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ABSTRACT

It is well appreciated that moist tropical forests from South America have been broadly affected by climate
change. However, long-term trends of seasonal forests are still largely understudied. Here, we evaluate the
long-term ecological trends of seasonal Brazilian forests. We used 33 years of locally collected soil and
vegetation data (837 tree species) gathered from 34 hectares of evergreen, semideciduous and deciduous
forests. We expected them to be more sensitive than resilient to climate change. Across the study region,
more species were extinct (315) than locally recruited (238). Locally extinct species’ niches were characterized
by lower temperatures and higher precipitation. Climatic variables were the main drivers of productivity
decrease, especially for larger trees. Deciduous forests were the most vulnerable for being at their ecological
threshold. For encompassing a broad temporal scale, our study provided a detailed view of species responses
and ecosystem function in tropical forests.

INTRODUCTION

Tropical forests harbour the highest portions of global biodiversity, endemism, terrestrial carbon stocks and
carbon flux (Pan et al. 2011; Esquivel-Muelbert et al. 2019). However, current changes in the global climate
have been profoundly altering tropical forest ecosystem processes, dynamics, diversity and productivity
(Esquivel-Muelbert et al. 2018; McDowell et al 2018; Janssen et al. 2020; Sentinella et al. 2020; Sullivan et
al. 2020). In this context, the naturally drought-exposed seasonal forests, on the climatic threshold to sustain
forest vegetation, may be the most affected by climate change (Allen et al. 2017; McDowell et al 2018). In
this context, the naturally drought-exposed seasonal forests, which are already on the threshold of suitable
forest-supporting climate, may be the most affected by climate change.

Changes in the amount and distribution of rainfall, coupled with rising temperatures and rising atmospheric
COg4, have contributed to reduce overall tropical forest biomass, mostly through rising tree mortality (Lewis
et al. 2004; Allen et al. 2017; McDowell et al. 2018; Hubau et al. 2020). The higher temperatures provoked
by high atmospheric COs increase respiration rates, transpiration and lead to carbon deficits and water loss
(McDowell et al. 2018; Hubau et al. 2020). Shifts in rainfall distribution may add up to the stress already
endured by trees under unfavourable conditions, such as advanced age and precarious local conditions.
Additional damage may be inflicted by insects and pests in the stems and roots, causing these weakened
trees to succumb to death (Allen et al. 2010). In other cases, water deficit may lead to hydraulic failure
through drought-induced cavitation and embolism; or its effects may be reflected in carbon deficits that
limit metabolic activity (McDowell et al 2018).

Species responses to climate change may differ based on their tolerances to environmental change (De Laender
et al. 2016; Esquivel-Muelbert et al. 2019; Doudova & Douda 2020). As a consequence, forests have become
more sensitive and closer to their survival thresholds under climate change (Allen et al. 2017; Phillips 2019;
Janssen et al 2020; Sentinella et al. 2020). In this scenario, the demographic balance between mortality and
recruitment have significantly differed across species, which is not only translated into taxonomic composition
dynamics, but also changes in niche and ecosystem function (Esquivel-Muelbert et al. 2018; Pinho et al. 2019;
Doudové & Douda 2020).

Although recent studies have identified increased vulnerability of moist tropical forests to climate change
(Esquivel-Muelbert et al. 2018; Esquivel-Muelbert et al 2019; Hubau et al. 2020; Sullivan et al. 2020), it
is still uncertain how seasonal tropical forests may respond, given their already low precipitation and high
temperature conditions. Recent evidence has been found of seasonal tropical forest vulnerability to changes
in drought intensity, frequency and length (Allen et al. 2017; Castanho et al. 2020; Janssen et al. 2020). To
better understand the responses of these forests to climate change, more studies are needed that encompass
larger timeframes, which allow to identify the effects of slow-changing variables on forest dynamics. However,



data of this nature are difficult to obtain for requiring decadal efforts of field data collection. This has left a
knowledge gap about the long-term ecological trends of several regions in the world, and in the tropical part
of South America, it is especially true for extra-Amazonian seasonal tropical forests.

