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Abstract

Motion capture and analysis techniques are emerging in the surgical education and surgical education research literature as

viable ways to augment the assessment of technical skills. In particular, these methods provide an opportunity to reveal objective

information about the efficiency of surgical procedures, above and beyond the accuracy of procedural outcomes. One assessment

that is very prevalent in the literature are counts of the number of movements a surgeon makes in completing a technical

performance. In this commentary, the number of movements metric is explored from kinesiology and engineering perspectives;

two disciplines that have contributed heavily to the development of rigorous motion analysis methods. Furthermore, the

assumption that skill efficiency improves linearly as a learner progresses along the continuum of expertise is challenged. While

movement efficiency does certainly improve, this assumption does not necessarily capture the way that learners flexibly prioritize

particular aspects of performance in the intermediate stages of skill learning. By way of this commentary, important a priori

decisions that should proceed effective motion capture and analysis are highlighted, a call for the standardization of procedures

is made, and an opportunity to better understand the way that computerized movement analysis techniques may contribute

(or be detrimental) to competency constructs in surgical education and assessment is realized.

Introduction

The medical education community has come to agree that direct measures of physician ability need to replace
time-in-training as the main indicators of physician competence.1, 2 Under the banner of competency-based
education (CBE), the fundamental idea is that trainees will develop knowledge, skills, and behaviours at
different rates, and that only through measurement of trainee abilities with reference to standards of achieve-
ment (i.e., milestones), can it be determined when a learner is competent enough to progress into independent
practice.3 In the surgical specialties, where many specific competencies are concerned with precision tech-
nical skills, this shift has been served by the development of a number of effective assessment approaches;
including, the Objective Structured Assessment of Technical Skills (OSATS),4 the Global Operative Assess-
ment of Laparoscopic Skills (GOALS),5and the McGill Inanimate System for Training and Evaluation in
Laparoscopic Surgery (MISTELS).6 While each of these tools is psychometrically robust, they each still rely
on subjective appraisals from qualified experts, which purports to be problematic as the time required to
complete assessments encroaches deeper and deeper into the schedules of clinician-educators.3

As a consequence, the medical education community has explored the use of measurements from computer-
ized systems, which have the ability to provide objective information to evaluators about a procedure, as a
potential avenue to improving the process of assessing technical skills. This approach to assessment encom-
passes a wide variety of technologies, which are capable of measuring a number of surrogates of performance
quality. In general, these types of measurements provide rich digitized metrics about the outcomes of a clini-
cal performance. For instance, technologies that measure forces have been used to reveal the tensile strength
of surgical knots,7, 8 the consistency and accuracy of acupuncture needling,9 and one’s surgical expertise in
bone-drilling tasks.10, 11 However, in addition to outcomes, computerized measures can also provide objective
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assessments about the efficiency with which a skill is performed. Efficiency is often an important perspective
on skill performance, as its optimization can have important impacts on patient safety and hospital oper-
ations; including, reducing patient exposures to radiation12, 13 and the potential for infection,14 improving
the patient-to-patient flow of the operating theatre,15, 16 and protecting the physician from fatigue.17, 18

Historically, the efficiency of clinical performance has usually been inferred through measurements of the time
it takes to complete a procedure,19-21 but more recently, medical educators and researchers have turned to
kinematic measurements derived from motion capture analyses to assess technical skill efficiency.22-25 Motion
capture is used widely in a number of industries (i.e., filmmaking, video game development, military and
sports) and for an array of different purposes (i.e., gait analysis, facial recognition, and computer animation).
The process involves affixing markers to a performer’s body, hands, or tools during a performance. These
markers emit signals (i.e., electromagnetic, optoelectric, inertial, acoustic, etc.) that allow for their position to
be recorded several times a second, permitting the determination of many things; including, the total distance
traveled by the performer’s limbs, the kinematic characteristics (i.e., displacement, velocity, acceleration) of
the clinical movements, and the trial-by-trial spatial variability with which procedures are performed.

