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Abstract

The quantum Fourier transform (QFT) can calculate the Fourier transform of a vector of size N with time complexity O(log2 N)

as compared to the classical complexity of O(N logN). However, if one wanted to measure the full output state, then the

QFT complexity becomes O(N log2 N), thus losing its apparent advantage, indicating that the advantage is fully exploited

for algorithms when only a limited number of samples is required from the output vector, as is the case in many quantum

algorithms. Moreover, the computational complexity worsens if one considers the complexity of constructing the initial state.

In this paper, this issue is better illustrated by providing a concrete implementation of these algorithms and discussing their

complexities as well as the complexity of the simulation of the QFT in MATLAB.

The principles of quantum computing

Quantum computation poses a fundamentally different framework than our more familiar classical compu-
tation. Specifically, this is due to the existence of qubits, as opposed to bits, the fundamental components of
computing. Whereas bits can only hold the binary values of 0 or 1, qubits can instead hold a superposition
of states. We use Dirac’s bra-ket notation, which utilizes two kets analogous to the classical states 0 and 1,
to represent an orthogonal basis,

|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
. (1)

A more generic qubit state is a superposition of the previous basis states:

|ψ〉 = x0|0〉+ x1|1〉. (2)

where x0 and x1 are complex-valued amplitudes obeying the relation:

|x0|2 + |x1|2 = 1. (3)

It is important to clarify that such a superposition does not take a value “in between 0 and 1”: instead, in
accordance with the Born rule(Born, 1954), a measurement of the state of the qubit corresponds to a binary
value. The qubit has a probability |x0|2 to be found in state “0” and a probability |x1|2 to be found in state
“1.”

We can use the Kronecker tensor product to construct the basis of a system comprised of multiple (n) qubits.
For example, the product basis states of a four-dimensional (n = 4) linear vector space are:

1
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.

|0〉 = |0〉 ⊗ |0〉 =


1
0
0
0

 , |1〉 = |0〉 ⊗ |1〉 =


0
1
0
0

 , (4)

|2〉 = |1〉 ⊗ |0〉 =


0
0
1
0

 , |3〉 = |1〉 ⊗ |1〉 =


0
0
0
1

 . (5)

Given n qubits, the general state is a superposition state vector in a 2n-dimensional Hilbert space:

|X〉 =

j<2n∑
j=0

xj |j〉 (6)

with
∑j<2n

j=0 |xj |2 = 1.

Given an arbitrary state result of a computation, to measure one x coefficient j, one would have to perform
a projection on the corresponding base vector:

xk = 〈k|x〉 =

j<2n∑
j=0

xjδkj , (7)

δkj is the Kronecker delta. This measurement destroys the state and therefore only one coefficient (or one
linear combination of coefficients) can be known. To know more coefficients, one would have to repeat
the experiment that produced the original state. In other words, each measurement only provides one xj
of information, and one thus has to perform O(N) measurements to obtain all N coefficients to a certain
precision.

This is a point of major importance that will affect our analysis of the Quantum Fourier Transform.

To compute with qubits, one can form quantum logic gates, which are analogous to classical logic gates but
instead operate on quantum states. For example, the following gate H inputs state |X〉 and outputs |Y 〉:

|Y 〉 = H|X〉. (8)

A more specific example would the mapping of the basis state |0〉 to (|0〉+ |1〉)/
√

2 and |1〉 to (|0〉 − |1〉)/
√

2
which would be represented by the one-qubit Hadamard matrix:

H =
1√
2

[
1 1
1 −1

]
. (9)

Another common example would be the controlled phase shift gate, a single-qubit phase shift gate that will
leave the basis state |0〉 unchanged and map |1〉 to exp(iφ)|1〉, for a phase shift φ (such that the probability
of measuring either a |0〉 or a |1〉 also remains unchanged).

