# Levator ani Avulsion Systematic Evidence Review (LASER)

Zdenek Rusavy<sup>1</sup>, Lenka Paymova<sup>2</sup>, Michal Kozerovsky<sup>2</sup>, Adela Veverkova<sup>2</sup>, Vladimir Kalis<sup>2</sup>, Rasha Kamel<sup>3</sup>, and Khaled Ismail<sup>4</sup>

November 12, 2020

## Abstract

Background: There is variation in the reported incidence of levator avulsion (LA). Objective: Explore incidence of LA by mode of birth, imaging modality, timing of diagnosis and laterality of avulsion. Search strategy: We searched MEDLINE, EMBASE, CINAHL, AMED and MIDIRS with no language restriction from inception to April 2019. Study eligibility criteria: A study was included if LA was assessed by an imaging modality after the first vaginal birth or if only delivered by caesarean section. Case series and reports were not included. Data collection and analysis: RevMan v5.3 was used for the meta-analyses and SW SAS and STATISTICA packages for type and timing of imaging analyses. Results: We included 37 primary non-randomized studies from 17 countries and involving 5594 women. Incidence of LA was 1%, 15%, 21%, 38.5% and 52% following caesarean, spontaneous, vacuum, spatula and forceps births respectively, with no differences by imaging modality. OR of LA following spontaneous birth vs. caesarean was 10.69. While the OR for LA following vacuum and forceps compared to the spontaneous birth were 1.66 and 6.32 respectively. LA was more likely to occur on the right side following spontaneous birth (p = 0.02) and unilaterally vs. bilaterally following spontaneous (p < 0.001) and vacuum-assisted births (p = 0.0103) only. Incidence was higher if assessment was performed in the first 4 weeks postpartum. Conclusions: Forceps significantly increases incidence and severity of LA. Ultrasound and MRI are comparable diagnostic tools but early postpartum imaging may lead to over diagnosis of LA.

#### Hosted file

LASER manuscript BJOG final.pdf available at https://authorea.com/users/375213/articles/492532-levator-ani-avulsion-systematic-evidence-review-laser

## Hosted file

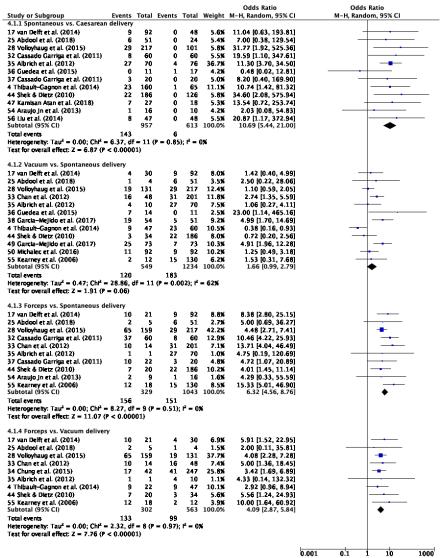
Table 1 LASER included studies final.pdf available at https://authorea.com/users/375213/articles/492532-levator-ani-avulsion-systematic-evidence-review-laser

## Hosted file

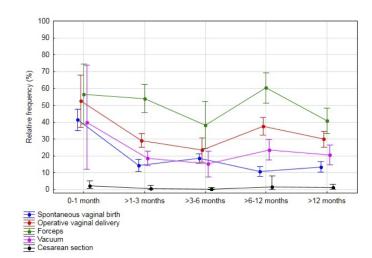
Table 2 LASER final.pdf available at https://authorea.com/users/375213/articles/492532-levator-ani-avulsion-systematic-evidence-review-laser

## Hosted file

LASER Figure 1 PRISMA Flow Diagram final.pdf available at https://authorea.com/users/375213/articles/492532-levator-ani-avulsion-systematic-evidence-review-laser


<sup>&</sup>lt;sup>1</sup>Medical Faculty and University Hospital in Pilsen, Charles University in Prague

