Quaternion Based Metrics in Relativity

Benedict Irwin ${ }^{1}$

${ }^{1}$ Affiliation not available
November 2, 2020

1 Abstract

By introducing a new form of metric tensor the same derivation for the electromanetic tensor $F_{\mu \nu}$ from potentials A_{μ} leads to the dual space (Hodge Dual) of the regular $F_{\mu \nu}$ tensor. There are additional components in the i, j, k planes, however if after the derivation only the real part is considered a physically consistent electromagnetic theory is recovered with a relabelling of \vec{E} fields to \vec{B} fields and vice versa.

2 Introduction

A prominent feature in relativistic physics is the Minkowski metric tensor
$\eta=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$
On probing where this comes from it was postulated that the matrix could be the 'Real' (non-quaternion) part of the outer product of two unit quaternions $Q=1+i+j+k$,
$\eta_{\mu \nu}=Q \otimes Q=\operatorname{Re}\left(\left[\begin{array}{cccc}1 & i & j & k \\ i & -1 & k & -j \\ j & -k & -1 & i \\ k & j & -i & -1\end{array}\right]\right)$
The implications of carrying through the physics made with this tensor without taking the real part were considered. The creation of an electromagnetic tensor is considered.
When being used for a metric in the form
$\mathrm{ds}^{2}=\left[\begin{array}{llll}d t & d x & d y & d z\end{array}\right]\left[\begin{array}{cccc}1 & i & j & k \\ i & -1 & k & -j \\ j & -k & -1 & i \\ k & j & -i & -1\end{array}\right]\left[\begin{array}{l}d t \\ d x \\ d y \\ d z\end{array}\right]$

Then from explicit calculation it can be shown that an equaivalent matrix gives
$\mathrm{ds}^{2}=\left[\begin{array}{llll}d t & d x & d y & d z\end{array}\right]\left[\begin{array}{cccc}1 & i & j & k \\ i & -1 & 0 & 0 \\ j & 0 & -1 & 0 \\ k & 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}d t \\ d x \\ d y \\ d z\end{array}\right]$
This would be equaivalent to a new type of number with the rules

```
\(\mathrm{i} \cdot i=-1\)
\(j \cdot j=-1\)
\(k \cdot k=-1\)
\(\mathrm{i} \cdot j=j \cdot i=0\)
\(i \cdot k=k \cdot i=0\)
\(j \cdot k=k \cdot j=0(5)\)
```

This is similar to having 3 independant imaginary numbers or basis vectors. If this were an inner product then they are orthoganal but antiparallell with themselves. They form a NON-ASSOCIATIVE 'group' under a product with elements $0,1, i, j, k,-1,-i,-j,-k$, this is an Abelian relationship as the non-Abelian properties of the quaternions was removed with the cross interactions. For example,
(i $\cdot i) \cdot j=-1 \cdot j=-j$
$i \cdot(i \cdot j)=i \cdot 0=0$
$(a \cdot b) \cdot c \neq a \cdot(b \cdot c)(6)$

3 Electromagnetism

This formulation would require
$\eta^{\mu \nu}=\frac{1}{1+i^{2}+j^{2}+k^{2}}\left[\begin{array}{cccc}1 & i & j & k \\ i & -1 & -k & j \\ j & k & -1 & -i \\ k & -j & i & -1\end{array}\right]$
This would require perhaps a normalisation of $\frac{1}{\sqrt{2}}$ on each matrix.
For the potential 4 vector
$\mathrm{A}^{\mu}=\left(\varphi / c, A_{x}, A_{y}, A_{z}\right)(8)$
Then
$\mathrm{A}_{\mu}=\eta_{\mu \nu} A^{\nu}(9)$