In general, quantum gates are unitary operators that map the Hilbert space into itself. They are time
evolution operators and they thus conserve energy and information. Moreover, although free quantum
evolution requires no energy, true quantum gates instead require energy to operate, as one has to initiate
and stop the interactions. Additionally, because quantum error corrections techniques make use of classical
hardware, error correction is expected to be a major part of the energy budget in quantum computing.

2
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. The definition and use of the classical discrete Fourier transform

Before we move on to the first quantum algorithms, let us first examine the limitations of classical compu-
tation via one particular algorithm: the general number field sieve (GNFS).

The GNFS is currently the most efficient known classical algorithm for large integer factorization (particularly
for integers exceeding 10100)(Pomerance, 1996). A generalization of the special number field sieve, this
algorithm works in sub-exponential time, specifically of complexity O[exp(1.9(logN)1/3(log logN)2/3)].

However, we compare it to one of the first quantum algorithms to ever spark interest in the field of quantum
computation: Shor’s algorithm(Shor, 1994). Via fast multiplication algorithms(Beckman et al., 1996), the
algorithm need only take quantum gates of order O[(logN)2(log logN)(log log logN)], thus being a member
of the bounded-error quantum polynomial time (BQP) complexity class.

One distinguishing feature of the Shor’s algorithm is that it requires only a few repeated measurements of
the output state to obtain the desired result such that one does not need to know all the coefficients of the
output state. This is done via the quantum period-finding subroutine, which does not load classical data
and evaluate a full vector but instead finds the period by measuring the result of the QFT multiple times,
which will be valuable for quantum speedup. In fact, basing factoring on period finding by using the QFT
is the great innovation in Shor’s quantum factoring algorithm.

In fact, there is an almost exponential difference between the complexities of the GNFS and Shor’s algorithm,
showing that quantum computing is, in principle, capable of performing tasks that no classical computer
could ever perform: this phenomenon is often referred to as quantum speedup. To better visualize this
complexity, Fig. 1 graphs the number of operations as function of the input size.

Revised_Factorization_Complexities.png

Figure 1: Scaling, represented by the number of operations as function of the algorithm’s input size. (This
graph was normalized to start at the origin, with SA denoting Shor’s algorithm.)

3
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. Limitations of Classical Algorithms

Before introducing the QFT, for clarity, we define its classical counterpart: the discrete Fourier transform
(DFT). The DFT maps a sequence of N complex numbers x = {x0, x1, ...., xN−1} into another sequence,
y = {X0, X1, ..., XN−1}, such that:

yk =

N−1∑
n=0

xn · e−
i2π
N kn, k = 0, 1, 2, ..., N − 1. (10)

Moreover, an N -point DFT is often expressed as

y = Wx (11)

where W is the DFT matrix:

W =
1√
N



1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωN−1

1 ω2 ω4 ω6 . . . ω2(N−1)

1 ω3 ω6 ω9 . . . ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) . . . ω(N−1)(N−1)


(12)

Here, ω = exp(−2πi/N) is the primitive Nth root of unity.

This mathematical operation is typically implemented as an algorithm that minimizes the number of ele-
mentary arithmetic operations, which is known as the fast Fourier transform (FFT)(Zhou et al., 1992). This
reduces the complexity by directly computing the DFT from O(N2) to O(N logN)(Lohne, 2017). Here, we
will be using the Cooley-Tukey algorithm(Bekele, 2006) to implement the FFT.

The simplest implementation of the Cooley-Tukey algorithm is the radix-2 decimation-in-time (DIT) case,
which divides a DFT of size N into two interleaved DFTs with size N/2 for each stage in the algorithm’s
recursion; the next section examines an implementation of this method in MATLAB.

The implementation of the radix-2 DIT case in MATLAB

The radix-2 DIT is a recursive algorithm, taking the following inputs: x, the relevant data, the input data
x and its size N = 2n, and the stride z (that is the distance in memory between consecutive values of x; we
are taking an initial value of z = 1).

