial nutrient sources are hypothesized to shift in dominance from mineral- to organic matter (OM)-derived over millennia. We investigated how overlaying this hypothesis with plant rooting dynamics that can feedback to soil development offers insight into ecosystem functioning. To test the hypothesis that the nutritional importance of OM as mineral weathering proceeds is mediated by rooting system nutrient economies that vary with vegetation development, we paired litterfall decay experiments with soil mineralogical data from diverse forests across the Critical Zone (CZ) Observatory Network. We demonstrate that sources of phosphorus shift from OM-bound stocks to minerals as the rooting zone expands during the transition from mid to late stages of forest growth. Root-driven, plant-soil feedbacks thus can prompt inconsistencies with soil development models that posit a unidirectional transition from mineral to organic nutrient dominance, and illuminate how forest growth and land use influence nutrient bioavailability in Earth's CZ.

Hosted file

EL_MainText_EHauser_010821.pdf available at https://authorea.com/users/389202/articles/ 503821-walker-and-syers-enter-the-critical-zone-integrating-decadal-scale-rootdevelopment-with-longer-term-soil-development-to-understand-terrestrial-nutrient-cycling