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Abstract

Abstract Purpose: Recombinant proteins have become increasingly important items in research and industry. Due to its low
cost, high yield and rapid growth rate, Escherichia coli (E. coli) is the first choice as host for the production of recombinant
proteins. The expression of recombinant proteins in E. coli systems often result in inclusion bodies lacking proper folding and
structure. In silico bioinformatics prediction tools may be promising in optimal expression of soluble recombinant proteins.
Materials and methods: In this review, we aimed at making critical recommendations on how to improve the soluble expression
of recombinant proteins. Furthermore, we compared the solubility of recombinant proteins using bioinformatics prediction tools
versus experimental results. Data were analyzed using SPSS software. Results: Some recommendations worthy of consideration
in gene design and expression were reminded. The results of a comparison between bioinformatics and experimental methods
revealed that no significant coordination existed. RPSP and SOLpro showed higher sensitivity (43.5% and 56.5%, respectively)
and specificity (52.9% and 47.1%, respectively), when compared to FoldIndex and PSoL. The results from p-value and roc
curve indicated the effect of MW, helix percentage and aliphatic index on protein solubility (p-value< 0.05). Conclusions: This
review discusses efficient expression of soluble recombinant proteins. The bioinformatics prediction tools were examined for

their sensitivity and specificity. MW, helix percentage and aliphatic parameters should be considered in gene design.

Introduction

Biologically-derived drugs have comprised a notable sector in the pharmaceutical industry in the past 20
years. Prokaryotic systems are incapable of effectively expressing glycosylated biologically-derived drugs.
Nevertheless, 90% of pharmaceutical proteins are typically terminated at the initial steps of clinical develop-
ment because of their low solubility (Dai et al., 2014). In many cases, solubilization of proteins in inclusion
bodies is considered undesirable to obtain active recombinant protein conformation. The solubility of a
recombinant protein can indicate the quality of its function. Generally, 30% of recombinant proteins are ex-
pressed in aggregate or insoluble form (Malaei, Rasaee, Latifi, & Rahbarizadeh, 2019; Sgrensen & Mortensen,
2005). The production of soluble, pure and functional proteins is a high demand in biotechnology of vaccine
development or biologically-derived drugs. Low natural protein sources, complex purification steps and high
price are the factors favoring the application of recombinant cells as suitable tools for protein production.
Due to its short lifetime, high-density culture, well-known genetics and cost effectiveness, the Gram-negative
FEscherichia coli (E. coli ), is an attractive host for the expression of recombinant proteins. In spite of all
these qualities, expression of recombinant proteins in E. coli mostly yields insoluble or inclusion body forms
(Esmaili, Sadeghi, & Akbari, 2018; Fakruddin, Mohammad Mazumdar, Bin Mannan, Chowdhury, & Hossain,
2012; Singhvi, Saneja, Srichandan, & Panda, 2020; Terol, Gallego-Jara, Martinez, Diaz, & de Diego Puente,
2019). Although, forming inclusion body can simplify protein purification steps and increase recombinant



protein yield, a series of onerous tasks are involved in the protein refolding process (Hamidi, Safdari, & Arabi,
2019; He & Ohnishi, 2017; Leong, Chua, Samah, & Chew, 2019), and the majority of refolded proteins lack
any biological activity, while soluble protein with proper folding is necessary for the structural and functional
studies of a protein (Rosano, Morales, & Ceccarelli, 2019). Hence, bioinformatics tools can be considered a
useful approach to predict the solubility of overexpressed proteins in E. coli .

To our knowledge, this is the first report comparing bioinformatics prediction and experimental results in
overexpression of soluble recombinant proteins in E. coli (Habibi, Hashim, Norouzi, & Samian, 2014). Here,
the advised strategies were categorized into the following three sections for consideration to improve soluble
expression of a protein of interest: (1) gene design and bioinformatics prediction tools; (2) selection of vector
and host strain; and (3) cell culture condition.

Gene design and bioinformatics prediction

It is well-known that amino acid sequence is the major determinant of soluble expression levels, folding and
function of proteins in E. coli . When the tertiary structure of a protein is determined, the solubility of the
expressed target protein may be enhanced using rational site-directed mutagenesis. A more general approach
to obtain more soluble protein consists of generating gene libraries based on directed evolution by a mutation
in a random or position-specific manner (Cobb, Chao, & Zhao, 2013).