Here, we use long-term monitoring data of 30 forest sites in southeast Brazil, aiming to identify the temporal
trends, environmental effects and intrinsic characteristics of 837 tree species. Our data encompass broad
climatic space and three forest types: deciduous, semideciduous and evergreen. This dataset allows us to
investigate micro (soil and species attributes) and macro (climate) ecological interactions through time. We
hypothesised that seasonal forests are sensitive to and shaped by climate change. We were able to assess this
hypothesis by closely monitoring all tree species in the dataset with a forest dynamics approach. To this end,
our study sought to identify: (i) whether there are differences in the number of locally recruited and locally
extinct species and how this difference varies through time; (ii) which environmental variables influence the
number of recruited and extinct species; (iii) if a species’ tendency to local recruitment or local extinction is
influenced by its climatic niche; and (iv) which environmental variables and species attributes influence the
productivity of forest species populations?

METHODS
Study sites

This study was conducted in 30 permanently monitored forest sites located in southeast Brazil (Figure 1).
The largest distances among sites are of 900 km (latitude) and 177 km (longitude). Altitudes vary between
447 and 1490 meters above sea level, whereas mean annual precipitation (MAP) varies between 763 and 1831
mm, and mean annual temperature (MAT) between 17.1 and 25.4 °C. The data include three forest types
distinguished by deciduousness and climate (details in Supplementary Material Table S1): (i) five evergreen
forest sites, with little to insignificant deciduousness and under the coldest and wettest climate in the dataset
(measured between 1995-2019); (ii) sixteen semideciduous forest sites, with 20-50% of canopy deciduousness
during the dry season and under an intermediate climate in the dataset (measured between 1987-2019); (iii)
and nine deciduous forest sites, with more than 50% canopy deciduousness during the dry season and under
the driest and hottest climate of our dataset (measured between 2002-2019). All sites are closed-canopy and
mixed-age forests with similar conservation statuses, with no indication of wood extraction or fire occurrence.

Vegetation data were collected from 400 m?2 plots, distributed across each site aiming to capture local
heterogeneity reliably (total of 34 hectares sampled). Each site was measured at least twice, with an inclusion
criterion equal to or higher than 5 cm of quadratic mean diameter at the reference height (1.30 m; dbh). All
individuals that met the inclusion criterion were tagged and their point of measurement (POM) recorded.
We used the POM as a reference for the subsequent measurements. When the POM of a given stem needed
to change between measurements, we estimated stem diameter growth from the ratio between the current
and previous POMs (Talbot, et al. 2014). Tree identification was performed by specialists in the field or
by consulting herbaria. Species names followed APG IV (Angiosperm Phylogeny Group, 2016) and were
standardised based on The Plant List (2020).

We extracted wood density values of all individuals from the global wood density database (Chave et al.,
2009; Zanne et al. 2009). When wood density was not available at the species level, we used the average wood
density value of other species within the same genus or family. We calculated each tree’s aboveground woody
biomass (AGWB) with the pantropical allometric equation proposed by Chave et al. (2014), with package
biomass (Réjou-Méchain, Tanguy, Piponiot, Chave, & Hérault, 2017) in the R environment. We used the
modified version of this equation because information on tree height was unavailable. We corrected the values
of AGWB productivity with the CIC1 equation by Talbot et al. (2014). We removed the productivity of
recruited species because individual AGWB is non-numeric. We calculated the average AGWB (or average
size) of each population based on their initial total biomass (sum of AGWB of all individuals) divided by
the total number of individuals at the beginning of monitoring.

We considered as “locally extinct” those species which disappeared from their original occurrence area, in
b
one or more sites; as “regionally extinct” those species which disappeared in all sites of our dataset; and as



“recruited” those species which were absent from all areas in the first measurement, but met the inclusion
criterion at a certain point and remained in the dataset until the last measurement.

Atmospheric COs concentration

We used annual mean values of atmospheric COsconcentration (ppm) from the Mauna Loa record (NOAA,
2020; www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html accessed March 17, 2020). We used in the models the
COs value corresponding to the mid-point of each census interval. Note that atmospheric COs concentration
(CO») is strongly correlated with year (r = 0.99) (Figure S1).

