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Abstract

In microbial manufacturing, yeast extract is an important component of growth media. The production of heterologous proteins

is often varied because of yeast extract composition. To identify why this reduces protein production, the effects of yeast extract

compositions on the growth and green fluorescent protein (GFP) production of engineered Escherichia coli were investigated

using a deep neural network (DNN)-mediated metabolomics approach. We observed 205 peaks from various yeast extracts

using gas chromatography-mass spectrometry. Principal component analyses of the peaks identified at least three different

clusters. Using 20 different compositions of yeast extract in M9 media, the yields of cells and GFP in the yeast extract-

containing media were higher than those in the control without yeast extract by approximately 3.0–5.0 fold and 1.5–2.0 fold,

respectively. We compared machine learning models and found that DNN best fit the data. To estimate the importance of

each variable, we performed DNN with a mean increase error calculation based on a permutation algorithm. This method

identified the significant components of yeast extract. DNN learning with varying numbers of input variables provided numbers

of the significant components. The influence of specific components on cell growth and GFP production was confirmed with a

validation cultivation.

1 Introduction

In microbial bioprocesses, yeast extract is commonly used as source of nitrogen, vitamins, and minerals.
Yeast extract is a complex raw material usually produced from baker’s or brewer’s yeast through autolysis
or chemical digestion.[1,2] It is also used as a supplemental material in serum-free media for mammalian cell
culture and human immunoglobulin production.[3,4]The composition varies among lots and brands because
of its complex substrates, uncontrolled fermentation conditions during yeast cultivation, and variation of
downstream processes during manufacturing.[5] This variation results in compositional differences and often
causes inconsistent fermentation performances in microbial processes. If this occurs, laboratory testing or
screening of many yeast extracts is performed to determine the most promising extract suitable for large-scale
use.

Recombinant protein expression in Escherichia coli is an important technology used in heterologous protein
production.[6] When producing recombinant proteins with the E. coli protein expression system, yeast extract
is often added to increase enzymatic activity and protein production.[7,8,9] In some cases, other raw materials,
such as sugar cane molasses and corn steep liquor, have been used in addition to yeast extract to increase
heterologous protein production.[10] The experimental design of a protein expression experiment can optimize
the medium composition.[10] However, the variation in raw material composition is often ignored when
optimizing medium components in the laboratory. Porvin et al. developed an automated tubidimetric
system to screen yeast extract for growth of Lactobacillus plantarum .[11] Near-infrared (NIR) spectroscopy
has been applied to investigate the effects of yeast extract composition on recombinant protein production.[12]
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. In the case of mammalian cell cultivation, a combination of spectroscopy and chemometrics has been used for
the characterization of raw materials in media.[13] NIR is useful for real-time monitoring and quality checking
of microbial cultivation.[14]However, this method no longer provides feedback information for optimizing the
media. In previous studies, we successfully used metabolomics-based approaches with non-targeted analyses
via gas chromatography-mass spectrometry (GC-MS) and machine learning to estimate the effect of yeast
extract on microbial growth.[15,16,17] We demonstrated that 165 peaks were observed using GC-MS when E.
coli was cultivated in 24 different medium compositions with 6 different yeast extracts. The data fit well
to the partial least squares regression (PLS) model with reasonable accuracies. Because they are important
medium components, the PLS model estimated several amino acids, and some of these amino acids were
found to influence E. coli growth in validation experiments.[15] This approach was also applied to bioethanol
production. In the model fitting of PLS and DNN,[16,17] the volatile components of hydrolysates derived
from lignocellulosic biomass served as independent variables and ethanol and cell yields served as dependent
variables. However, this metabolomics approach has never been applied to heterologous protein production
by E. coli mutants.

In general, PLS and its modified methods, such as orthogonal projections to latent structures and soft
independent modelling of class analogy, are used in metabolomics studies.[18] DNN is a powerful tool for
analyzing datasets derived from biological systems. However, it appears to be inapplicable to metabolomics
studies because it is difficult to identify the contributing factors. Date and Kikuchi reported the use of
DNN with a mean decreased accuracy based on a permutation algorithm that achieved higher classification
accuracy than random forest regression (RF) and PLS and identified important variables.[19]

In this study, we applied a DNN-mediated metabolomics approach to improve estimation of the effects of
raw materials during microbial cultivation on foreign protein production by E. coli using heterologous GFP
expression in E. coli with different yeast extract compositions. The PLS, RF, neural networks (NN), and
DNN models were compared based on the degree of model fitting, and significant variations were estimated
by a mean increase errors (MIE) calculation based on a permutation algorithm.