<sup>&</sup>lt;sup>2</sup>University Hospital and Charles University


<sup>&</sup>lt;sup>3</sup>Cairo University

<sup>&</sup>lt;sup>4</sup>Charles University Faculty of Medicine in Pilsen

| Study or Subgroup                                                                    | Incidence        | SF                       | Total       | Total     | Weight         | Incidence<br>IV, Random, 95% CI          | Incidence<br>IV, Random, 95% CI |
|--------------------------------------------------------------------------------------|------------------|--------------------------|-------------|-----------|----------------|------------------------------------------|---------------------------------|
| 1.1.1 Caesarean section                                                              | meidence         |                          | Total       | Total     | Weight         | IV, Random, 55% CI                       | 14, Kulldolli, 55% Cl           |
| 54 Araujo Jn et al. (2013)                                                           | 0                | 0.1574                   | 10          | 0         | 0.1%           | 0.00 [-0.31, 0.31]                       |                                 |
| 10 Dietz & Lanzarone (2005)                                                          | 0                | 0.1454                   | 11          | 0         | 0.1%           | 0.00 [-0.28, 0.28]                       |                                 |
| 45 Valsky et al. (2009)                                                              | 0                | 0.1112                   | 15          | 0         | 0.2%           | 0.00 [-0.22, 0.22]                       |                                 |
| 25 Abdool et al. (2018)                                                              | 0                | 0.102                    | 24          | 0         | 0.3%           | 0.00 [-0.20, 0.20]                       |                                 |
| 47 Kamisan Atan et al. (2018)                                                        | 0                | 0.0945                   | 18<br>20    | 0         | 0.3%           | 0.00 [-0.19, 0.19]                       |                                 |
| 32 Cassado Garriga et al. (2011)<br>46 Araujo et al. (2018)                          | 0.14285714       | 0.0859                   | 21          | 0         | 0.4%           | 0.00 [-0.17, 0.17]<br>0.14 [-0.01, 0.29] |                                 |
| 57 Marsoosi et al. (2015)                                                            | 0.142037.14      | 0.07                     | 25          | ő         | 0.6%           | 0.00 [-0.14, 0.14]                       |                                 |
| 29 Hellbrun et al. (2010)                                                            | ŏ                | 0.0609                   | 29          | ŏ         | 0.7%           | 0.00 [-0.12, 0.12]                       |                                 |
| 31 Novellas et al. (2010)                                                            | ŏ                | 0.059                    | 30          | ō         | 0.8%           | 0.00 [-0.12, 0.12]                       |                                 |
| 36 Guedea et al. (2015)                                                              | 0.05882353       | 0.05706721               | 17          | 1         | 0.9%           | 0.06 [-0.05, 0.17]                       | <del> </del>                    |
| 27 Brandon et al. (2012)                                                             | 0.05             | 0.04873397               | 20          | 1         | 1.2%           | 0.05 [-0.05, 0.15]                       | <del> </del>                    |
| 43 Volloyhaug et al. (2017)                                                          | 0                | 0.0402                   | 45          | 0         | 1.7%           | 0.00 [-0.08, 0.08]                       |                                 |
| 56 Llu et al. (2014)                                                                 | 0                | 0.0378                   | 48          | 0         | 1.9%           | 0.00 [-0.07, 0.07]                       | Ŧ                               |
| 17 van Delft et al. (2014)<br>37 Cassado Garriga et al. (2011)                       | 0                | 0.0378<br>0.0304         | 46<br>60    | 0         | 1.9%<br>3.0%   | 0.00 [-0.07, 0.07]                       | T                               |
| 35 Albrich et al. (2012)                                                             | 0.05263158       | 0.02561391               | 76          | 4         | 4.2%           | 0.00 [-0.06, 0.06]<br>0.05 [0.00, 0.10]  | -                               |
| 52 Chan et al. (2014)                                                                | 0.03203130       | 0.0242                   | 76          | ō         | 4.7%           | 0.00 [-0.05, 0.05]                       | +                               |
| 28 Volloyhaug et al. (2015)                                                          | ŏ                | 0.0183                   | 101         | ŏ         | 8.3%           | 0.00 [-0.04, 0.04]                       | +                               |