Climate data

We obtained monthly mean temperature (°C) and monthly precipitation (mm) from the Cli-
matic Research Unit (CRU TS version 4.03; ~3,025-km? resolution; released 15 May 2019; htt-
ps://crudata.uea.ac.uk/cru/data/hrg/) (Harris et al., 2014). Using data from WorldClim 2.1 (Fick and
Hijmans, 2017), we downscaled the CRU data to 1 km? and then applied the monthly correction for all
months in each census interval. We used the delta spatial downscaling method, see Peng et al., (2019) for
details. The average values of MAT and MAP of the years within each census interval were used in the
analyses. For the census intervals that ended in 2019, to which climate data were not available in CRU TS
version 4.03, we used climate data ranging from the start of the interval to the end of 2018. To estimate the
species climatic niches, we opted to use the bioclimatic variables from WorldClim 2.1 for being a long-term
synthesis of the sites’ climate.

Soil data

In the first inventory of each site, soil surface samples (20 cm of depth) were collected in each plot. Follo-
wing the protocol by the Empresa Brasileira de Pesquisa Agropecudria (EMBRAPA, 1997) the following soil
attributes were obtained: pH in water (pH), phosphorus (mg/cm?) (P), potassium (mg/cm?) (K), calcium
(cmol/dm?) (Ca), magnesium (cmol/dm?®) (Mg), aluminum (cmol/dm?®) (Al), soil organic matter (dag/kg)
(SOM), sand percentage (dag/kg) (sand %), silt percentage (dag/kg) (silt %) and clay percentage (dag/kg)
(clay %). We calculated the means of each soil variable for each site. Hereafter, sand % will be used as a
proxy for soil texture.

Data analysis

All analyses were carried out in the R environment version 3.6.1 (R Core Team 2019) and graphics were
obtained through the packagesggplot2 , jtools and interactions (Wickham, 2016; Long, 2019b, 2019a). Species
climatic niches were estimated from the weighted average values of mean annual temperature (bio 1) and
annual precipitation (bio 12) of all sites where each species was recorded. Weights were based on the average
AGWRB of the species in each site across all census intervals. We opted to weigh the species’ niches with their
AGWRB rather than abundance because by better synthesizing the species’ responses to local conditions. We
ran the analysis for each forest type separately because climate is strongly correlated with forest type. This
approach prevented us from including climate and forest type in the same models, avoiding high variance
inflation factors (VIF > 4).

Balance between recruitment and extinction

We tested if the number of extinct and recruited species differed significantly from each other, and estimated
the temporal trend of each group (i.e., the interaction between extinct/recruited and year). For this, we used
generalized linear mixed effects models (GLMM) using Poisson family. Because observations were nested
within sites and within census intervals, we accounted for the random effects of site and census interval. We
used the natural logarithm of the multiplication between site sampled area and census interval length as an
offset variable to control for their effects on the species count.

count of species ~ status*year (eqn 1)



Equation 1 describes the global model of extinction/recruitment balance with all variables included in the
R notation. Interaction effects are represented by “*”.

Environmental drivers of tree extinction and recruitment

The effects of climate and soil on the number of recruited and extinct species were estimated using GLMM,
including site as a random effect. We used Poisson family and included the natural logarithm of the multipli-
cation between site sampled area and census interval length as an offset variable to control for their effects
on the species count.

y = MAP+MAT+ Year +pH+P+K+Ca+Mg+Al+SOM+sand% (eqn 2)

Equation 2 describes the global model of the effects of environmental variables on the number of extinct and
recruited species, with all variables included in the R notation. Note that y is the number of extinct and
number of recruited species.

Climatic niche

Niche differences (bio 1 and bio 12) between extinct and recruited species were tested using linear mixed
effects models (LMM). As response variables, we used the mean niche value of the species that were either
extinct or recruited in each census interval. We also estimated the temporal trends of the extinct and recruited
species’ niches by including the interaction between status and year in the models. Because observations were
nested within sites and within census intervals, we accounted for the random effects of site and census interval.

y ~ status*year (eqn 3)

Equation 3 describes the global niche model with all variables included in the R notation. Interaction effects
are represented by “*”. Note that y is the mean values of bio 1 and bio 12, two dimensions of the climatic
niches of extinct and recruited species.