2 Materials and methods

2.1 Microorganisms and chemicals

Escherichia coli BL21(DE3)pLysS (Invitrogen) was purchased from Thermo Fisher Scientific Japan (Tokyo,
Japan). The pRSET-EmGFP bacterial expression vector was purchased from Thermo Fisher Scientific
Japan. The vector pRSET-EmGFP was introduced to E. coli BL21(DE3)pLysS using the standard method
in the users’ manual. The strain was cultivated in LB broth that included 10 g/L Bacto® Tryptone (Becton
Dikinson and Co. (BD) Japan, Tokyo, Japan), 5 g/L Bacto® yeast extract (BD), and 10 g/L NaCl. The
culture was incubated overnight at 37°C with shaking at 200 rpm. This was the inoculum used in the
experiments. The culture broth was stored as frozen stocks with 30% glycerol in a deep freezer at -80degC.
Experimental-grade yeast extracts were purchased from BD, Millipore Sigma Japan (Tokyo, Japan), Kyokuto
Pharmaceutical Industrial Co. Ltd. (Tokyo, Japan), and Nihon Pharmaceutical Co. Ltd. (Tokyo, Japan),
and referred to as E1, E2, E3, and E4, respectively. Manufacturing-grade yeast extracts were provided by
manufacturers including Oriental Yeast Co. Ltd. (Tokyo, Japan), Nihon Paper (Tokyo, Japan), and named
as M1, M2, M3, and M4.

2.2 GC-MS

To identify the hydrophilic components of yeast extract, non-targeted GC-MS analyses were performed after
trimethylsilylation according to a previous report.[15] Each 5.0 g/L yeast extract sample (E1, E2, E3, E4,
M1, M2, M3, and M4) and mixed samples (E1-E4, E2-E4, E3-E4, E4-M1, E4-M2, E4-M3, E1-M3, E2-M3,
E3-M3, M3-M1, M3-M2, and M3-M4) were prepared and autoclaved at 121degC for 20 min. The sample
(100 μL) was combined with 20 mg/mL ribitol (60 μL). Then, 900 μL of water, methanol, and chloroform at a
ratio of 1:2.5:1, respectively, were added. After extraction with thorough mixing, the tubes were centrifuged
at 4°C for 5 min with 16,000×g . The top water phases (600 μL) were transferred into new tubes, dried
partly by a centrifuge evaporator, and freeze-dried by a lyophilizer. Methoxyamine chloride (20 mg/mL in
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. pyridine) was added to the lyophilized samples and incubated at 30°C for 90 min. After the incubation,N
-methyl-N -(trimethylsilyl)trifluoroacetamide was added and the mixture was incubated at 37°C for 30 min.
The samples were then introduced into the GC-MS system.

The Agilent GC-MS system, 7980B and 5977A MSD, was used with a HP-5 ms UI column (30 m ×
0.25 mm × firm thickness 0.25 μm). The instrument conditions were set as described previously.[15]Peaks
were obtained from total ion chromatograms using the decombolution program in MassHunter software
(Agilent Technology, CA, USA). The peak area was normalized by the internal standard (ribitol) peak.
Peak annotation was performed with support from the NIST14 database.

2.3 Culture conditions

The frozen stocks (100 μL) were inoculated into 50 mL LB broth with 50 mg/L ampicillin and 35 mg/L
chloramphenicol at 37°C for 9 h as a seed culture. To evaluate the effects of yeast extract supplementation on
the yields of cells and GFP, 5.0 g/L yeast extract was added to M9 minimal salt medium composed of 12.0
g/L Na2HPO6, 6.0 g/L KH2PO4, 1.0 g/L NaCl, 2.0 g/L NH4Cl, 0.5 g/L MgSO4[?]7H2O, 4.0 g/L glucose,
30 mg/L CaCl2[?]H2O, 20 mg/L thiamin hydrochloride, 50 mg/L ampicillin, and 35 mg/L chloramphenicol.
The seed culture (1 mL, OD660 of approximately 5) was transferred into 50 mL of media in a 500 mL
baffled Erlenmeyer flask and incubated at 37degC for 12 h at 200 rpm in an orbital shaker (G[?]BR-200,
Taitec Co. Ltd., Tokyo, Japan). Three hours after inoculation, 1 mM IPTG was added to induce GFP
expression. Cell growth was monitored by measuring the turbidity at 660 nm using a spectrophotometer (V-
630, JASCO Corporation, Tokyo, Japan). GFP expression levels were measured by a spectrofluorometer with
a doubled monochrometer and a micro drop sample holder (FP-8300, JASCO Corporation, Tokyo, Japan).
For GFP quantification, the excitation and detection wavelengths were set at 487 and 509 nm, respectively.
The fluorescence intensities at these wavelengths were used to represent GFP yields. Five microliters of
diluted culture broth were measured using spectrofluoroscopy. The measurements were performed in at least
triplicate after sampling at 0, 3, 6, 9, and 12 h.

