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Abstract

The pursuit of simple, yet fair, unbiased, and objective measures of researcher performance has occupied
bibliometricians and the research community as a whole for decades. However, despite the diversity of
available metrics, most are either complex to calculate or not readily applied in the most common assessment
exercises (e.g., grant assessment, job applications). The ubiquity of metrics like the h-index (h papers with
at least h citations) and its time-corrected variant, the m-quotient (h-index + number of years publishing)
therefore reflect the ease of use rather than their capacity to differentiate researchers fairly among disciplines,
career stage, or gender. We address this problem here by defining an easily calculated index based on
publicly available citation data (Google Scholar) that corrects for most biases and allows assessors to compare
researchers at any stage of their career and from any discipline on the same scale. Our €-index violates fewer
statistical assumptions relative to other metrics when comparing groups of researchers, and can be easily
modified to remove inherent gender biases in citation data. We demonstrate the utility of the €-index using
a sample of 480 researchers with Google Scholar profiles, stratified evenly into eight disciplines (archaeology,
chemistry, ecology, evolution and development, geology, microbiology, ophthalmology, palaeontology), three
career stages (early, mid-, late-career), and two genders. We advocate the use of thee-index whenever
assessors must compare research performance among researchers of different backgrounds, but emphasise
that no single index should be used exclusively to rank researcher capability.

Introduction

Deriving a fair, unbiased, and easily generated quantitative index serving as a reasonable first-pass metric
for comparing the relative performance of academic researchers is — by the very complexity, diversity, and
intangibility of research output across academic disciplines — impossible (1). However, that unachievable



aim has not discouraged bibliometricians and non-bibliometricians alike from developing scores of citation-
based variants (2, 3) in an attempt to do exactly that, from the better-known h-index (4, 5) (h papers with
at least h citations), m-quotient (4, 5) (h-index = number of years publishing), and g-index (6) (unique
largest number such that the top g papers decreasingly ordered by citations have least g2 citations), to the
scores of variants of these and other indices — e.g., h?-index, e-index (7), x-index (8), hy-index (9), gm-
index (10), etc. (3). Each metric has its own biases and strengths (11-13), suggesting that several should
be used simultaneously to assess citation performance. For example, the arguably most-popular h-index
down-weights quality relative to quantity (14), ignores the majority of accumulated citations in the most
highly cited papers (15), has markedly different distributions among disciplines (16), and tends to increase
with experience (17). The h-index can even rise following the death of the researcher, because the h-index
can never decline (2) and citations can continue to accumulate posthumously.

Despite their broad use in everything from assessing candidates applying for academic positions, comparing
the track records of researchers applying for grants, to applications for promotion (3, 18) inter alia, single-
value citation metrics are rarely meant to (nor should they) be definitive assessment tools (3). Instead, their
most valuable (and fair) application is to provide a quick ‘first pass’ to rank a sample of researchers, followed
by more detailed assessment of publication quality, experience, grant successes, mentorship, collegiality
and all the other characteristics that make a researcher more or less competitive for rare positions and grant
monies. But despite the many different metrics available and arguable improvements that have been proposed
since 2005 when the h-index was first developed (4, 5), few are used regularly in these regards. This is because
they are difficult to calculate without detailed data of a candidate’s publication history, they are not readily
available on open-access websites, and/or they tend to be highly correlated with the h-index anyway (19).
It is for these reasons that the admittedly flawed (20, 21) h-index and its experienced-corrected variant,
the m-quotient, are still the dominant (h-index much more so than the m-quotient) (2) metrics employed
given that they are easily calculated (2, 22) and found for most researchers on open-access websites such as
Google Scholar (23) (scholar.google.com). The lack of access and detailed understanding of the many other
citation-based metrics means that most of them go unused (3), and are essentially valueless for everyday
applications of researcher assessment.

The specific weaknesses of the h-index or m-quotient make the comparison of researchers in different career
stages, genders, and disciplines unfair because they are not normalised in any way. Furthermore, there is
no quantitatively supported threshold above or below which assessors can easily ascertain minimum citation
performance for particular applications — while assessors certainly use subjective ‘rules of thumb’, a more
objective approach is preferable. For this reason, an ideal citation-based metric should only be considered
as a relative index of performance, but relative to what, and to whom?