A possible implementation of the algorithm in MATLAB is as follows:

function d = DIT(x, N, z)

if N == 1

d(1) = x(1)

else

d(1:N/2) = DIT(x, N/2, 2*z)

d(N/2+1:N) = DIT(x+z, N/2, 2*z)

for k = 1:N/2

t = d(k)

d(k) =

t + exp(-2*pi*i*(k-1)/N)*d(k+N/2)

d(k+N/2) =

t - exp(-2*pi*i*(k-1)/N)*d(k+N/2)

end

end

end

4
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. In the function’s initial if statement, we account for the trivial case wherein x is a single element list; we
thus set our output equal to the first member of x (which will, of course, always be equivalent to x).

In the else statement, we truly access the essence of the algorithm by first setting the first half of the output
equal to the recursion of the function with a halved N and a doubled z (thus reiterating through the function
until the elimination case is reached) and then setting the second half of the output to the shifted input by z
with a halved N a doubled z. Afterwards, we interleave the two evaluations to get our full DIT. This results
in some interesting complexity analysis, which is reviewed in the following section.

Evaluating the complexity of the radix-2 DIT implementation

The runtime of the input of our implementation need only depend on the size of our input, N . Thus, we can
describe this runtime via the usage of some unknown function, T (N). As a result, the total runtime of our
DIT implementation can be expressed as T (N), and the recursive computations in line 5 and 6 as T (N/2)
(since we are merely reevaluating the function with a reduced N). Lastly, the runtime of the computations
present in the final for loop is proportional to N . However, since we are to evaluate the overall complexity
of our algorithm, we can ignore any such scaling factors and simply write N . Therefore, we have:

T (N) = 2T (
N

2
) +N. (13)

Next, we can utilize the master theorem for divide-and-conquer recurrences for a more concrete answer. The
master theorem states that for recurrence relations of the form T (N) = aT (N/B) + f(N), we determine
the critical exponent ccrit = logb a. Therefore, we utilize the case of the master theorem stating that
f(N) = O(N ccrit logkN) for any k ≥ 0, since we merely have ccrit = log2 2 = 1 and we can thus simply set
k = 0 such that logkN = log0N = 1. Therefore, in accordance to the master theorem, we determine the
function as having complexity:

T (N) = O(N ccrit logk+1N) = O(N logN). (14)

As expected, our implementation makes correct usage of the Cooley-Tukey algorithm, showing the afore-
mentioned complexity.

Definition and usage of quantum Fourier transform

Akin to the DFT that we examined in Section V, the quantum Fourier transform (QFT) maps a quantum

state |x〉 =
∑N−1
i=0 xi|i〉 to

∑N−1
i=0 yi|i〉 in accordance to the formula:

yk =
1√
N

N−1∑
n=0

xnω
nk, k = 0, 1, 2, ..., N − 1. (15)

(We continue to use the notation of ω as a function of N : for further clarity, ω = exp(−2πi/N) for N = 2n.)
Moreover, we can also re-express the QFT in a way that will be easier to simulate for our implementa-
tion(Tellez et al., 2008), which represents our input as a tensor product of states like so (here, s is used to
better distinguish it from x):

|s〉 = |s1s2 . . . sn〉 = |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sn〉. (16)

We also borrow fractional binary notation such that:

[0.s1 . . . sm] =

m∑
k=1

sk2−k. (17)

5
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. Therefore, we can express the QFT as:

QFT(|s〉) =
1√
2n

n⊗
j=1

(|0〉+ e2πi[0.sjsj+1...sn]|1〉). (18)

More precisely, eq. 18 represents a time evolution operator constituted by the composition of n2 gates
in parallel, some Hadamard gates, and some controlled phase shift gates. Here, the larger tensor product
symbol functions as an indexed product of the Kronecker tensor product. Via decomposition, the QFT on
2n amplitudes can be implemented as a quantum circuit consisting of O(n2) Hadamard gates and controlled
phase shift gates for a number of qubits n.

The previously classical DFT would, in our implementation, require O(n2n) gates, which is exponentially
greater than the aforementioned quantum complexity. This may also be compared with O(n log n), the num-
ber of gates required by the most efficient known quantum Fourier transform algorithms for an approximate
result.