| 4 Thibault-Gagnon et al. (2014)                                                      | 0.01538462       |                          | 65          | 1         | 11.9%          | 0.02 [-0.01, 0.05]                       | +                               |
| 44 Shek & Dietz (2010)                                                               | 0                | 0.0147                   | 126         | 0         | 12.8%          | 0.00 [-0.03, 0.03]                       | +                               |
| 26 Caudwell-Hall et al. (2017)                                                       | 0                | 0.008                    | 235         | 0         | 43.4%          | 0.00 [-0.02, 0.02]                       | •                               |
| Subtotal (95% CI)                                                                    |                  |                          | 1120        | 10        | 100.0%         | 0.01 [-0.00, 0.02]                       | •                               |
| Heterogeneity: $Tau^2 = 0.00$ ; $Cht^2 = $<br>Test for overall effect: $Z = 1.11$ (P |                  | (P = 0.98); P            | - 0%        |           |                |                                          |                                 |
| 1.1.2 Spontaneous delivery                                                           |                  |                          |             |           |                |                                          |                                 |
| 58 Shi et al. (2016)                                                                 | 0.4              | 0.1549                   | 10          | 4         | 0.7%           | 0.40 [0.10, 0.70]                        | <del></del>                     |
| 36 Guedea et al. (2015)                                                              | 0                | 0.1454                   | 11          | 0         | 0.8%           | 0.00 [-0.28, 0.28]                       |                                 |
| 47 Kamisan Atan et al. (2018)                                                        | 0.2593           | 0.0843                   | 27          | 7         | 2.1%           | 0.26 [0.09, 0.42]                        | J ——                            |
| 37 Cassado Garriga et al. (2011)                                                     | 0.15             | 0.0798                   | 20          | 3         | 2.2%           | 0.15 [-0.01, 0.31]                       |                                 |
| 54 Araujo Jn et al. (2013)<br>35 Albrich et al. (2012)                               | 0.0625<br>0.3857 | 0.0605<br>0.0582         | 16<br>70    | 1<br>21   | 3.2%           | 0.06 [-0.06, 0.18]<br>0.39 [0.27, 0.50]  |                                 |
| 56 Llu et al. (2014)                                                                 | 0.1702           | 0.0548                   | 47          | - 6       | 3.6%           | 0.17 [0.06, 0.28]                        | <del></del>                     |
| 48 Aydin et al. (2015)                                                               | 0.369            | 0.0527                   | 84          | 31        | 3.8%           | 0.37 [0.27, 0.47]                        | · ·                             |
| 25 Abdool et al. (2018)                                                              | 0.1176           | 0.0451                   | 51          | 6         | 4.4%           | 0.12 [0.03, 0.21]                        | -                               |
| 32 Cassado Garriga et al. (2011)                                                     | 0.1333           | 0.0439                   | 60          | 8         | 4.5%           | 0.13 [0.05, 0.22]                        | <del></del>                     |
| 38 Garcia-Mejido et al. (2017)                                                       | 0.098            | 0.0416                   | 51          | 5         | 4.7%           | 0.10 [0.02, 0.18]                        |                                 |
| 51 Garcia-Mejido et al. (2016)                                                       | 0.1216           | 0.038                    | 74          | 9         | 5.1%           | 0.12 [0.05, 0.20]                        | <del></del>                     |
| 49 Garcia-Mejido et al. (2017)<br>50 Michalec et al. (2016)                          | 0.0959           | 0.0345<br>0.031          | 73<br>92    | 7         | 5.4%<br>5.8%   | 0.10 [0.03, 0.16]                        |                                 |
| 17 van Delft et al. (2014)                                                           | 0.0978<br>0.0978 | 0.031                    | 92          | 9         | 5.8%           | 0.10 [0.04, 0.16]<br>0.10 [0.04, 0.16]   |                                 |
| 55 Kearney et al. (2006)                                                             | 0.1154           | 0.028                    | 130         | 15        | 6.1%           | 0.12 [0.06, 0.17]                        | -                               |