To address these issues and to provide assessors with an easy, rapid, yet objective relative index of citation
performance for any group of researchers, we designed a new index we call the ‘e-index’ (the ‘e ’ signifies
the use of residuals, or deviance from a trend) that is simple to construct, can be standardised across
disciplines, is meaningful only as a relative index for a particular sample of researchers, can be corrected
for career breaks (see Methods), and provides a sample-specific threshold above and below which assessors
can determine whether individual performance is greater or less than that expected relative to the other
researchers in the specific sample.

With the R code we provide, an assessor need only acquire four separate items of information from Google
Scholar (or if they have access, from other databases such as Scopus — scopus.com) to calculate a re-
searcher’s e-index: (i) the number of citations acquired for the researcher’s top-cited paper (i.e., the first
entry in the Google Scholar profile), (i) the i10-index (number of articles with at least 10 citations), (iii)
the h-index, and () the year in which the researcher’s first peer-reviewed paper was published. While the
last item requires sorting a researcher’s outputs by year and scrolling to the earliest paper, this is not a
time-consuming process. We demonstrate the performance of the e-index using Google Scholar citation data
we collected for 480 researchers in eight separate disciplines spread equally across genders and career stages
to show how the index performs relative to the m-quotient (the only other readily available, opportunity-



corrected citation index available on Google Scholar) across disciplines, career stages, and genders. We also
provide a simple method to scale the index across disciplines (€-index) to make researchers in different areas
comparable despite variable citation trends within their respective areas.

Results

Despite the considerable variation in citation metrics among researchers and disciplines, there was broad
consistency in the strength of the relationships between citation mass (A1) and log, years publishing ()
across disciplines (Fig. 1), although the geology (GEO) sample had the poorest fit (AMR 2 = 0.43; Fig.
1). The distribution of residuals e for each discipline revealed substantial difference in general form and
central tendency (Fig. 2), but after scaling, the distributions of ¢ became aligned among disciplines and
were approximately Gaussian (Shapiro-Wilk normality tests; see Fig. 2 for test values).

After scaling (Fig. 3a), the relationship between € and the m-quotient is non-linear and highly variable (Fig.
3b), meaning that m-quotients often poorly reflect actual relative performance (and despite the m-quotient
already being ‘corrected’ for ¢, it still increases with ¢ ; Supplementary Material Fig. S1). For example, there
are many researchers whose m-quotient < 1, but who perform above expectation (¢ > 0). Alternatively,
there are many researchers with an m-quotient of up to 2 or even 3 who perform below expectation (¢ <
0). Once the m-quotient > 3, € reflects above-expectation performance for all researchers in the example
sample (Fig. 3b). The corresponding € indicate a more uniform spread by gender and career stage (Fig.
3c) than do m-quotients (Fig. 3d). Another advantage of € wversus the m-quotient is that the former has a
threshold (¢ = 0) above which researchers perform above expectation and below which they perform below
expectation, whereas the m-quotient has no equivalent threshold. Further, the m-quotient tends to increase
through one’s career, whereas € is more stable. There is still an increase in € during late career relative to
mid-career, but this is less pronounced that that observed for the m-quotient (Fig. 4).

Examining the ranks derived from € across disciplines, genders and career stage (Fig. 5), bootstrapped
median ranks overlap for all disciplines (Fig. 5a), but there are some notable divergences between the genders
across career stage (Fig. 5b). In general, women ranked slightly below men in all career stages, although
the bootstrapped median ranks overlap among early and mid-career researchers. However, the median ranks
for late-career women and men do not overlap (Fig. 5b), which possibly reflects the observation that senior
academic positions in many disciplines are dominated by men (24-26), and that women tend to receive fewer
citations than men at least in some disciplines, which often tends to compound over time (27-30). The
ranking based on the m-quotient demonstrates the disparity among disciplines (Fig. 5c), but it is perhaps
somewhat more equal between the genders (Fig. 5d) compared to the € rank (Fig. 5b), despite the higher
variability of the m-quotient bootstrapped median rank.

However, calculating the scaled residuals across all disciplines for each gender separately, and then combining
the two datasets and recalculating the rank (producing a gender-‘debiased’ rank) effectively removed the
gender differences (Fig. 6).