Species productivity

We fitted LMM to estimate the influence of biotic (mean individual size, wood density and climatic niche)
and abiotic variables (atmospheric CO2, MAP and MAT) on species AGWB productivity. We included
site, census interval, family, genus and species as random effects. We also tested the interactions between
environmental variables (CO2, MAP and MAT) and species attributes (mean individual size, wood density
and niches) on productivity.

species productivity ~ (MAP+MAT+ Year) * (mean ind. size + niche bio 1+ niche bio 12) + WD (eqn 4)

Equation 4 describes the global model of species AGWB net productivity, with all variables included in the
R notation. Additive and interaction effects are represented respectively by “+” and “*”.

Model assumptions, model selection and other details.

We ensured normality and homoscedasticity of LMM residuals through residuals inspection and checked for
overdispersion in GLMMs. In all models, we checked for residual spatial autocorrelation using Moran’s I
test, implemented in package ncf (Bjornstad, 2018). Random effects were used to deal with the temporal
autocorrelation and the data’s nested design.

For the balance and niche models, we obtained pairwise comparisons between levels with the package em-
means (Lenth et al. 2018). We used the Akaike Information Criterion of second order (AICc) for model
selection (Burnham, Anderson, & Huyvaert, 2011). From the global model of each response variable, we
obtained the set of best models (AAICc [?] 4) (Burnham et al. 2011). To avoid collinearity issues, the
selected models were constrained to only contain explanatory variables with r [?] ]0.6] (Dormann et al.,
2013), ensuring low variance inflation factor (VIF [?] 4). We adopted a multimodel inference approach, by
averaging the coefficients of the selected models and using these conditional averaged coefficients as final
results (Burnham et al., 2011). The relative importance of the predictor variables was not considered because



some variables were not contained in the same number of models due to collinearity issues, which could bias
the sum of Akaike weights (Burnham et al., 2011).

We used packages Imej (Bates et al., 2015) to fit the (G)LMMs,lmerTest to calculate denominator degrees
of freedom and MuMIn (Bartén, 2018) for model selection, model averaging and to obtain the marginal R?
(variance explained by the fixed effects) (Nakagawa & Schielzeth, 2013).

RESULTS
Balance between recruitment and extinction

Throughout the 33 years of monitoring, a total of 837 species belonging to 87 plant families were recorded. 315
species were locally extinct and 28 species were regionally extinct (Table S2), whereas 238 were recruited in
at least one site across measurement years. In terms of number and percentage of locally or regionally extinct
and recruited species, the highest number was found in semideciduous forests. In semideciduous forests, we
also found a significantly higher number of extinct species than recruited ones (Figure 2a). However, the
largest gap between the number of extinct and recruited species was found in the deciduous forests (Figure
2b), with a significantly higher number of extinct species. In evergreen forests, although the number of extinct
species was higher than the number of recruits, this balance was stable through time (Figure 2c).

Environmental drivers of extinction and recruitment

The recruitment and mortality of species are conditioned by different environmental factors in the different
forest types (Table 1). Mean annual precipitation (MAP) was a common driver of mortality in all forest types,
with a negative effect on deciduous and evergreen forests. Mean annual temperature (MAT) positively affected
species recruitment in deciduous forests and negatively affected species mortality in semideciduous forests.
Time (year) was only a significant factor for tree mortality in deciduous forests. Soil characteristics influenced
tree mortality and recruitment in all forest types. Recruitment was positively influenced by aluminium in
deciduous forests and positively influenced by magnesium in evergreen forests. In semideciduous forests,
potassium positively influenced mortality.

Climatic niche

Beyond the differences between the balance in recruited and extinct species, we also found that their climatic
niches are significantly different. In the deciduous forests, recruited species niches are characterised by higher
temperatures, meaning that those adapted to colder temperatures are being locally excluded and replaced by
hotter climate species (Table 2). A similar trend regarding the precipitation niche was found in the deciduous
forests: recruited species’ niches are negatively associated with low precipitation (Table 2), meaning that
species with higher precipitation niches are being recruited. In semideciduous and evergreen forests, no
significant differences regarding climatic species niches (temperature and precipitation) were found (Tables
2 and 3).