Artificial oil-body system was developed by presenting oleosin-GFP fusion proteins (Meagher, 2011). Ex-
pressed proteins are rescued from aggregation using the F. coli ribosome display system by binding them to
the ribosomal protein L23 (Pliickthun, 2012).

A further study drew the conclusion that the amino acid length has a negative influence on protein solubility,
which may be due to an increased misfolding rate with increasing length. Proteins with more than 400 amino
acid residues are harder to express. Increasing net charge, either positive or negative, has a positive influence
on protein solubility. Typically, disordered regions of proteins form unstable tertiary structures and dynamic
conformations which easily aggregate into inclusion bodies. The grand average of hydropathicity (GRAVY)
of proteins, an indicator for average hydrophobicity, is inversely correlated with the soluble expression level of
target proteins (A. K. Roy, Acharjee, Upadhyay, & Ghosh, 2017). Additionally, arginine, leucine, and cysteine
content proved to be inversely related to protein solubility. Arginine decreases the solubility, which may be
attributable to its rare codons. Cysteine content has a slightly negative effect on protein solubility. However,
isoleucine and lysine are beneficial for soluble expression, thus the right substitution may improve soluble
expression levels of target recombinant proteins. On the other hand,asparagine, threonine and glutamine
have no significant effect on protein solubility, and are suitable for substitution due to the fact that they are
exposed to solvents. Arg to Lys substitution and Leu to Ile or Val substitution are proper suggestions for
mutagenesis. The removal of a signal peptide coding sequence, required for the export of proteins from the
site of synthesis to the target site, increases the stability and expression of recombinant proteins (Chang et
al., 2016).

The secondary structure of protein, including the number of turns, disulfide bonds, o-helixes and (-sheets
is an important determinant of protein solubility. The sequence with a high content of Asp, Asn, Pro, Gly,
and Ser tend to form more turns, which is associated with difficulties in folding and decreased folding rates.
Moreover, the number of disulfide bonds significantly decreases the correct folding rate of proteins due to the
reducing environment of the cytoplasm inFE. coli . It was also reported that proteins with a higher proportion
of B-sheets are more prone to aggregation than those with a-helical structure (Gopal & Kumar, 2013).

The average codon adaptation index (CAI) is used to assess the bias of codon usage of the host cell. To
avoid the codon bias obstacles of the heterologous host, the gene sequence should be optimized based on host
codon usage bias. To avoid the formation of the secondary structure in mRNA and efficient translation of a
gene, site-directed mutagenesis can be used to manipulate the gene without altering the amino acid sequence
(Correa & Oppezzo, 2015). The GC content of the codon has been proved to be positively correlated with
the concentration of mRNA and transcription initiation efficiency, but have little effect on the expression
levels of the target protein (Ragionieri et al., 2015). It is noteworthy that the genetic code of a target protein



should be engineered without changing the functional domain of the protein.

Bioinformatics are widely used for the selection of domains and regions of a protein with high chance for the
manipulation of solubility, immunogenicity and other desirable characteristics (Hesaraki et al., 2013; Khalili
et al., 2018; Malaei et al., 2019; Malaei, Rasaee, Paknejad, Latifi, & Rahbarizadeh, 2018). Bioinformat-
ics prediction tools can be effectively used to investigate and improve the solubility of a protein through
genetic engineering of its sequence prior to the time-consuming and laborious experimental steps (Chang,
Song, Tey, & Ramanan, 2014; Hebditch, Carballo-Amador, Charonis, Curtis, & Warwicker, 2017; Rawi et
al., 2018). Previous studies developed statistical correlations between protein primary structure character-
istics or sequence-based features (variables), which include the total number of residues (length), molecular
weight (MW), counts of buried amino acids, counts of hydrogen bonds, counts of nitrogen atoms, secondary
structures, isoelectric point (pI), hydrophobicity, each amino acid (AA) content, net charge, negative charge,
turn-forming residues fraction, proline fraction and cysteine fraction (Bertone et al., 2001; Habibi et al.,
2014; Idicula-Thomas & Balaji, 2005; Trainor, Broom, & Meiering, 2017).