2.4 Machine learning

The values of GFP intensities were decreased by five orders of magnitude before being evaluated by machine
learning. In all machine learning algorithms except for principal component analysis (PCA), data from
the E1 yeast extract was used for doubled validation calculations. The remaining data were separated into
learning and test datasets with random cross-validation (85:15). PCA, PLS, and RF were performed on the
Python 3.6 platform using the scikit-learn library.[20] The number of components for the PLS models was
set at 6. For RF, the parameters were set as the following: max depth, 10; max features, 6; max leaf nodes,
none; n estimators, 300; random state, 2525; in case estimate cell yields and max depth, 5; max features,
169; n estimators, 50; random state, 2525; in case of GFP yield. The parameters were set after searching
for the optimal parameters using the grid search function.

NN and DNN were coded in Python 3.6 using TensorFlow 1.5 and the Keras library (https://keras.io/ ).[21]In
all cases, the input shape was set for 205 parameters. To estimate the final yield, the output shape was a
single parameter, cell yield, or GFP. For time course estimation, the output shape was set for 5 parameters
corresponding to the sampling time for each cell growth and GFP sample. Conventional NN was composed
of a single hidden layer with 100 units of hyperbolic tangent (tanh) activations. The network was constructed
with fully connected networks. HeNormal class was used as a kernel weight initializer. Activations of output
layers were set to linear. Adam algorithms were applied to the optimizer with the default setting of the
Keras library. Learning was carried out to minimize the mean squared error (MSE) (eq 1). The times of
training was set at 3,000. Model check point functions were record weights of the model with minimal MSE.

MSE =
1

n

n∑
i=1

(
yi − yi

)2
(eq. 1), where n indicates the number of input variables,yi indicates the measurement values of dependent
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. variables, and yi indicates the estimate values of the dependent variables by the constructed model.

DNN were constructed with 4 hidden layers (200, 100, 50, and 20 units) and tanh activations. The number
of training times was set at 10,000. The other DNN parameters corresponded to those of NN.

MIE calculations were performed with reference to the MDA calculation reported by Date and Kikuchi[19]

For the MSE calculation, the values in a variable were randomly rearranged among the input data, which
was called permutation, and the rearranged data matrices were evaluated by the constructed DNN model.
The model loss obtained by the permutations was compared with the model loss determined by the MSE
calculation. In the calculation, a relatively small influence on MSE means that the constructed model was
rarely influenced by the variable. However, a relatively large influence on MSE means that the constructed
model was significantly affected by the variables. Based on the criterion, the MIE can evaluate the importance
of the variables in the constructed DNN model. In this study, permutations were repeated 60 times for each
variable, and the average MSE for each variable calculated from the rearranged matrices was used as a
representative importance.

To evaluate the effect of the important variables, a sensitivity analysis was performed to estimate the cell
growths and GFP yields while varying only a single important variable in the yeast composition.

A personal computer (PC) equipped with a graphic processing unit were used for the calculations. PC Spec.
OS: Ubuntu 16.04LTS, CPU: Intel Core i7-8700 (3.2-4.6 GHz / 6 cores / 12 threads / 12MB cash), Memory:
DDR-2666 32 GB, GPU: NVIDIA GeForce GTX 1080Ti 11GB.

2.5 Validation by cultivation with adding important components

To validate the estimation by DNN, E. coli EmGFP were cultivated in the basal medium containing 0.05
g/L of an important component as estimated by DNN. The experiments were performed in triplicate. The
yield of cells and GFP were evaluated after 9 h of cultivation, and the yield fold changes were calculated by
normalizing these yields in reference to the control cultivation. The significance of these values was evaluated
by F-tests and T-tests (p <0.05).