| 4 Thibault-Gagnon et al. (2014)                                                      | 0.1438           | 0.0277                   | 160         | 23        | 6.1%           | 0.14 [0.09, 0.20]                        | -                               |
| 33 Chan et al. (2012)                                                                | 0.1542           | 0.0255                   | 201         | 31        | 6.3%           | 0.15 [0.10, 0.20]                        | -                               |
| 53 Youssef et al. (2019)                                                             | 0.2137           | 0.0253                   | 262         | 56        | 6.4%           | 0.21 [0.16, 0.26]                        | -                               |
| 41 Cassado Garriga et al. (2014)                                                     | 0.1289           | 0.0241                   | 194         | 25        | 6.5%           | 0.13 [0.08, 0.18]                        | <del>-</del>                    |
| 44 Shek & Dietz (2010)                                                               | 0.1183           | 0.0237                   | 186         | 22        | 6.5%           | 0.12 [0.07, 0.16]                        | -                               |
| 28 Volkyhaug et al. (2015)<br>Subtotal (95% CI)                                      | 0.1336           | 0.0231                   | 217<br>2128 | 29<br>329 | 6.6%<br>100.0% | 0.13 [0.09, 0.18]<br>0.15 [0.12, 0.18]   | -                               |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Cht <sup>2</sup> =                           |                  | 1 (P < 0.0000            |             |           |                | ,                                        | '                               |
| Test for overall effect: Z = 10.63 (                                                 | P < 0.00001)     |                          |             |           |                |                                          |                                 |
| 1.1.3 Vacuum extraction                                                              | 0.25             | 0.2155                   |             |           | 1 5-2          | 0.25 [ 0.17 0.23                         |                                 |
| 25 Abdool et al. (2018)                                                              | 0.25<br>0.4      | 0.2165                   | 4           | 1         | 1.5%           | 0.25 [-0.17, 0.67]                       |                                 |
| 35 Albrich et al. (2012)<br>36 Guedea et al. (2015)                                  | 0.4              | 0.1549<br>0.1336         | 10<br>14    | 7         | 2.6%<br>3.3%   | 0.40 [0.10, 0.70]<br>0.50 [0.24, 0.76]   |                                 |
| 55 Kearney et al. (2006)                                                             | 0.1667           | 0.1076                   | 12          | 2         | 4.5%           | 0.17 [-0.04, 0.38]                       | <del></del>                     |
| 33 Chan et al. (2012)                                                                | 0.333            | 0.068                    | 48          | 16        | 7.6%           | 0.33 [0.20, 0.47]                        |                                 |
| 38 Garcia-Mejido et al. (2017)                                                       | 0.3519           | 0.065                    | 54          | 19        | 8.0%           | 0.35 [0.22, 0.48]                        |                                 |
| 17 van Delft et al. (2014)                                                           | 0.1333           | 0.0621                   | 30          | 4         | 8.3%           | 0.13 [0.01, 0.26]                        | <del></del>                     |
| 4 Thibault-Gagnon et al. (2014)                                                      | 0.1915           | 0.0574                   | 47          | 9         | 8.8%           | 0.19 [0.08, 0.30]                        | <del></del>                     |
| 49 Garcia-Mejido et al. (2017)                                                       | 0.3425           | 0.0555                   | 73<br>34    | 25<br>3   | 9.0%           | 0.34 [0.23, 0.45]                        |                                 |
| 44 Shek & Dietz (2010)<br>50 Michalec et al. (2016)                                  | 0.0882<br>0.1196 | 0.0486<br>0.0338         | 92          | 11        | 9.9%<br>11.7%  | 0.09 [-0.01, 0.18]<br>0.12 [0.05, 0.19]  | <u> </u>                        |
| 28 Volkoyhaug et al. (2015)                                                          | 0.1196           | 0.0338                   | 131         | 19        | 12.0%          | 0.14 [0.08, 0.21]                        |                                 |
| 34 Chung et al. (2015)                                                               | 0.166            | 0.0237                   | 247         | 41        | 12.6%          | 0.17 [0.12, 0.21]                        | -                               |