Discussion

Todeschini and Baccini (31) recommended that the ideal author-level indicator of citation performance should
(i) have an unequivocal mathematical definition, (i) be easily computed from available data (for a detailed
breakdown of implementation steps and the R code function, see github.com/cjabradshaw/EpsilonIndex),
(i) balance rankings between more experienced and novice researchers (iv) while preserving sensitivity to the
performance of top researchers, and (iv) be sensitive to the number and distribution of citations and articles.
Our new eindex not only meets these criteria, it also adds the ability to compare across disciplines by using
a simple scaling approach, and can easily be adjusted for career gaps by subtracting research-inactive periods
from the total number of years publishing (¢). In this way, the eindex could prove invaluable as we move
toward greater interdisciplinarity, where tenure committees have had difficulty assessing the performance
of candidates straddling disciplines (32, 33). The eindex does not ignore high-citation papers, but neither
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does it overemphasise them, and it includes an element of publication frequency (i19) while simultaneously
incorporating an element of ‘quality’ by including the h-index.

Like all other existing metrics, the eindex does have some disadvantages in terms of not correcting for
author contribution — such as the hy-index (9) or gp-index (10) — even though these types of metrics
can be cumbersome to calculate. Early career researchers who have published but have yet to be cited will
not yet be able to calculate their e-index, as they will not have an h-index score, so would require different
types of assessment. Another potential limitation is that the e-index alone does not correct for any systemic
gender biases associated with the many reasons why women tend to be cited less than men (24-30, 34), but
it does easily allow an assessor to benchmark any subset of researchers (e.g., women-only or men-only) to
adjust the threshold accordingly. Thus, women can be compared to other women and ranked accordingly
such that the ranks are more comparable between these two genders. Alternatively, dividing the genders and
benchmarking them separately followed by a combined re-ranking (Fig. 6) effectively removes the gender
bias in the e-index, which is difficult or impossible to do with other ranking metrics. We certainly advocate
this approach when assessing mixed-gender samples (the same approach could be applied to other subsets
of researchers deemed a priori to be at a disadvantage).

The eindex also potentially suffers from the requirement of the constituent citation data upon which it is
based being accurate and up-to-date (35, 36). Regardless, should an assessor have access to potentially more
rigorous citation databases (e.g., Scopus), the e-index can still be readily calculated, although within-sample
consistency must be maintained for the ranks to be meaningful. We also show that the distribution of
the eindex is relatively more Gaussian in behaviour than the time-corrected m-quotient, with the added
advantage of identifying a threshold above and below which individuals are deemed to be performing better
or worse than expected relative to their sample peers. While there are potentially subjective rules of thumb
for thresholds to be applied to the m -quotient, the residual nature of the € -index makes it a more objective
metric for assessing relative rank, and the € -index is less-sensitive than the m -quotient regarding the innate
rise of ranking as a researcher progresses through her career (Fig. 4).

We reiterate that while the eindex is an advance on existing approaches to rank researchers according to
their citation history, a single metric should never be the sole measure of a researcher’s productivity or
potential. Nonetheless, the objectivity, ease of calculation, and flexibility of its application argue that thee
-index is a needed tool in the quest to provide fair initial appraisals of a researcher’s publication performance.

Materials and Methods

Researcher samples

Each co-author assembled an example set of researchers from within her/his field, which we broadly defined
as archaeology (S.A.C.), chemistry (J.M.C.), ecology (C.J.A.B.), evolution/development (V.W.), geology
(K.T.),microbiology (B.A.E.), ophthalmology (J.R.S.), and palaeontology (J.A.L.). Our basic assembly rules
for each of these discipline samples were: (i) 20 researchers from each stage of career, defined here arbitrarily
as early career (0-10 years since first peer-reviewed article published in a recognised scientific journal),
mid-career (11-20 years since first publication), and late career (> 20 years since first publication); each
discipline therefore had a total of 60 researchers, for a total sample of 8 x 60 = 480 researchers across all
disciplines. (#) Each sample had to include an equal number of women and men from each career stage.
(#ii) Each researcher had to have a unique, publicly accessible Google Scholar profile with no obvious errors,
inappropriate additions, obvious omissions, or duplications. The entire approach we present here assumes
that each researcher’s Google Scholar profile is accurate, up-to-date, and complete.

We did not impose any other rules for sample assembly, but encouraged each compiler to include only a
few previous co-authors. Our goal was to have as much ‘inside knowledge’ as possible with respect to each
discipline, but also to include a wide array of researchers who were predominantly independent of each of us.
The composition of each sample is somewhat irrelevant for the purposes of our example dataset; we merely
attempted gender and career-level balance to show the properties of the ranking system (i.e., we did not



intend for sampling to be a definitive comment about the performance of particular researchers, nor did we
mean for each sample to represent an entire discipline). Finally, we completely anonymised the sample data
for publication.