3 Results

3.1 Composition of yeast extract

GC-MS detected 205 peaks from trimethylsilylated compounds associated with yeast extract. The com-
pounds included 50 amino acids and their derivatives, 17 saccharides, 7 sugar alcohols, 20 organic acids, 6
nucleotides, 7 fatty acids, 66 miscellaneous compounds, and 32 unknown compounds, as annotated by the
NIST14 database. Figure 1indicates the score plots for the compositions of yeast extracts based on PCA.
The contribution ratios of PC1 and PC2 were 14.0% and 9.0%, respectively. Extract samples E1, E2, E3,
and E4 were plotted right-down on the score plot. M1 and M2 were plotted right-up, and M3 and M4 were
left side. Therefore, the sole yeast extract samples were separated into at least three clusters. Each mixed
yeast extract sample was plotted at intermediated places. The data were summarized in a data matrix that
was used for the machine learning analyses.

3.2 Cultivation

The cultivation results are summarized in Figures S1and S2 . Figure S1 indicates the time courses of
cell growth as OD660. Figure S2 demonstrates the time courses of GFP fluorescence intensities. In the
control experiment using M9 minimal medium (Figure S1U and Figure S2U), the cell growth was weak
and the final yield was 1.11±0.25. GFP production was also weakly induced, and the final GFP yield was
1.83×104±1.52×102 after 9 h. All of the yeast extracts stimulated cell growth and GFP expression. Cell
growth and GFP drastically increased between 2 h and 4 h after inoculation, and then the curves plateaued
or decreased slightly. The fold changes in growth after adding yeast extracts were between 2.72 and 4.50,
and E3 was the best enhancer. The fold changes in GFP were between 1.62 and 2.84, and the best enhancer
was E4. Experimental-grade yeast extracts tended to stimulate more cell growth and GFP production than

4
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. manufacturing-grade yeast extracts. Interestingly, mixing both experimental-grade and manufacturing-grade
yeast extracts increased the cell growth and GFP production.

3.3 Comparing machine learning algorithms

Figure 2 shows boxplots of MSEs for the training data (MSEtrain), crossed validation (MSEtest), and doubled
validation (MSEval) between different machine learning architectures. Leaning calculations were carried out
ten times in each machine learning. For estimating cell yields, the MSEtrain of PLS, RF, NN, and DNN
recorded 1.10×10-2 +- 9.9x10-4, 1.62x10-3 +- 1.12x10-3, 2.05x10-3 +- 1.40x10-3, and 7.30x10-4 +- 9.00x10-4 as
the means +- standard deviations, respectively. The MSEtest of PLS, RF, NN, and DNN recorded 7.58x10-2

+- 2.09x10-2, 9.78x10-2 +- 7.10x10-2, 3.67x10-2 +- 2.33x10-2, and 4.90x10-3 +- 5.30x10-3, respectively. The
MSEval of PLS, RF, NN, and DNN recorded 9.84x10-1 +- 5.57x10-1, 5.70x10-1 +- 8.87x10-2, 1.16x10-2 +-
1.29x10-2, and 3.43x10-3 +- 3.37x10-3, respectively. For estimating the GFP yields, the MSEtrain of PLS, RF,
NN, and DNN were 1.66x10-2 +- 2.85x10-3, 1.08x10-2 +- 6.70x10-4, 2.84x10-2 +- 3.43x10-2, and 6.26x10-3

+- 1.31x10-2, respectively. The MSEtest of PLS, RF, NN, and DNN were 7.04x10-1 +- 1.23x10-1, 6.96x10-2

+- 4.48x10-2, 4.12x10-2 +- 2.30x10-2, and 8.70x10-3 +- 7.70x10-3, respectively. The MSEval of PLS, RF,
NN, and DNN were 8.28x10-1 +- 5.25x10-1, 3.55x10-1 +- 4.36x10-2, 6.10x10-2 +- 2.67x10-2, and 9.69x10-3 +-
1.31x10-2, respectively. To summarize the results of the model fitting, MSEtrain, MSEtest, and MSEval were
observed as the smallest values in DNN in the calculated machine learning architectures, and were observed
higher values in the others.

