Tree diversity and functional leaf traits drive herbivore-associated microbiomes in subtropical China

Yi Li¹, Douglas Chesters², Ming-Qiang Wang¹, Tesfaye Wubet³, Andreas Schuldt⁴, Perttu Anttonen⁵, Peng-Fei Guo¹, Jingting Chen⁶, Qing-Song Zhou¹, Naili Zhang⁷, Keping Ma⁸, Helge Bruelheide⁹, Chun-sheng Wu², and Chao-Dong Zhu¹⁰

November 12, 2020

Abstract

Herbivore insects acquire microorganisms from host plants or soil, but it remains unclear how the diversity and functional composition of host plants contribute to structuring herbivore microbiomes. Within a controlled tree-diversity setting, we used DNA metabarcoding of 16S rRNA to assess the contribution of Lepidoptera species and their local environment (particularly, tree diversity, host tree species, and leaf traits) to the composition of associated bacterial communities. In total, we obtained 7,909 bacterial OTUs from 634 caterpillar individuals comprising 146 species. Tree diversity was found to drive the diversity of caterpillar-associated bacteria both directly, and indirectly via effects on caterpillar communities, and tree diversity was a stronger predictor of bacterial diversity than diversity of caterpillars. Leaf toughness and dry matter content were important traits of the host plant determining bacterial species composition, while leaf calcium and potassium concentration influenced bacterial richness. Our study reveals previously unknown linkages between trees and their characteristics, herbivore insects, and their associated microbes, which contributes to developing a more nuanced understanding of functional dependencies between herbivores and their environment, and has implications for the consequences of plant diversity loss for trophic interactions.

Hosted file

maintext.pdf available at https://authorea.com/users/375084/articles/492465-tree-diversity-and-functional-leaf-traits-drive-herbivore-associated-microbiomes-in-subtropical-china

¹Chinese Academy of Sciences

²Institute of Zoology

³Helmholtz Centre for Environmental Research

⁴University of Göttingen

⁵Institute of Biology/Geobotany and Botanical Garden

⁶Institute of Zoology Chinese Academy of Sciences

⁷Beijing Forestry University

⁸Institute of Botany, Chinese Academy of Sciences

⁹University of Halle- Wittenberg

¹⁰Institute of Zoology, Chinese Academy of Sciences