Citation data

Our overall aim was to provide a meaningful and objective method for ranking researchers by citation history
without requiring extensive online researching or information that was not easily obtainable from a publicly
available, online profile. We also wanted to avoid an index that was overly influenced by outlier citations,
while still keeping valuable performance information regarding high-citation outputs and total productivity
(number of outputs).

For each researcher, the algorithm requires the following information collected from Google Scholar: (i) :10-
index (the number of publications in the researcher’s profile with at least 10 citations, which we denoted i1¢);
one condition is that a researcher must have i1 [?] 1 for the algorithm to function correctly; (i) h-index
— the researcher’s Hirsch number (4): the number of publications with at least as many citations, which
we denoted h; (4 ) the number of citations for the researcher’s most highly cited paper (denoted ¢y, ); and
(iv) the year the researcher published her/his first peer-reviewed article in a recognized scientific journal
(denoted Y'1). For the designation of Y1, we excluded any reports, chapters, books, theses or other forms
of publication that preceded the year of the first peer-reviewed article; however, we included citations from
the former sources in the researcher’s iyq, h, and cyy.

Ranking algorithm

The algorithm first computes a power-law-like relationship between the vector of frequencies (as measured
from Google Scholar): i19, b, and 1, and the vector of their corresponding values: 10, & , and ¢y, respectively.
Thus, h is, by definition, both a frequency (y-axis) and value (z-axis). We then calculated a simple linear
model of the form y ~ a + BE , where

y = log,
i
h | and z = log,
1

10T
h

Cm

(y is the citation frequency, and z is the citation value) for each researcher (Supplementary Material Fig.
S2). The corresponding & and B for each relationship allowed us to calculate a standardized integral (area
under the power-law relationship, A,q) relative to the researcher in the sample with the highest c¢,,. This
implies all areas were scaled to the maximum in the sample.

A researcher’s A .o therefore represents her/his citation mass, but this value still requires correction for
individual opportunity (time since first publication, ¢ = current year — Y1) to compare researchers at
different stages of their career. This is where career gaps can be taken into account explicitly for any
researcher in the sample by subtracting a; = the total cumulative time absent from research (e.g., maternity
or paternity leave, sick leave, secondment, etc.) for individual i from ¢, such that an individual’s career
gap-corrected ¢ = t — a. We therefore constructed another linear model of the form Ao~ y + 0 loget
across all researchers in the sample, and took the residual (¢) of an individual researcher’s A,e from the
predicted relationship as a metric of citation performance relative to the rest of the researchers in that
sample (Supplementary Material Fig. S3). This residual € allows us to rank all individuals in the sample
from highest (highest citation performance relative to opportunity and the entire sample) to lowest (lowest
citation performance relative to opportunity and the entire sample). Any researcher in the sample with a



positive € is considered to be performing above expectation (relative to the group and the time since first
publication), and those with a negative € fall below expectation. This approach also has the advantage of
fitting different linear models to subcategories within a sample to rank researchers within their respective
groupings (e.g., such as by gender; Supplementary Material Fig. S4). An R code function to produce the
index and its variants using a sample dataset is available from github.com/cjabradshaw/Epsilonlndex.

Discipline standardization

Each discipline has its own citation characteristics and trends (16), so we expect that the distribution
of residuals (€) within each discipline to be meaningful only for that discipline’s sample. We therefore
endeavoured to scale (‘normalise’) the results such that researchers in different disciplines could be compared
objectively and fairly.

We first scaled the A, within each discipline by dividing each i researcher’s A, by the sample’s root mean
square:

’ Areli

rel; — o
ie1 Arely

n—1

where n = the total number of researchers in the sample (n = 60). We then regressed these discipline-
scaled A, against the log. number of years since first publication pooling all disciplines together, and then
ranked these scaled residuals (€’) as described above.

Acknowledgments

We acknowledge our many peers for their stewardship of their online citation records. We acknowledge the
Indigenous Traditional Owners of the land on which Flinders University is built — the Kaurna people of the
Adelaide Plains.