Which gives

$$
\begin{aligned}
& \mathrm{A}_{\mu}=\left[\begin{array}{c}
\frac{\varphi}{c}+A_{x} i+A_{y} j+A_{z} k \\
\frac{\varphi i}{c}-A_{x}+A_{y} k-A_{z} j \\
\frac{\varphi j}{c}-A_{x} k-A_{y}+A_{z} i \\
\frac{\varphi k}{c}+A_{x} j+A_{y} i-A_{z}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\varphi}{c} \\
-A_{x} \\
-A_{y} \\
-A_{z}
\end{array}\right]+\left[\begin{array}{c}
A_{x} \\
\frac{\varphi}{c} \\
A_{z} \\
-A_{y}
\end{array}\right] i+\left[\begin{array}{c}
A_{y} \\
-A_{z} \\
\frac{\varphi}{c} \\
A_{x}
\end{array}\right] j+\left[\begin{array}{c}
A_{z} \\
A_{y} \\
-A_{x} \\
\frac{\varphi}{c}
\end{array}\right] k(10)
\end{aligned}
$$

There are now hypercomplex four potentials from the real potential such that $A_{\mu} \rightarrow A_{\mu}+B_{\mu} i+\Gamma_{\mu} j+\Delta_{\mu} k$. Now, as usually defined we can create the tensor
$\mathrm{H}_{\mu \nu}=(d A)_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$
(11)

But with the hypercomplex components it is clear that $H_{\mu \nu}=F_{\mu \nu}+I_{\mu \nu} i+J_{\mu \nu} j+K_{\mu \nu} k$ where

$$
\begin{aligned}
& \mathrm{F}_{\mu \nu}=\operatorname{Re}\left[H_{\mu \nu}\right]=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
& I_{\mu \nu}=\operatorname{Im}_{i}\left[H_{\mu \nu}\right]=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu} \\
& J_{\mu \nu}=\operatorname{Im}_{j}\left[H_{\mu \nu}\right]=\partial_{\mu} \Gamma_{\nu}-\partial_{\nu} \Gamma_{\mu} \\
& K_{\mu \nu}=\operatorname{Im}_{k}\left[H_{\mu \nu}\right]=\partial_{\mu} \Delta_{\nu}-\partial_{\nu} \Delta_{\mu}(12)
\end{aligned}
$$

This means that the real component $F_{\mu \nu}$ is equal to th regular EM tensor

$$
\mathrm{F}_{\mu \nu}=\frac{1}{c}\left[\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \tag{13}\\
-E_{x} & 0 & -c B_{z} & c B_{y} \\
-E_{y} & c B_{z} & 0 & -c B_{x} \\
-E z & -c B_{y} & c B_{x} & 0
\end{array}\right]
$$

However,

$$
\mathrm{F}^{\alpha \beta}=\eta^{\alpha \gamma} \eta^{\beta \delta} F_{\gamma \delta}(14)
$$

Through explicit calculation this results in
$\operatorname{Re}\left[\mathrm{F}^{\mu \nu}\right]=\frac{1}{2 c}\left[\begin{array}{cccc}0 & c B_{x} & c B_{y} & c B_{z} \\ -c B_{x} & 0 & E_{z} & -E_{y} \\ -c B_{y} & -E_{z} & 0 & E_{x} \\ -c B_{z} & E_{y} & -E_{x} & 0\end{array}\right]$
$=\frac{1}{2} G_{\gamma \delta}=\frac{1}{4} \varepsilon_{\alpha \beta \gamma \delta} F^{\alpha \beta}$
(15)

4 Maxwell's Equations

In SI units we have the Faraday-Gauss Law
$\partial_{\alpha} F^{\alpha \beta}=\mu_{0} J_{e}^{\beta}(16)$
The Ampere-Gauss Law
$\partial_{\alpha} \star F^{\alpha \beta}=\frac{\mu_{0}}{c} J_{m}^{\beta}(17)$
and the Lorentz force law
$\operatorname{dp}_{\alpha} \overline{d \tau=q_{e} F_{\alpha \beta} v^{\beta}+q_{m} \star F_{\alpha \beta} v^{\beta}(18)}$
But we now have the different form for the Hodge Dual $\star F$