The majority of bioinformatics sequence-based prediction tools with machine learning backbone, including
PROSO (Smialowski et al., 2007), SOLpro (Magnan, Randall, & Baldi, 2009), PROSO II (Smialowski, Doose,
Torkler, Kaufmann, & Frishman, 2012), CCSOL (Agostini, Vendruscolo, & Tartaglia, 2012), scoring card
method (SCM) (Huang et al., 2012), RPSP (Wilkinson & Harrison, 1991), use a support vector machine
(SVM)-based model (Suykens & Vandewalle, 1999), the multiple linear regressions fit model, Wilkinson-
Harrison prediction model, or the solubility index-based model to distinguish between soluble and insoluble
proteins. Some of these tools such as PROSO (the source of training data set was the previously published
experimental information of the TargetDB database), PRSP, SOLpro and Recombinant Protein Solubility
Prediction, offer acceptable prediction performances with user-friendly interface (Habibi et al., 2014; Magnan
et al., 2009; A. Roy, Nair, Sen, Soni, & Madhusudhan, 2017; Smialowski et al., 2012). Periscope (Periplasmic
Expression for Soluble Protein Expression), a computational approach with a two-stage architecture, was
used for quantitative prediction of the soluble heterologous proteins expressed in the periplasm of E. coli
(Chang et al., 2016).

Selection of vector and host strain

Other important factors that may affect the solubility of a target protein is the selections of vector and host
strain. Affinity tags are employed to improve protein solubility, prevent proteolysis and simplify the purifi-
cation process. Maltose binding protein (MBP), N-utilizing substance A (NusA), prolyl cis-trans isomerases
(PPTIases), thioredoxin (Trx), intein, His-tag, glutathione-S-transferase (GST), and calmodulin-binding pro-
tein (CBP) are particularly suited for the soluble expression of proteins prone to form inclusion bodies.
However, not all highly soluble proteins are suitable as solubility enhancers. Previous reports imply that
E. coli MBP is a much more effective solubility partner compared to the highly soluble Trx or GST (Al-
Hejin, Bora, & Ahmed, 2019; Sgrensen & Mortensen, 2005). Additionally, in some cases, attaching polyionic
peptide tags of the same charge to the protein of interest at a certain pH value could lead to increased
protein solubility (Paraskevopoulou & Falcone, 2018). Several studies have shown that the nature of ter-
minal residues in proteins can play a role in proteolytic degradation, denaturation and misfolding. Joining
a C-terminal residue (17 aa) extension of Pfg27 to a target protein resulted in soluble expression and fold
enhancement (Sgrensen & Mortensen, 2005). The decreased solubility caused by consecutive (6x) histidine
residues can be solved by using a pHAT vector with a lower overall charge and non-adjacent 6-Histidine. In
our experiments, when we used pMAL system and pGEX vector, the maltose-binding protein (MBP) tag
and GST tag fused to our target protein leading to overexpression and increased solubility of the protein.
Since, the large size of a tag may interfere with the structure and function of the fused protein, multiple
cleavage sites can be engineered flanking the expressed protein to remove the tag. Moreover, thioredoxin
tag may enhance folding and disulfide bond formation of the target protein in strains lacking thioredoxin
reductase (trxB) (Chang et al., 2014). Having been recently introduced by Choi et al., the pNew vector uses
the cumate (4-isopropylbenzoic acid)-inducible expression system leading to a 3-6-fold increase in expression
compared to the widely used pET expression system. Alternatively, the Wacker’s novel secretion technology



results in the extracellular expression of soluble and properly folded proteins with high yield (up to 7.0 g/L)
(Gupta & Shukla, 2016).

Numerous specialized host strains have been developed to express recombinant proteins in E. coli . For in-
stance, the improved strains BL21(DE3)pLysS and BL21(DE3)pLysE both encode lysozyme in their genome
as an inhibitor of T7 polymerases to prevent leaky expression. Similarly, CodonPlus-RIL and CodonPlus-RP
strains provide a solution for the codon bias of AT- or GC-rich genes. On the other hand, Rosetta strain
harbors all the genes encoding rare tRNAs eliminating the need for separate strains for the expression of
AT- and GC-rich genes. Based on previous research, providing the rare tRNAs for the host cell promotes
the expression level of soluble protein (Ni et al., 2019).