Figure 3 shows plots of the measured and predicted values of the best model for each machine learning
analysis. For the PLS model, the coefficients of determination for the training data (R2

train) were 0.961
and 0.958 for cell growth and GFP yields, respectively. The coefficients of determination for the test data
(R2

test), which can be also defined as Q2 in a metabolomics analysis, were 0.815 and 0.852, respectively
(Figures 3A and 3E ). The coefficients of determination in the cross-validation seemed to be sufficient in
general metabolome analyses.[16] However, the predicted values were severely varied in the test data and the
validation data. RF showed similar R2

train values to PLS, and higher R2
test values than PLS, with lowered

MSEtrain and MSEtest values but large MSEval values (Figures 3B and 3F ). This indicates that RF overfit
the train data and test data, which suggests a poor forecasting ability for the extrapolation data. The NN fit
the train data and test data similar to RF, and the MSEval values were one order of magnitude smaller than
those of RF (Figures 3C and 3G). This means that the NN model can forecast extrapolation data. DNN
demonstrated very high coefficients of determination and low MSE values using all data (Figures 3D and
3H ). In the case of multivalent outputs using time course data, the data were excellently fitted to DNN
(Figures 3J and 3L ), which were preferred to those of RF (Figures 3I and 3K ).

3.4 Important variables

To identify the important variables, MIE were applied to the DNN models using multivalent output models
(Figures 3J and 3L ).Figure 4 indicates the top 20 most important variables based on the MIE calcu-
lations. Glycerol, phosphate, glutamic acid (Glu), and trehalose or maltose indicated high average MSE in
the case of both cell growth and GFP production. Several of the amino acids observed were representatives
of important components. In order to examine the numerical values of the important variables, we recal-
culated the relationships between the number of input variables, ordered by significance, and the MSEtest

each learning were indicated (Figure S3 ). The MSEtest decreased along with an increase in the number
of variables and converged minimal values. The results meant that the thresholds of the importance values
for cell growth and GFP were 18 and 15, respectively. According to the sensitivity analysis of the important
variables, the M4 yeast extract used for a basal medium containing Glu, trehalose or maltose, isoleucine
(Ile), lysine (Lys), phosphate, glycine (Gly), and aspartic acid (Asp) were predicted to increase cell yields by
less than 30% (Figure S4 ). Simultaneously, Glu, glycerol, phosphate, and Lys were estimated to increase
the yield of GFP (Figure S5 ). Interestingly, almost all of the important variables over the thresholds were
estimated to exert a slight effect on the cell growth and GFP yields.

3.5 Validation by supplemental cultivation

5
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. We performed validation cultivations to confirm the estimation of important components by DNN-MIE. Fig-
ure 5 demonstrates the results of these validation experiments. Glu, maltose, Alanine (Ala), phenylalanine
(Phe), Ile, trehalose, Lys, Asp, phosphate, Gly, and sorbitol significantly increased GFP yields, and leucine
(Leu), Serine (Ser), threonine (Thr), asparagine (Asn), valine (Val), glycerol, and tyrosine (Tyr) significantly
decreased GFP yields. In particular, because Glu increased the GFP yields to 112.9 +- 4.0% and the cell
yields to 104.8 +- 1.5%, this amino acid was predicted to be the most important variable. Maltose stimulated
the GFP yields by 106.5 +- 1.2% and the cell yields by 104.9 +- 1.1%. Asp induced less than 2% of the cell
and GFP yields. Sorbitol showed no influence on the cell and GFP yields. The final pH was between 6.44
and 6.54 in all cases.

4 Discussion

In this study, we evaluated the application of machine learning algorithms as a method to examine the
composition profiles of various yeast extracts and their effect on GFP heterogeneous protein production
by E. coli . According to the GC-MS profiling of yeast extracts, a variety of compositions were observed
(Figure 1 ). Using 20 different compositions of yeast extracts, the yields of cell growth and GFP production
in E. coli varied between 3.05 +- 0.04 and 5.00 +- 0.23 and between 2.55x104 +- 4.13x103and 4.86x104 +-
4.17x103, respectively (Figures S1 and S2 ). The differences in GFP and cell yields were associated with
the composition profiles of the yeast extracts. Then, we applied machine learning algorithms to determine
the relationship between the cultivation results and the yeast extract compositions via a metabolomics
approach. PCA and PLS have been frequently applied to metabolomics approaches.[18,19,22,23] However, the
PLS algorithm did not fit the experimental data as well as the other algorithms, although the coefficients of
determination (R2

learn and R2
test, synonym Q2) were sufficient in general.[15,16,23] To improve the estimation

of the cultivation results from the medium components, RF, NN, and DNN were applied to the present data
based on the comparison of algorithms (Figure 2 and Figure 3 ). The data tended to fit the algorithms
with smaller estimating losses than the losses of PLS. This trend has been observed in previous studies.[17,19]