Author Contributions

C.J.A.B conceptualised the paper, and C.J.A.B. designed the research. All co-authors provided sample
data from their disciplines. C.J.A.B. wrote the code and did the analysis. C.J.A.B. wrote the paper, with
contributions from all other authors.

ORCIDs

C.J.A. Bradshaw: 0000-0002-5328-7741; J.M. Chalker: 0000-0002-7504-5508; S.A. Crabtree: 0000-0001-
8585-8943; B.A. Eijkelkamp: 0000-0003-0179-8977; J.A. Long: 0000-0001-8012-0114; J.R. Smith: 0000-0002-
4756-5493; K. Trinajstic: 0000-0002-6519-6396; V. Weisbecker: 0000-0003-2370-4046

References

1. T. J. Phelan, A compendium of issues for citation analysis. Scientometrics 45, 117-136 (1999).

2. C. Barnes, The h-index debate: an introduction for librarians. J. Acad. Libr. 43, 487-494 (2017).

3. L. Wildgaard, “An overview of author-level indicators of research performance” in Springer Handbook
of Science and Technology Indicators, W. Glénzel, H. F. Moed, U. Schmoch, M. Thelwall, Eds. (Springer
International Publishing, Cham, 2019), 10.1007/978-3-030-02511-3_14, pp. 361-396.

4. J. E. Hirsch, An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci.
U.S.A. 102, 16569-16572 (2005).


http://github.com/cjabradshaw/EpsilonIndex

10.
11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.
23.

24.
25.

26.

27.
28.

29.

30.

31.

. A. Schubert, G. Schubert, All along the h-index-related literature: a guided tourin Springer Handbook
of Science and Technology Indicators, W. Glénzel, H. F. Moed, U. Schmoch, M. Thelwall, Eds. (Springer
International Publishing, Cham, 2019), 10.1007/978-3-030-02511-3_12, pp. 301-334.

L. Egghe, How to improve the h -index. The Scientist 20, 15 (2006).

C.-T. Zhang, The e-Index, complementing the h-Index for excess citations. PLoS One 4, €5429 (2009).
T. Fenner, M. Harris, M. Levene, J. Bar-Ilan, A novel bibliometric index with a simple geometric
interpretation. PLoS One 13, e0200098 (2018).

M. Schreiber, A modification of the h-index: The h,-index accounts for multi-authored manuscripts. J.
Informetr. 2, 211-216 (2008).

M. Schreiber, How to modify the g-index for multi-authored manuscripts. J. Informetr. 4, 42-54 (2010).
D. F. Thompson, E. C. Callen, M. C. Nahata, New indices in scholarship assessment. Am. J. Pharm.
Educ. 73, 111-111 (2009).

L. Bornmann, R. Mutz, H.-D. Daniel, Are there better indices for evaluation purposes than the h
index? A comparison of nine different variants of the h index using data from biomedicine. J. Am. Soc.
Inf. Sci. Tec. 59, 830-837 (2008).

L. Bornmann, R. Mutz, S. E. Hug, H.-D. Daniel, A multilevel meta-analysis of studies reporting
correlations between the h index and 37 different h index variants. J. Informetr. 5, 346-359 (2011).
R. Costas, M. Bordons, The h-index: advantages, limitations and its relation with other bibliometric
indicators at the micro level. J. Informetr. 1, 193-203 (2007).

T. R. Anderson, R. K. S. Hankin, P. D. Killworth, Beyond the Durfee square: enhancing the h-index
to score total publication output. Scientometrics 76, 577-588 (2008).

P. D. Batista, M. G. Campiteli, O. Kinouchi, Is it possible to compare researchers with different
scientific interests? Scientometrics 68, 179-189 (2006).

C. D. Kelly, M. D. Jennions, The h index and career assessment by numbers. Trends Ecol. Evol. 21,
167-170 (2006).

J. E. Hirsch, Does the h index have predictive power? Proc. Natl. Acad. Sci. USA 104, 19193 (2007).
L. Bornmann, Redundancies in h index variants and the proposal of the number of top-cited papers
as an attractive indicator. Measurement 10, 149-153 (2012).

R. Costas, T. Franssen, Reflections around ‘the cautionary use’ of the h-index: response to Teixeira da
Silva and Dobrénszki. Scientometrics 115, 1125-1130 (2018).

G. Abramo, C. A. D’Angelo, F. Viel, The suitability of 2~ and ¢ indexes for measuring the research
performance of institutions. Scientometrics 97, 555-570 (2013).