Oxidative environment is necessary for the formation of disulfide bonds. The Origami(DE3) strain of E.
coli developed by Novagen can be used to form disulfide bonds for correct folding of disulfide-bond depen-
dent proteins. In addition to trzBand gor mutations, the novel ‘SHuffle’ strain developed by New England
Biolabs (NEB) harbors a DsbC chaperon within the cytoplasm for the expression of disulfide-bond-forming
proteins (Baeshen et al., 2015; Berkmen, 2012). Molecular chaperones or appropriate binding partners are
other options to be considered. Lastly, E. coli mutant strains C41(DE3) and C43(DE3) are good choices for
soluble expression of globular or membrane proteins (Rosano & Ceccarelli, 2014).

Cell culture condition

Changing the culture condition of engineered E. coli , including temperature, isopropyl-p-D-thiogalactoside
(IPTG) concentration, time of induction, buffers, pH, ionic strength, etc. can further enhance the expression
level and solubility of recombinant proteins (Hamada, Arakawa, & Shiraki, 2009). For more information
on hosts, promoters, concentration of the additives and other factors in detail see this article (Lebendiker
& Danieli, 2014). The addition of charged amino acids L-Glu and L-Arg at 50 mM to the buffer can in-
crease the maximum concentration of soluble protein (up to 8.7 times) (Golovanov, Hautbergue, Wilson,
& Lian, 2004). The anaerobic effects and pH additives could increase the B-galactosidase expression level
200 folds, where the pH value of cell culture was lowered from 5.5 to 7 (Tolentino, Meng, Bennett, & San,
1992). Various additives, including natural ligands, detergents, salts, buffers, and chemicals were used to
increase the stability and solubility of recombinant proteins expressed in E. coli (Leibly et al., 2012). Evi-
dently, the solubility of heterologous proteins increases following prolonged induction with low amounts of
IPTG at decreased temperatures (Hesaraki et al., 2013; Saadati et al., 2010; Soulari, Basafa, Rajabibazl,
& Hashemi, 2020). The solubility of granulocyte-macrophage colony-stimulating factor (GM-CSF) was im-
proved by adding chemical chaperones and osmolytes such as sucrose (0.5 M), NaCl (0.5 M), sorbitol (0.5 M)
and MgCl; (1 mM) to the growth media (Malekian, Sima, Jahanian-Najafabadi, Moazen, & Akbari, 2019).
Generally, the aggregation of expressed recombinant proteins in bacteria occurs at higher temperatures due
to the hydrophobic interactions among overexpressed polypeptides [9]. The three factors of post-induction
temperature, post-induction time and IPTG concentration were routinely optimized for improved expression
conditions toward higher protein solubility (Gutiérrez-Gonzilez et al., 2019). Some of the heat shock pro-
teases expressed under overexpression conditions are eliminated as a result of temperature reduction [10].
Furthermore, the expression and activity of some F. coli chaperones are raised at temperatures around 30
°C [11,12]. Some studies reported soluble expression of the target protein at 4 °C. It should be noted that a
sudden decrease in cultivation temperature triggers inhibition of replication, transcription and translation.
Some chemical additives in the culture medium such as ethanol, benzyl alcohol and osmolytes along with
ionic strength of the buffer may increase the expression level of recombinant proteins (Papaneophytou &
Kontopidis, 2014). The formation of inclusion bodies is detectable even at low levels in fed-batch cultivations
insisted of batch cultivations, by flow cytometry technology.

Comparing the results from bioinformatics predictions tools and the experimental results

Here, we compared experimental results with bioinformatics predictions of 40 recombinant proteins using
previously published articles. The sequence-based user-friendly predictor tools, including Protein-sol, Fold-
Index, Recombinant Protein Solubility Prediction and SOLpro were used to predict protein solubility (Table



1). Furthermore, we measured parameters such as molecular weight, pl, helix percentage, aliphatic index and
GRAVY. A new method, called the self-optimized prediction multiple alignment (SOPMA), has been app-
lied to predict the helix percentage of recombinant proteins. Physicochemical parameters such as molecular
weight, pl, helix percentage, aliphatic index, and GRAVY were computed using the ProtParam tool on the
ExPASy server (http://us.expasy.org/tools/protparam.html) (Table 2). The results of 24 recombinant prote-
ins predicted by FoldIndex are depicted in graph form where the soluble expressed proteins in laboratory are
highlighted (Figure 1). Statistical analysis was performed using SPSS software. Data analysis indicated that
the solubility of recombinant proteins by prediction tools RPSP and SOLpro show higher sensitivity and
specificity (RPSP: sensitivity 43.5% and specificity 52.9%; SOLpro: sensitivity 56.5% and specificity 47.1%)
than FoldIndex and PSoL, while in comparison with experimental results, the kappa value were -0.34 and
0.36, respectively.