Species productivity

Interactions between some environmental variables and species attributes significantly affected productivity.
Species’ attributes reacted differently to the environmental variables, yielding different responses in each
forest type (Table 3). In the deciduous forests, MAP and MAT (mediating variables) positively affected
productivity, with a stronger effect in species with higher average individual sizes (i.e., higher average of
aboveground woody biomass) (Figure 3 c-e). Importantly, precipitation is decreasing over time (Figure S5).

In semideciduous forests, we found a positive effect of MAP and MAT (mediating variables) on productivity
(Table 3; Figure 3 f-h). The effects of climate were also stronger on species with higher average individual
sizes. Time (year) also influenced productivity, but negatively. Considering the quartile averages, however,
productivity increased over time.

Productivity in the evergreen forests was negatively affected by climate (mediating variables) and by time
(year) (Figure 6). But these effects were weaker in evergreen than in deciduous and semideciduous forests,



and stronger in species with lower average size.

The results for all forest types having biomass as a mediating variable can be found in the Supplementary
Material.

DISCUSSION

We found a negative balance between mortality and recruitment, with more species being locally extinct
and fewer recruited, reflecting that there are more species disappearing than being incorporated into our
forests. Niches of locally extinct species were associated with high precipitation and low temperatures,
which differed from the niches of recruited species. Climatic niche variables (MAP and MAT) were the main
drivers of reduction in species productivity, with stronger effects on species with higher average sizes. Despite
variations in these results among forest types, all of them are being affected by changes in climate.

The negative balance in demography found in our study reflects a high number of local extinctions. Other
studies have observed an increasing number of extinctions at global and regional scales (Ceballos et al. 2015;
Esquivel-Muelbert et al. 2018; Humpreys et al. 2019; Sheldon et al. 2019; Neves et al. 2020). And not only are
these losses decreasing species richness, but they may also entail losses of evolutionary groups and ecosystem
functions, leading to increasing phylogenetic and functional homogeneity (Aguirre-Gutiérrez et al. 2020).
Moreover, structural changes deriving from local species extinction may decrease these ecosystems’ capacity
to cope with climate changes (Allen et al. 2017).

The climatic variables MAP and MAT significantly affected the demographic parameters, with significant
effects of MAP on mortality in all forest types. Reductions in MAP can produce water deficit in ecological
systems. As a response, tree communities may display increased mortality from carbon starvation, hydraulic
failure and death of already vulnerable trees (Lewis et al. 2004; Allen et al. 2010; McDowell et al. 2018).
MAT effects, on the other hand, differed across the forest types, with a positive effect on recruitment in
deciduous forests and a positive effect on mortality in semideciduous forests. Deciduous forest species are
better adapted to climatic extremes (Santos et al. 2014; Allen et al. 2017); therefore, increases in MAT may
promote the recruitment of species adapted to higher temperatures (Santos et al. 2014; Sentinella et al.
2020). In the case of semideciduous forests, which occur under intermediate climate (Oliveira-Filho & Fontes
2000) and whose plant lineages are adapted to a range of tropical temperatures (Neves et al. 2020), some
species may be operating near their survival thresholds in terms of temperature. These are likely the first
species to succumb under rising temperatures (Sentinella et al. 2020). Moreover, deciduous forests had a
positive relationship between mortality and time (year), indicating that they are sensitive to climate change.
This trend has also been reported elsewhere (Allen et al. 2017; Castanho et al 2020; Maia et al. 2020; Mendes
et al. 2020, Maia et al., in press). Soil effects differed across forest types, with specific nutrients producing
different effects on demography. Plant-soil association reflects the species’ tolerances to soil conditions and is
an important factor for plant community structure (John et al. 2007; Turner et al. 2018; Maia et al. 2019a).