This analysis, however, does not take into account the complexity of preparing the input state and measuring
the output states, which both have complexity O(N log 1/ε) for a required resolution ε(Shende et al., 2006).
It is therefore evident that in the case of the best-known QFT algorithm, the complexity is completely dom-
inated by these measurements. Furthermore, if one wants to read out the full output vector the complexity
becomes O(N2 log2 1/ε). The classical FFT algorithm also has a dependency on the desired precision, but we
treat it as a constant depending on machine precision, not considering arbitrary precision implementations
of the classical algorithm.

However, the complexity analysis of our simulation on a classical computer will not be fully accurate to the
innate properties of a quantum device. On a classical computer, we cannot simulate the full QFT algorithm
but we can simulate the application of the unary operator that corresponds to the QFT algorithm to one
base state. We first examine a gate-level accurate implementation that we may write in pseudocode. As the
following image indicates, the QFT may be constructed with Hadamard gates (written H) and controlled
phase shift gates (written Rm).

In pseudocode, we may write:

function QFT(s):

for i in 1..n:

H(s_i)

for m in 2...{n-i+1}

R_m(s_i)

Where H(..) is an application of the Hadamard gate and Rm(...) is an application of the controlled phase
shift gate as in:

Rm =

[
1 0
0 eiφ

]
for some phase shift φ. They both may be thought of as operators acting in place on the state si.

The above algorithm consists of two nested loops therefore it has a complexity of O(n2) = O(log2N).

Since each quantum gate can be simulated in O(N), and taking advantage of the possibility of parallelizing
some of the transformations implemented by the gates, then we can simulate the above circuit inO(N log2N).

We provide a possible implementation of this algorithm in MATLAB1 using the QUBIT4MATLAB(Toth,
2008) library.

1Source code of the algorithm in MATLAB may be found at https://github.com/DamianRMusk/MATLAB_FT.

6
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.

QFT_Circuit_2.png

Figure 2: A quantum circuit drawn for the QFT for n qubits.

Evaluating the complexity of the QFT

In the previous section, we discussed the running time of the gate-accurate description of the QFT algorithm
and proceeded to multiply by N (the cost of simulating the gate for each possible input) to obtain the
gate-accurate simulation time.

We now discuss the complexity of eq. 18 given one input s. One way to implement eq. 18 consists of pre-
computing all required values of [0.sj ...sn] (eq. 17) for each j. Since we have n possible values of j and the
sum has a complexity proportional to n for each j, this operation has a total complexity of n2.

We now consider the complexity of computing the Kronecker products in eq. 18. This tensor product is
effectively just a form of multiplication: using the associative property, we see that first product involves
two vectors of size 2, resulting in a vector of size 4. The second product involves a vector of size 4 and a
vector of size 2, resulting in a vector of size 8. This continues to the final result of size N = 2n.

Thus, we effectively sum over 2j as:

j<n∑
j=1

2j =
2n − 1

2− 1
= 2n − 1 ∈ O(2n). (19)

To find the full complexity, we sum and take the greater term: O(n2 + 2n) = O(2n) = O(N).

This possible implementation of the algorithm is faster than the gate accurate simulation previously dis-
cussed.

In principle, we take N basis vectors to account for arbitrary N coefficients, we should repeat these calcu-
lations N times. Yet, in practice, in simulation we are allowed to copy vectors therefore this does not affect
the overall running time.

In evaluating the complexity of our function, we are mostly concerned with the complexity of the compu-
tations present in the repeated Kronecker product. We can compute its computational complexity in the

7
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. simulation; however, this complexity does not appear in the (actual) quantum computer. We can represent
the differences between the simulation and the true quantum computations as:

We start with our initial state X, i.e. a superposition of base vectors. In the actual compu-
tation, the calculation of each component is parallelized at no cost but we can only measure one
coefficient. We therefore need to rebuild the output state N times in order to be able to perform
the N measurements needed to obtain all the coefficients.