Moreover, we examined the effect of MW, pl, helix percentage, GRAVY, aliphatic index, FoldIndex and PSoL.
on solubility of recombinant proteins by roc curve and average with experimental results as gold standard
(p-value< 0.05) and determined certain considerations for gene design of recombinant soluble proteins.
Although, one report indicated that the helix structure reduce the solubility of the expressed protein in FE.
coli (Bhandari, Gardner, & Lim, 2020), several reports demonstrate the positive effect of high helix structure
percentage in protein solubility (Dai et al., 2014; Smialowski et al., 2012). In addition, charge composition
and the number of Lysine, Leucine, Isoleucine, Asparagine, Glutamine and Threonine residues are beneficial
for improving soluble protein expression (Dai et al., 2014).

In the present review, we described some critical points in gene design, choice of vector and host, cell culture
condition and challenges worthy of consideration for soluble expression of recombinant proteins inE. coli .
Examination of the accuracy of prediction tools by comparison with experimental results revealed higher
sensitivity and specificity of RPSP and SOLpro versus FoldIndex and PSoL. However, the coordination bet-
ween experimental and prediction tools were negligible. Some parameters such as helix structure, molecular
weight and aliphatic index had a significant effect on protein solubility (p-value < 0.05).
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Table 1. Sequence-based predictor tools used for the prediction of protein solubility.
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Table 2. Comparison of the solubility of recombinant proteins predicted by bioinformatics prediction tools
and experimental results along with some features of the protein sequences.
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RecombinaddWV Helix Aliphatic Protein- RPSP In
# protein  (kDa) percent  pl index GRAVY FoldIndexsol. % SOLpro lab

36 Endostatii20 29 9.30 78.34 - 0.145 0.280 Yes No Yes
a C- 0.224
terminal
frag-
ment
of
colla-
gen
XVIII,

37 botulinum20 25 6.12 62.26 -
neu- 0.614
ro-
toxin
serotypes
A, B
and
E
bind-
ing
subdomains

38 Smallest 27 40 8.94 95.12 0.000 0.219 0.415 No Yes Yes
Iso-
form
of
Hu-
man
Interleukin-

24

39 single- 15 12 8.02 59.20 -
domain 0.482
antibody

0.040 0.538 No Yes No

0.084 0.564 Yes No Yes

40 MUC1/HEB2 19 5.40 61.63 0.061 0.483 No Yes No
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Table 3. Comparison of FoldIndex and PSoL prediction tools with the solubility achieved in the laboratory.
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Group Statistics Group Statistics Group Statistics Group Statistics Group Statistics

In lab N Mean Std. Deviation
FoldIndex No 17 .0838 11110

Yes 23 .0826 .10841
PSoL No 17 .5589 .13340

Yes 23 .5943 .18679

Group Statist;
Std. Error Mear
.02694
.02261
.03235
.03895

Table 4. The effects of MW, pl, aliphatic index and GRAVY on the solubility of recombinant proteins
expressed in the laboratory.

Group Statistics Group Statistics Group Statistics Group Statistics Group Statistics

In lab N Mean Std. Deviation
MW No 17 26.88 9.419
Yes 23 49.39 31.809
helix No 17 24.4118 16.22906
Yes 23 35.7826 16.31217
pl No 17 7.0400 1.40585
Yes 23 6.8309 1.90998
Aliphatic index No 17 71.4182 21.27022
Yes 23 85.4135 15.76666
GRAVY No 17 -.4023 .45044
Yes 23 -.3847 .29640

Group Statist;
Std. Error Mear
2.285

6.633

3.93612

3.40132

.34097

.39826

5.15879

3.28758

.10925

.06180

Figures:

FoldIndex prediction results of 1-24 recombinant proteins listed in Table 2. The subtitle of soluble recombi-
nant proteins expressed in the laboratory were highlighted.

ROC analysis of some features (MW, helix, pl, aliphatic, GRAVY, FoldIndex) and PSoL for predicting the
solubility of recombinant proteins expressed in E. coli . The area under the ROC Curve scores (perfect =
1:00, random = 0:50) are shown in parentheses. ROC: Receiver operating characteristic, MW: molecular
weight, helix: the percentage of helix structure, pl: pH isoelectric, GRAVY: grand average of hydropathy.
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