Y. Bhattacharjee, Impact factor. Science 309, 1181 (2005).

E. Delgado Lépez-Cézar, E. Orduna-Malea, A. Martin-Martin, “Google Scholar as a data source for
research assessment” in Springer Handbook of Science and Technology Indicators, W. Glanzel, H. F.
Moed, U. Schmoch, M. Thelwall, Eds. (Springer International Publishing, Cham, 2019), 10.1007/978-
3-030-02511-3.4, pp. 95-127.

T. Tregenza, Gender bias in the refereeing process? Trends Ecol. Evol. 17, 349-350 (2002).

V. Lariviere, C. Ni, Y. Gingras, B. Cronin, C. R. Sugimoto, Global gender disparities in science. Nature
504, 211-213 (2013).

L. Howe-Walsh, S. Turnbull, Barriers to women leaders in academia: tales from science and technology.
Stud. High. Educ. 41, 415-428 (2016).

D. W. Aksnes, Characteristics of highly cited papers. Res. Fval. 12, 159-170 (2003).

D. Maliniak, R. Powers, B. F. Walter, The gender citation gap in international relations. Intl. Organ.
67, 889-922 (2013).

C. Beaudry, V. Lariviere, Which gender gap? Factors affecting researchers’ scientific impact in science
and medicine. Res. Policy 45, 1790-1817 (2016).

A. L. Atchison, Negating the gender citation advantage in political science. PS-Polit. Sci. Polit. 50,
448-455 (2017).

R. Todeschini, A. Baccini, Handbook of Bibliometric Indicators: Quantitative Tools for Studying and
Evaluating Research (Wiley-VCH, Weinheim, 2016).



32. J. Austin, Interdisciplinarity and tenure. Science 10 January (2003).

33. E. Evans, Paradigms, Interdisciplinarity, and Tenure. PhD thesis (Stanford University, Palo Alto,
California, USA, 2016), ISBN: 978-0-4386-6106-6, pp. 83.

34. T. E. Carter, T. E. Smith, P. J. Osteen, Gender comparisons of social work faculty using H-Index
scores. Scientometrics 111, 1547-1557 (2017).

35. J. A. Teixeira da Silva, J. Dobranszki, Multiple versions of the h-index: cautionary use for formal
academic purposes. Scientometrics 115, 1107-1113 (2018).

36. J. A. Teixeira da Silva, J. Dobrénszki, Rejoinder to “Multiple versions of the h-index: cautionary use
for formal academic purposes”. Scientometrics 115, 1131-1137 (2018).



Data may be preliminary.

ed

preprint and has not been peer review

is

Il

526843 /v1

18.83

)

10.22541 /au.160373:

2020 — CC-BY 4.0 — https://doi.org

on Authorea 26 Oct

osted

P

o o
.

citation mass (A )
« o
id

citation mass (A)

. 0.0- 0.0-
0.0 05 1.0 1.5 20 25 3.0 35 40 00 05 1.0 1.5 20 25 3.0 35 4.0 00 05 1.0 15 20 25 3.0 35 40
log,, years publishing () log, years publishing (t) log, years publishing (t) log,, years publishing (1)