In particular, MSEval decreased in the case of NN. This means that NN can avoid overfitting to the training
data. DNN showed smaller losses than NN, and it was the best model for estimating cultivation results. The
described DNN structure may not be the best model for the present data because the DNN structures can
be further arranged. In addition, there is a limited amount of experimental data, and this limited dataset
may affect the DNN model. However, the strategies using DNN algorithms improve the model accuracies
in comparison to PLS. In general, it is difficult to calculate the important variables via DNN algorithms.
In this study, the important variables can be estimated by DNN-MIL using permutation algorithms. Glu,
Asp, trehalose or maltose, glycerol, and phosphate were estimated to be the important components for GFP
production (Figure 4 ). Furthermore, the relationships between the number of input variables give top 18
and 15 important variables that dominated the estimating accuracies, for cell and GFP yields, respectively.
Indeed, adding additional Glu at 0.05 g/L increased the GFP yield by 12.9% when M4 yeast extract was
used as a component of the production medium (Figure 5 ). These results demonstrate that DNN-MIL can
calculate the features of yeast extract compositions for GFP production. However, the sensitivity analyses
(Figures S4 and S5 ) estimated that the important variables were found by DNN-MIL, and that the
analyses determined less of an influence on the cell and GFP yields. We believe the differences were caused
by the difference in input data. This was because the important variables were calculated using a global
dataset of all yeast extracts used by DNN-MIL, while the sensitivity analyses were performed for individual
specific yeast extracts (M4). These results show that each individual important variable may weakly influence
cellular activities such as growth and expressing foreign proteins in basal yeast extracts. These effects may
vary among different brands and lots of yeast extract. Although glycerol was estimated to increase cell and
GFP yields in the case of M4 yeast extract, the yields of cells and GFP were significantly decreased in the
experimental validation (Figure 5 ). This difference in the results between the sensitivity analysis and the
experimental validation were observed. Thus, the risk of false positives or negatives using estimations made
by machine learning is still a concern.

Glu, Ala, Phe, Ile, Lys, and Asp increased the cell and GFP yields, and Leu, Ser, Thr, Asn, Val, and
Tyr decreased the cell and GFP yields (Figure 5 ). Chow et al. also reported that in recombinantE.
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. coli BLR(DE3), Asn, Asp, Gln, and Glu increased the production of elastin-like polypeptides, which are
recombinant peptide-based biopolymers that contain repetitive sequences enriched in Gly, Val, Pro, and
Ala.[24] In this study, Glu and Asp, but not Asn, increased the expression of GFP. These results may
indicate thatE. coli behaviors in rich medium were varied compared with its activity in the basal media
and standard culture conditions. Kurmar et al. also reported that 20 mixed amino acids with chemically
defined media increased recombinant peptide production by 40% in E. coliBL21 (DE3).[25] Generally, the
addition of amino acids to growth medium can influence E. coli protein expression. In rich medium, E. coli
cells grow faster, and expression of the majority of the translation apparatus genes is significantly elevated.
This is consistent with known patterns of growth rate-dependent regulation and an increased rate of protein
synthesis in rapidly growing cells. The behavior in minimal cells would be controlled by the biosynthesis
of building blocks, such as de novo biosynthesis of amino acids and nucleotides.[26,27] However, the effects
of individual amino acids in rich medium have not been sufficiently studied, and surprisingly, there is no
common consensus today. Therefore, many engineers associated with industrial production are forced to
screen for the best raw materials, such as different brands and lots of yeast extracts, because they have no
information on the significant components in the raw materials. In this study, we demonstrated that the
DNN-MIL algorithm can be applied to estimate the cell growth and GFP yield by a recombinant strain of E.
coli , and it can predict the components that are most important for cell growth and GFP production. A part
of this estimation was matched to the results of the validating cultivations with the additional components.
In particular, Glu was estimated to be the most important variable in the DNN-MIL simulation. The GFP
yield increased by 12.9% in the validating cultivation. These results imply that the DNN-MIL between
compositions of raw materials, yields of cells, and heterologous protein production can provide promising
information for the optimization of medium components and quality control. However, the DNN model may
lead to fallacies because of the deviation of the learning dataset. Based on the sensitivity analysis, phosphate
and glycerol were estimated to increase cell and GFP yields (Figure S5), but these components reduced the
yields in the actual validating cultivation (Figure 5). The other components which could not be detected by
GC-MS were ignored in the present study. These other components may affect the behaviors estimated by
DNN-MIL. This weakness of the current strategy will be improved by enriching the datasets via increasing
the numbers of raw materials and using additional instrumentational analyses.