One particular measure of procedural efficiency derived from motion capture techniques that has become
exceedingly popular in the surgical education literature is a count of the “number of movements ” made
by the practitioner during a technical skill performance.22, 26, 27 The conceptual idea is that the technique
performed with fewer movements is smoother, better planned, and more efficient, and thus more indicative
of an expert clinician. Indeed, construct and concurrent validation studies have revealed the“number of
movements” metric to differentiate expert and novice performances in a way that aligns with the ratings
provided by subjective assessment scales.26-28 To enact this measure as part of a competency-based technical
skill education program, one may envision requiring learners to reduce their performances to below certain
“number of movements ” milestones in a simulation-based context before moving on to new entrusted ac-
tivities in the criterion clinical environment. Although this approach to assessment has some appeal for
its ability to ensure a certain degree of skill efficiency, above and beyond skill accuracy, before a learner
progresses, it is not without its potential pitfalls. Specifically, the outcomes of motion capture and analysis
are highly dependent on system-level decisions that are inputted by the assessor prior to the data collection
period. Across cohorts of trainees, inconsistency in these decisions may have a major impact on the ability
to distinguish learners’ capabilities with respect to standards of competence, or even on our ability to set
standards at all. Moreover, the relationship between number of movements and expertise is not necessary
indirectly linear. As such, it is important that educators remember that strategic approaches to learning and
the contexts of performance can have significant influence on the number of movements a trainee performs
while practicing.

In this commentary, I consider the processes of counting and interpreting “number of movements ” data
from the perspectives of kinesiology and engineering science, which have contributed heavily to the rigorous
application of motion analysis methods. In doing so, my goal is to advocate for consensus agreement on
the setting of standards for motion capture in clinical assessment, which will allow for the determination
of accurate and appropriate metrics that will ensure consistency in the way that measures of efficiency are
utilized in competency assessment across surgical education programs.

Defining Movements

The first consideration when counting number of movements as a measure of performance efficiency is to
understand the nature of the skills that are being evaluated. In this regard, the field of motor control
kinesiology has typically classified actions as composed of combinations of movements that can be defined as
either discrete or continuous. Discrete movements are those that have a recognizable beginning and end, like
throwing a ball, turning a doorknob, or flipping a light switch; they are usually essential to skills that rely of
the precise production of a distinct outcome. Continuous movements, on the other hand, have no recognizable
beginning or end, and will continue until they are stopped arbitrarily by the performer. Skills composed of
continuous movements can have precision constraints but are often concerned with the maintenance of an
ongoing action. These skills include activities such as walking, swimming, and cycling.29 In the surgical-
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medical domain, the clinical technical performances of interest can more often than not be characterized as
serial actions. This refers to skills that are made up of a number of discrete movements that must occur in a
very particular order. These actions can appear continuous, but usually have distinct components with very
definitive beginnings and ends.29 As such, any one clinical technical skill can be conceptualized in terms of
the minimum number of discrete movements that would be needed for its successful execution. However, as
the number of movements assessment construct suggests, this minimum is not always achieved.

That performances can contain movements in excess of the minimum required by the task is fundamental to
the use of the number of movements metric as a measure of efficiency. Simply put, performances often contain
errors or imperfect actions, which require corrections; and each erred movement and subsequent correction
constitutes the production of additional movements. In this way, the hallmark error volume associated with
novice performances has led to the natural assumption that new trainees will perform procedures with more
movements, and therefore, more inefficiently. Given this position, the challenge for assessors of surgical
technical skills is to determine where one movement within a procedure ends and the next one begins.
In a motion capture and analysis protocol, the way that serial movements are usually disentangled from
one another involves plotting the position function as a displacement profile and then differentiating and
double-differentiating it to generate velocity and acceleration profiles respectively (Note: if the motion data
is captured by accelerometer technology, then integrations are performed on the resulting profile to reveal
velocity and displacement). From these profiles, assessors look for determinant characteristics within the
action trajectories that indicate a new movement. Defining these characteristics becomes one of the most
important decisions underpinning the effective use of the “number of movements ” metric.