However, in the simulation, we must loop through the 2n vector bases. As a result, the
computation to generate the output state appears slower than the true quantum computation.
Yet, because we can copy this state to perform mutiple measurments, the net complexity is not
slower. This apparent discrepancy is mostly due to the effect of the Kroneker delta computation.

In true quantum information, we are only capable of extracting one measurement at a time.
Thus, we compute every number 2n faster than the solution. This forms a black box which
computes every coefficient of the transform incredibly quickly: however, we may only measure
one coefficient or linear combination of coefficients per each iteration of the function (since the
QFT’s wave function will collapse every time we call the black box, thus necessitating that the
computations be redone).

In a true quantum computation, there is no cost in the Kronecker products discussed in the previous section.
If the QFT was implemented as a series of Hadamard gates, this would require n2 Hadamard gates (as was
mentioned following the definition of the QFT in Section VI). Each of the n2 = log2N gates require O(N)
classical operations to be simulated, thus, the total cost is O(N log2N).

Conclusions

In the following table, we can directly compare the formulated algorithmic complexities (to write terms in
a uniform manner, we have reverted to expressing complexities in terms of N = 2n gates for the quantum
algorithms):

Table 1: Our calculated complexities calculated by applying various complexity analysis techniques to our
previously defined implementations. (”Sim” and ”theo” are abbreviations for ”simulated” and ”theoretical,”
respectively.

DFT O(N logN)

QFT (gate-level accurate) O(N log2N)

QFT (theo, no measurement) O(log2N)

QFT (theo + preparation + measurement) O(N2 log2 1/ε)

We can graph the complexities as in the figure below.

Accordingly, the complexities of our algorithms are rather distinct. The exponential (the DFT) increases
far more rapidly than the other functions, the product of the input and the logarithm of the input (the
simulated QFT) lies in-between the others, with the squared logarithm (the theoretical QFT) residing far
below the two other functions, increasing at an almost linear rate: these visualized results further bring the
concept of quantum speedup into question.

The previous results appear to confirm that true quantum algorithms and mere simulations of them have
significantly different running times. In the case of the QFT, this is mostly due to the costliness of the iterated
Kronecker tensor product for an arbitrary number of basis vectors. However, we arrive at the question of
whether or not these complexities can truly be ranked directly. By the principles of quantum information,
to acquire results more comparable to those given by the classical DFT, we must make extra preparations to
our black box that, in turn, cost us a substantial amount of computing power (potentially indicating that,
in actuality, the algorithms have comparable runtimes when evaluating the Fourier transforms in full).
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Figure 3: Our complexities in the form of a MATLAB graph, displaying the various forms of growth between
the relative size of an algorithm’s input and its overall complexity. (We have regularized some complexities
to start at the origin.)

More specifically, if we want to measure each coefficient, we must redo our operations for each coefficient
(since our wave function will collapse for every measurement). This is not necessary for the classical DFT;
upon making these modifications to the theoretical QFT such that it becomes more analogous to the DFT,
it is possible that (in the case of Fourier analysis) quantum computing is no better than classical computing.
However, this does not necessarily mean that quantum speedup is nonexistent; in the case of integer fac-
torization, wherein we only desire a single answer that meets are conditions, the parallelization of quantum
computing can become extremely useful (as mentioned in the Introduction in the case of Shor’s algorithm,
although this algorithm need only sample the wave function to calculate prime factors). In fact, this par-
allelization becomes beneficial for any type of search problem given the appropriate search criteria(Grover,
1997).

The primary goal of this paper was to present the reader with a non-trivial example to illustrate that
directly comparing quantum algorithms to classical ones is a significant issue and there are a consider-
able number of potential hazards in doing so. Furthermore, in the case of some quantum algorithms, the
perceived computational advantage may disappear should all elements of the wave function need to be
read out, and there conversely exists speedup potential if only some elements need to be sampled. There-
fore, although quantum speedup is certainly real for a number of algorithms, it is not necessarily a given.
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