To our knowledge, this is the first study to use a DNN-mediated approach for a regression model, although
Date and Kikuchi have already demonstrated DNN-mediated metabolomics for a classification model.[19]

In conclusion, the GC-MS profiles of yeast extracts and cultivation yields of a heterologous protein fit best to
the DNN algorithm. The MIL calculation based on a permutation algorithm identified the important vari-
ables that have the potential to enhance or reduce protein production and cell growth. The DNN-mediated
omics-like analysis between media and cultivation can be applied to new strategies for optimizing medium
compositions and for quality control of media components. In addition, DNN-mediated metabolomics ap-
proaches are applicable to general metabolomics.

Acknowledgments

This research was partly supported by NEDO project (P20011) of METI, Japan.

Conflict of interest

The authors declare no financial of commercial conflict of interest. We thank Korin Albert, PhD, from Edanz
Group (https://en-author-services.edanzgroup.com/ac) for editing a draft of this manuscript.

Data Availability Statement

The data that support the findings of this study are mainly available in the supplementary materials of this
article. Additional data are available upon request.

Author Contributions

Seiga Tachibana : conceptualization, methodology, and investigation; Chiou Tai-Ying : writing, re-

7



P
os

te
d

on
A

u
th

or
ea

31
O

ct
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

41
56

57
.7

65
49

42
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. viewing, and editing the manuscript; Masaaki Konishi : writing the original draft of the manuscript,
visualization, supervision, and project administration.

5 References

[1] A. Bekatorou, C. Psarianos, A. A. Koutinas, Food Technol. Biotechnol. 2006 , 44 , 407.

[2] I. Ferreira, O. Pinho, E. Vieira, J. Tavarela, Trend Food Sci. 2010 , 21 , 77.

[3] D. Hu, Y. Sun, X. Liu, J. Liu, X. Zhang, L. Zhao, H. Wang, W. S. Tan, L. Fan, Appl. Microbiol.
Biotechnol. 2015 ,99 , 8429.

[4] M. Mosser, I. Chevalot, E. Olmos, F. Blanchard, R. Kapel, E. Oriol, I. Marc, A. Marc, Cytotechnology
2013 , 65 , 629.

[5] J. J. Christ, L. M. Blank, L.M., FEMS Yeast Res.2019 , 19 : foz011. DOI: 10.1093/femsyr/foz011.

[6] H. P. Sorensen, K. K. Mortensen, J. Biotechnol.2005 , 115 , 113.

[7] N. Nancib, C. Branlant, J. Boudrant, J. Ind. Microbiol.1991 , 8 , 165.

[8] X. L. Li, J. W. Robbin, K. B. Taylor, J. Ind. Microbiol.1990 , 5 , 165.

[9] F. Mohammadi, N. Nezafat, A. Berenijian, M. Negahdaripour, M. Zamani, M. B. Ghoshoon, M. H.
Horowvat, S. Hemmati, Y. Ghasemi,Curr. Pham. Biotechnol. 2018 , 19 , 856.

[10] Q. Ye, X. Li, M. Yan, H. Cao, L. Xu, Y. Xhang, Y. Chen, J. Xiong, P. Ouyang, H. Ying, Appl. Microbiol.
Biotechnol.2010 , 87 , 517.

[11] J. Povin, E. Fonchy, J. Conway, C. P. Champagne, J. Microbiol. Methods 1997 , 29 , 153.

[12] P. R. Kasprow, A. J. Lange, D. J. Kirwan, Biotechnol. Prog. 1998 , 14 , 318.

[13] N. Trunfio, H. Lee, J. Starkey, C. Agarabi, J. Liu, S. Yoon,Biotechnol. Prog. 2017 , 33 , 1127.

[14] L. Vann, J. Sheppard, J. Ind. Microbiol. Biotechnol.2017 , 44 , 1589.

[15] S. Tachibana, K. Watanabe, M. Konishi, J. Biosci. Bioeng. 2019 , 128 , 468.

[16] K. Watanabe, S. Tachibana, M. Konishi, Bioresour. Technol. 2019 , 281 , 260.