Our results show that deciduous forest composition is undergoing a trend of niche substitution from the oc-
currence of lower-temperature and higher-precipitation species to higher-temperature and lower-precipitation
species. This trend has also been found in other tropical forests, from wet to dry, in response to rising tempe-
ratures and increasing water stress (Enquist & Enquist, 2011; Butt et al. 2014; Esquivel-Muelbert et al. 2018;
Sentinella et al. 2020). Furthermore, environmental variables can alter species fitness, phenology, physiology
and diversity, due to niche differences and temporal niche opportunities, which may promote coexistence
and shape temporal community dynamics (Sapijanskas et al. 2014; Allen et al. 2017; Esquivel-Muelbert et
al. 2018; McDowell et al. 2018). Although the climatic niches of evergreen and semideciduous forest species
did not change considerably through time, one cannot assume that their niches are temporally stable. This
pattern may arise from competitive dynamics between gains and losses in the representativity of species’
climatic niches (Maia et al. 2019b).

Productivity across all forest types was significantly influenced by MAP and MAT, although with different
effects in each. The mediating effects of MAP and MAT on the productivity of deciduous forest species was
stronger in those with higher average individual sizes (Figure 3 c-e). The influence of MAP suggests that



larger individuals are more vulnerable to drought effects. Potential reasons for this influence are that (i)
higher vapour pressure deficit coupled with (ii) higher temperatures at the sun-exposed crowns (as these are
the highest individuals in the forest canopy) and (iii) water transportation over longer stem lengths may
altogether lead to xylem embolism and hydraulic failure in the largest individuals (da Costa et al. 2010; Fisher
et al. 2010; Corlett 2016; Meakem et al. 2017; McDowell et al. 2018). The positive relationship between MAT
and individual biomass led to a decrease in productivity. This result may owe to the optimal temperature
interval, decreasing photosynthesis and decreasing carbon gain (da Costa et al. 2010; Fisher et al. 2010;
Corlett 2016; Meakem et al. 2017; McDowell et al. 2018). Unless the plants adapt to higher temperatures by
increasing their optimal photosynthetic temperature, additional climate warming may reduce tropical forest
productivity and carbon storage (Sheldon 2019).

On the other end of the climate spectrum in the study region, we found a decrease in productivity in
populations of evergreen forests (Table 3; Figure 6A and 6B), with a negative effect of MAP and MAT
in all forest strata (i.e., irrespective of tree size). In the Amazon forest, decreases in the rate of biomass
gain suggest that factors related to temporal climate variation may mitigate productivity gains, even with
COg, fertilization (Lewis et al. 2004; Sullivan et al. 2020). Higher temperature and lower precipitation may
hinder plant growth and carbon storage as a result of turgor loss, suggesting that growth controls total
photosynthesis more often than the other way around (Lewis et al. 2004; Korner 2015; McDowell et al.
2018). Reduced productivity may also be attributed to increasing individual mortality (especially of large
individuals) due to changes in MAP and MAT. Under water deficit conditions, water transport in the larger
trees is challenged by gravity and resistance through the stem, which combined with higher evaporative
demand from tree crown exposure, increase water column tension and mortality risk (Bennet et al. 2015).
Whatever the causes of reduced growth and rising mortality, observations and experiments have revealed
an array of responses to climate change by different species and forest strata within tropical communities
(Corlett 2016; Poorter et al. 2017; Esquivel-Muelbert et al. 2018; Esquivel-Muelbert et al. 2019). Moreover,
evidence suggests that continuous heating is likely to interfere even further on biomass build-up because
tropical plants already function at or near their ideal temperatures (Drake et al. 2015; Sentinella et al.
2020).

In semideciduous forest populations, we found an increase in productivity, with positive effects from MAP
and MAT when interacting with the mediating variable, biomass (Table 3; Figure 7A and 7B). These forests
occur through a range of topographic and altitudinal conditions that provide microclimatic variations that
may favour the occurrence of certain species even if broader climatic oscillations occur (Mau et al. 2018;
Sheldon et al. 2019). Besides, semideciduous forests are on the threshold between dry and wet environments
and are composed by lineages adapted to both kinds of environments (Neves et al. 2020). Therefore, in their
case, changes in MAP and MAT may favour biomass increment in those species adapted to a drier and hotter
climate.