Figure 1: Figure 1 | Relationship between a researcher’s citation mass (Ae; area under the citation
frequency—value curve — see Supplementary Material Fig. S2) and log. years (t) since first peer-reviewed
publication (Y1) for eight disciplines (ARC = archaeology, CHM = chemistry, ECO = ecology, EVO = evo-
lution and development, GEO = geology, MIC = microbiology, OPH = ophthalmology, PAL = paleontology)
comprising 60 researchers each (30 female, 30 male) in three different career stages: early career researcher
(ECR), mid-career researcher (MCR), and late career researcher (LCR). The fitted lines correspond to the
entire sample (solid black), women only (dashed black), and men only (dashed red). Information-theoretic
evidence ratios for all relationships > 180; adjusted R 2 for each relationship shown in each panel.
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residuals (€') of the relationship between A;el (scaled) and t by discipline. All A;el distributions are ap-
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CHM: W = 0.961, p = 0.051; ECO: W = 0.980, p = 0.409; EVO: W = 0.984, p = 0.630; GEO: W =
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Figure 3: Figure 3 | (a) Relationship between scaled citation mass (A.,) and log, years publishing (t)
for 480 researchers in eight different disciplines (ARC = archaeology, CHM = chemistry, ECO = ecology,
EVO = evolution and development, GEO = geology, MIC = microbiology, OPH = ophthalmology, PAL =
palaeontology) comprising 60 researchers each (30 female, 30 male). (b) Relationship between the residual
of A" log, t (€) and the m-quotient for the same researchers (pink shaded area is the 95% confidence
envelope of a heat-capacity relationship of the form: y = a + bz + ¢ /x 2, where a = -0.17104 — -0.0875; b
= 0.0880 — 0.1318, and ¢ = -0.0423 — -0.0226). (c ) Truncated violin plots of € by gender and career stage
(ECR = early career researcher, MCR = mid-career researcher, LCR = late-career researcher). When € <
0, the researcher’s citation rank is below expectation relative to her peers in the sample; when € > 0, the
citation rank is greater than expected relative to her peers in the sample (dashed lines = quartiles; solid
lines = medians). (d ) Truncated violin plot of the m-quotient by gender and career stage.
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Figure 4: Figure 4 | Median (with 80/20 percentiles) scaled residuals (€', black circles) and m-quotient
(grey squares) across all eight disciplines relative to career stage (ECR = early career; MCR = mid-career;
LCR = late career).
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Figure 5: Figure 5 | (a) Bootstrapped (10,000 iterations) median ranks among the eight disciplines examined
(ARC = archaeology, CHM = chemistry, ECO = ecology, EVO = evolution and development, GEO = geology,
MIC = microbiology, OPH = ophthalmology, PAL = palaeontology) based on the scaled residuals (€’). (b)
Bootstrapped ¢ ranks by gender and career stage (ECR = early career researcher, MCR = mid-career
researcher, LCR = late-career researcher). (c) Bootstrapped (10,000 iterations) median ranks among the
eight disciplines based on the m-quotient. (d) Bootstrapped m-quotient ranks by gender and career stage.
The vertical dashed line in all panels indicates the midway point across the entire sample (480 + 2 = 240).
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Figure 6: Figure 6 | (a) Bootstrapped (10,000 iterations) € ranks by gender and career stage (ECR = early
career researcher, MCR = mid-career researcher, LCR = late-career researcher); (b ) bootstrapped debiased
(i.e., calculating the scaled residuals for each gender separately, and then ranking the combined dataset) €

ranks by gender and career stage.
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Figure 7: Figure S1 | Relationship between the m-quotient and log. years publishing (¢) for 480 researchers
in eight different disciplines. There is a weak, but statistically supported positive relationship (information-
theoretic evidence ratio = 68.7).
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Figure 8: Figure S2 | Relationship between log. citation frequency (y) and log,. citation value (z) for 60
researchers within the discipline of ophthalmology. Each light grey, dashed line is the linear (on the log,-log,
scale) fit for each individual researcher. The area under the fitted line (A1) is shown for individual 32 (ID32;
red horizontal hatch) and individual 27 (orange vertical hatch).
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Figure 9: Figure S3 | Relationship between a researcher’s citation mass (Ae; area under the citation
frequency—value curve — see Fig. S2) and log, years since first peer-reviewed publication (Y) for an example
sample of 60 microbiology researchers in three different career stages: early career researcher (ECR), mid-
career researcher (MCR), and late-career researcher (LCR). The residuals (€) for each researcher relative to
the line of best fit (solid black line) indicate relative citation rank — researchers below this line perform
below expectation (relative to the sample), those above, above expectation. Also shown are the lines of best
fit for women (black dashed line) and men (red dashed line — see also Fig. S4). Here we have also selected
two researchers at random (1 female, 1 male) from each career stage and shown their results in the inset
table. The residuals (€) provide a relative rank from most positive to most negative. Also shown is each of
these six researchers’ m-quotient (h-index + number of years publishing).
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Figure 10: Figure S4 | Gender-specific researcher ranks versus ranks derived from the entire sample (in
this case, the microbiology sample shown in Fig. S3). For women who increased ranks when only compared
to other women (negative residuals; top panel), the average increase was 1.50 places higher. For women
with reduced ranks (positive residuals; top panel), the average was 1.88 places lower. For men who increased
ranks when only compared to other men (negative resjduals; bottom panel), or who declined in rank (positive
residuals; bottom panel), the average number of places moved were both 1.75 for both.