[17] M. Konishi, J. Biosci. Bioeng. 2020 ,129 , 723 729.

[18] M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, J. Trygg, J. Chemometrics 2007
, 20 , 341.

[19] Y. Date, J. Kikuchi, J. Anal. Chem. 2018 ,90 , 1805.

[20] L. Buitinck, G. Louppe, M. Bolondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. Vanderplas, A. Joly, B. Holt, G. Varoquaux, arXiv2013 , 1309.0238v1
https://arxiv.org/abs/1309.0238.

[21] M. Abadi, A. Agarwal. P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, M. Schuster, R. Monga, S. Moore, M. Murray, C. Olah, J. Shlens, B.
Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, arXiv 2015 , 1603.04467https://arxiv.org/abs/1603.04467

[22] X. Tian, Q. Yu, D. Yao, L. Shao, Z. Liang, F. Jia, X. Ji., T. Hui, R. Dai, Front Microbiol. 2018 , 9.
2936.https://www.frontiersin.org/articles/10.3389/fmicb.2018.02936/full

[23] K. Kimura, T. Inaoka, K. Yamamoto, J. Biosci. Bioeng.2018 , 126 , 611.

[24] D. C. Chow, M. R. Deher, K. Trabbic-Carlson, A. Chikoti, A.,Biotechnol. Prog. 2006 , 22 , 638 646.

8



P
os

te
d

on
A

u
th

or
ea

31
O

ct
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

41
56

57
.7

65
49

42
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. [25] J. Kumar, A. S. Cauhan, R. L. Shah, J. A. Gupta, A. S. Rathore,Biotechnol. Bioeng. 2020 , 117 ,
2420.

[26] H. Tao, C. Bausch, C. Richmond, F. R. Blattner, T. Conway, T.,J. Bacteriol. 1999 , 181 , 6425 6440.

[27] A. Baez, A. Kumar, A. K. Sharma, E. D. Anderson, J. Shiloach,N. Biotechnol. 2019 , 25 , 120 128.

Figure legends

Figure 1. PCA plot of yeast extract compositions. The percentages in brackets indicate the contributions
of each component. Symbols: blue circles, E1; green circles, E2; red circles, E3; yellow circles, E4; blue
triangles, M1; green triangles, M2; red triangles, M3; yellow triangles, M4; blue squares, mixture of E1 and
E4; green squares, mixture of E2 and E4; red squares, mixture of E3 and E4; yellow squares, mixture of
E4 and M1; blue diamonds, mixture of E4 and M2; green diamonds, mixture of E1 and M3; red diamonds,
mixture of E2 and E3; yellow diamonds, mixture of E4 and M3; blue reverse triangles, mixture of E3 and
M3; green reverse triangles, mixture of M3 and M1; red reverse triangles, mixture of M3 and M2; yellow
reverse triangles, mixture of M3 and M4.

Figure 2. Comparison of MSEtrain, MSEtest, and MSEval for each machine learning algorithm. A, MSEtrain

for estimating cell yields; B, MSEtrain for estimating GFP yields; C, MSEtest for estimating cell yields; D,
MSEtest for estimating GFP yields; E, MSEval for estimating cell yields; F, MSEval for estimating GFP
yields. The triangles indicate means, the dashed lines indicate medians, and the boxes indicate quantiles.
Circles indicate outliers. Error bars indicate 1.5-fold standard deviations. The number of replication: n =
10.

Figure 3. Measured and predicted values by each machine learning algorithm. A, PLS model for cell yields;
B, RF model for cell yields; C, NN model for cell yields; D, DNN model for cell yields; E, PLS model for
GFP yields; F, RF model for GFP yields; G, NN model for GFP yields; H, DNN model for GFP yields; I,
RF model for time courses of cell growth; J, DNN model for time courses of cell growth; K, RF model for
time courses of GFP; L, DNN model for time courses of GFP. Symbols: yellow circles, training data; red
circles, test data; blue circles, validation data.

Figure 4. Top 20 most important variables calculated by DNN-MIL. A, cell growth; B, GFP expression.
Red dashed lines indicate minimal values of the averaged MSE in all variables.

Figure 5. The results of the validating cultivation. Each component was added at 0.05 g/L in basal
medium with M4 yeast extract. Significance: *, 0.01 < p [?] 0.05; **, p [?] 0.01. Error bars indicate
standard deviations.
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