Our results pointed to a negative relationship between year and productivity for semideciduous and evergreen
forests (Table 3; Figure 6C and 7C). Although measuring the potential effects of COsfertilisation on dynamics
was not among our goals, other studies have traced a parallel between temporal increases in COs and forest
productivity (IPCC 2018; Hubau et al. 2020; Sullivan et al. 2020; Maia et al., in press). Recent studies on
old-growth and intact tropical forests have shown that the effects of ongoing COsfertilisation have been
neutralised by climate change effects on tree growth and mortality, which are shaped by internal forest
dynamics (Hubau et al. 2020; Sullivan et al. 2020). It is forecasted that the carbon sink of intact tropical
forests transforms into a negative budget (i.e., biomass loss higher than biomass gain) sooner than the most
pessimistic predictions have anticipated (Hubau et al. 2020). Therefore, the future carbon budget will also
depend on the dynamics of seasonal tropical forests, secondary forests and restoration projects (Hubau et
al. 2020, Mendes et al. 2020).

Climate change has moved from the realm of predictions into the real life, affecting different types of forests
in different ways (Esquivel-Muelbert et al. 2018; McDowell et al. 2018; Sentinella et al. 2020; Hubau et al.
2020). Our results highlight the need to encompass a broad range of climatic regimes to understand and



compare the responses of different forest types to climate change. For instance, although deciduous forests
are better adapted to drier conditions, they are at the ecological threshold that sustains high-biomass forest
formations (Li et al. 2018; Santos et al. 2014), which renders them susceptible to abrupt climate change
(Allen et al. 2017; Castanho et al. 2020). Despite the evidence that these forests are vulnerable, further
studies are needed to assess the different impacts they suffer from climate change. Temperature shifts alone
are potential intensifiers of drought severity (Salazar et al 2007, Lapola et al 2009), and if precipitation
continues to decline, changes in bioclimatic space, biomass and productivity will be even more severe than
has been reported (Mendes et al. 2020; McDowell et al. 2018; Hubau et al. 2020).

Climate change has been a catalyst for ecosystem shifts in our naturally ever-changing world. Learning the
speed of ecosystem responses deserves great attention, but perhaps more urgent is learning the direction and
potential consequences these ecosystem changes will have on biodiversity. Therefore, studies encompassing
broad temporal scales, such as ours, are able to monitor species responses and ecosystem function through
time. For providing a detailed view of ecosystem responses, they can contribute to foster public policy
decision-making and international guidelines on biodiversity conservation.
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Table 1 — Main environmental drivers of species recruitment and extinction, along with their estimates.
Columns three and four correspond to the variables that changed over time through the GLMM with sig-
nificant differences in the p-value. The fifth column shows the trend of variables that varied significantly by
the ”estimated” value provided by GLMM.

Response Main driver (s) Estimate
Deciduous R? marginal = 80%  Mortality Year 0.5968**
Mortality MAP -0.6162**
R? marginal = 99%  Recruitment MAT 0.8970**
Recruitment Al 0.8313**
Semideciduous  R? jarginal = 52%  Mortality K 0.3430**
Mortality MAP 0.1349*
Mortality MAT 0.2480**
Evergreen R? hharginal = 67%  Mortality MAP -0.2863*
R? narginal = 64%  Recruitment Mg 0.39955*

Table 2 — Result of the temperature and precipitation niches of the species over time in the different forest
types. This table shows the variables contained in the linear average mixed effects model of each response
variable and their conditional estimates, standard errors and p-values. The marginal R? (variation explained
by the fixed effects) of the global model is also shown for each physiognomy.