| Subtotal (95% CI)                                                                    | J30              | 3.4-37                   | 796         |           | 100.0%         | 0.21 [0.16, 0.27]                        | •                               |
| Heterogeneity: $Tau^2 = 0.01$ ; $Cht^2 = $<br>Test for overall effect: $Z = 7.64$ (P |                  | 2 (P = 0.0002)           | ; r² = 6    | 8%        |                |                                          |                                 |
| 1.1.4 Forceps delivery                                                               |                  |                          |             |           |                |                                          |                                 |
| 35 Albrich et al. (2012)                                                             | 1                | 0.4975                   | 1           | 1         | 0.8%           | 1.00 [0.02, 1.98]                        | [                               |
| 25 Abdool et al. (2018)                                                              |                  | 0.21908902               | 5           | 2         | 3.2%           | 0.40 [-0.03, 0.83]                       | <del></del>                     |
| 54 Araujo Jn et al. (2013)                                                           | 0.222            | 0.1385799                | 9           | 2         | 5.9%           | 0.22 [-0.05, 0.49]                       | +                               |
| 33 Chan et al. (2012)                                                                | 0.71428571       | 0.12073632               | 14          | 10        | 6.9%           | 0.71 [0.48, 0.95]                        | <del></del>                     |
| 55 Kearney et al. (2006)                                                             |                  | 0.11111111               | 18          | 12        | 7.5%           | 0.67 [0.45, 0.88]                        | <del>-</del>                    |
| 17 van Delft et al. (2014)                                                           |                  | 0.10898517               | 21          | 10        | 7.6%           | 0.48 [0.26, 0.69]                        |                                 |
| 44 Shek & Dietz (2010)<br>37 Cassado Garriga et al. (2011)                           |                  | 0.10665365<br>0.10615895 | 20<br>22    | 7<br>10   | 7.7%<br>7.8%   | 0.35 [0.14, 0.56]<br>0.45 [0.25, 0.66]   |                                 |
| 4 Thibault-Gagnon et al. (2014)                                                      |                  | 0.10482356               | 22          | 9         | 7.9%           | 0.41 [0.20, 0.61]                        |                                 |
| 34 Chung et al. (2015)                                                               |                  | 0.07573917               | 42          | 17        | 9.9%           | 0.71 [0.57, 0.86]                        |                                 |
| 32 Cassado Garriga et al. (2011)                                                     | 0.61666667       | 0.06276794               | 60          | 37        | 10.9%          | 0.62 [0.49, 0.74]                        |                                 |
| 40 Krofta et al. (2009)                                                              | 0.63157895       | 0.05533237               | 76          | 48        | 11.5%          | 0.63 [0.52, 0.74]                        |                                 |
| 28 Volloyhaug et al. (2015)                                                          |                  | 0.03898746               | 159         | 65        | 12.6%          | 0.41 [0.33, 0.49]                        | <b>—</b>                        |
| Subtotal (95% CI)                                                                    |                  |                          | 469         |           | 100.0%         | 0.52 [0.44, 0.61]                        | •                               |
| Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> =                           |                  | z (P = 0.0004)           | : r = 6     | 6%        |                |                                          | [                               |
| Test for overall effect: Z = 11.78 (                                                 | r < 0.00001)     |                          |             |           |                |                                          | [                               |
|                                                                                      |                  |                          |             |           |                |                                          | de 0/25 A 0 45 0/5              |
|                                                                                      |                  |                          |             |           |                |                                          | -0.5 -0.25 0 0.25 0.5           |



Test for subgroup differences:  $Chl^2 = 24.77$ , df = 3 (P < 0.0001),  $l^2 = 87.9\%$ 