Medium Annual Temperature -MAT  Medium Annual Temperature -MAT  Medium Annual Temperature -MAT  Medi
Predictor Estii
Deciduous R? marginal = 34% Recruitment 0.925
Year 0.352
Recruitment x Year -0.31°
Semideciduous R? marginal = 0.2% Recruitment -0.04¢
Year -0.01¢
Recruitment x Year -0.12¢
Evergreen R? marginal = 17% Recruitment 0.289
Year -0.23:
Recruitment x Year 0.117
Medium Annual Precipitation -MAP  Medium Annual Precipitation -MAP  Medium Annual Precipitation -MAP  Medi
Deciduous R? marginal =33%0 Recruitment -123..
Year -29.2
Recruitment x Year 31.95
Semideciduous R2marginai= 0.2% Recruitament -0.66.
Year 1.283
Recruitment x Year 9.058
Evergreen R? marginal = 370 Recruitment -19.0:
Year 10.61
Recruitment x Year 1.275
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Table 3 - Minimum adequate models to predict productivity.

Productivity

Deciduous R? arginal = 14%
Predictor

Biomass (Mg ha!)
MAP (mm)

MAT (°C)
Biomass:MAP
Biomass:MAT
nichetemp

nichepec

MAT:" nicheemp
MAT:nichepyec
MAP:nicheprec
WD

Semideciduous R? yarginal = 0.8%

Predictor
Biomass (Mg ha™)
MAP (mm)
MAT (°C)
nicheemp

Year
Biomass:MAP
Biomass:MAT
Biomass: Year
MAT:nichetemp
MAP:nicheemp
WD

Nichepyrec

MAT :nichepyec
MAP:nicheprec
Evergreen R? arginal = 0.2%
Predictor
Biomass (Mg ha™)
MAP (mm)
MAT (°C)

WD

Year
Biomass:MAP
Biomass:MAT
Biomass: Year
nicheprec
nicheemp
MAT:nichepyec
MAP:nichepyec
MAT:nichetemp
nicheprec: Year
MAP:nicheemp

nichegemp: Year

Deciduous R? parginal = 14%
Estimate

-0.01

0.02

0.01

5.13

3.84

Semideciduous R? marginal = 0.8%

Estimate
0.03

Evergreen R? yarginal = 0.2%
Estimate
-0.04

Deciduous R? parginal = 14%
Standard error

0.007

0.006

0.006

0.008

0.005

Semideciduous R? arginal = 0.8%

Standard error
0.002

Evergreen R? yarginal = 0.2%
Standard error
0.0035

Deciduous R?
P value
0.05331
< 0.001
0.00784
< 0.001
< 0.001
ns

ns

ns

ns

ns

ns
Semideciduou
P value
< 0.001
ns

ns

ns

< 0.001
< 0.001
< 0.001
< 0.001
ns

ns

ns

ns

ns

ns
Evergreen R?
P value
< 0.001
ns

ns

ns

ns
0.002
< 0.001
< 0.001
ns

ns

ns

ns

ns

ns

ns

ns

14



Note: This table shows the variables contained in the linear mixed effects averaged model of each response
variable, and their conditional estimates, standard errors and p-values. The marginal R? (variance explained
by the fixed effects) of the global model of each response variable is shown. Note that “ns” indicate P value >
0.05 and that the estimates, standard errors and P values of the covariates were omitted when not significant.
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Figure 1. Location of the sampled sites (n = 30) in South America. Note that MAP (mm) is mean annual
precipitation and MAT is mean annual temperature, obtained from WorldClim 2.1 (Fick and Hijmans, 2017).
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Figure 2 — Difference between locally extinct and recruited species according to the number of species — (a)
Deciduous;(b) Semideciduous; (c) Evergreen.
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Figure 3 — Variation of productivity (response variable) to the interacting effects of individual biomass (pre-
dictor variable) with year, mean annual precipitation (MAP) and mean annual temperature (MAT) (mediator
variables). Solid and dashed lines refer to the fitted models with the mean value of the mediator variable
more (+) or less (-) its standard deviation. Note that the slope represents the influence of the predictor
variable (biomass) in interaction with the mediator variables (MAP, MAT and year) on productivity. (a-b)
mean annual precipitation (MAP) and mean annual temperature (MAT) in deciduous forests; (c-e) mean
annual precipitation (MAP), mean annual temperature (MAT) and Year in semideciduous forests; (f-h)
mean annual precipitation (MAP), mean annual temperature (MAT) and Year in evergreen forests. Shades
represent the confidence bands of the fitted lines.
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