Reflecting on the way that errors and corrections emerge in a motor performance can be helpful in setting
the appropriate motion analysis parameters for determining the onset and offset of a movement. Consider,
for instance, the types of errors that require a correction. For one, an action can require a correction
because the performer selects and executes the wrong movement. This type of error occurs, for instance,
when the laparoscopic surgery trainee forgets that the display screen is incongruently rotated with respect
to the work space and ends up moving a grasper to the right instead of the left. To correct these types of
errors, the ongoing movement must be terminated and replaced with an entirely new movement. Sometimes,
this involves reversing direction to return to where the action started, or stopping to reassess the situation
before initiating a new movement in search of corrective solution. With this type of error and correction
in mind, skill assessors may set a zero crossing in the velocity-over-time profile as the end and start points
for successive movements. However, this type of new movement determinant can be insufficient when one
considers that a series of movements can be executed without the limb coming to a complete stop between
each.

It is necessary to understand that noise in the neuromuscular system means that the production of movements
is inherently variable,30 such that discrete precision actions usually require a subtle or not-so-subtle correction
(or corrections) towards their conclusion in order to be successful even when the appropriate movement
is selected and executed correctly by the performer.31 In this regard, new movement determinants based
on zero crossings in the acceleration-over-time profile are also problematic as they ignore the refined and
controlled nature of human motion.32, 33 Indeed, the findings from over a century’s worth of experiments on
the accuracy of voluntary actions reveal that any one precision movement includes complimentary impulses
that move the limb toward its goal and then integrate response-produced sensory feedback to correct the
overall movement for accuracy.34 In this regard, the typical acceleration profile of a single discrete movement
derived via motion capture techniques has 3 zero crossings, which characterize a large sinusoid (i.e., the
initial impulse) that is followed by a second, smaller sinusoid (i.e., the corrective impulse).31, 35, 36 The idea
is that because variability in movement execution is so inherent to motor performance that its management
becomes a fundamental challenge for learners as they move along the continuum of expertise. That is, novice
performers struggle to determine whether their approach to performance introduces too much variability to
correct, while skill performers understand the inherent variability and develop strategies that allow them to
anticipate the type of corrections required for their movements. In this way, a single expert movement often
includes periods of deceleration and re-acceleration.31
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Setting Parameters

With consideration for this hard-wired type of error and the associated corrections, the most common
method of disentangling separate movements within a serial action from a position function in kinesiology
research is to set a threshold for a change in velocity. In this way, a movement is defined as an acceleration
followed by a deceleration, but only when the resultant velocity exceeds the predefined threshold. The idea
is that if the velocity of an action alters by more than a certain amount, in any direction, then a new
movement can be inferred.23 This method accounts for single movements that include graded accelerations
or decelerations, permits new movements to be registered without a zero crossing in acceleration, and allows
small re-accelerations to occur without necessarily registering a new movement.

The setting of the velocity threshold for a new movement can be one of the most important decisions to the
calculation of the number of movements performed during an assessment. Consider, for instance, a small,
controlled movement experiment in which a series of a known number of movements were counted under two
different velocity thresholds for determining a new movement. In this experiment, a confederate performer
was enlisted to slide a handle along a straight 25cm track with the goal of creating a single motion wherein
the handle stopped gently against the stopper at the other end of the track. The confederate completed this
action 10 times in each direction for a total of 20 known movements. These twenty movements were repeated
20 times while a motion capture device recorded the action. The device was the Imperial College Surgical
Assessment Device (ICSAD), a custom software-hardware package that works to time stamp, filter, and
digitize movement data by way of a Polhemus ISOTRAK II electromagnetic system (Polhemus, Colchester,
VT, USA) with a positional resolution of 3mm from 1.5m away. Reports on the optimal operation of the
ICSAD in medical education literature indicate a velocity threshold 15mm/s as appropriate for determining
new movements.37, 38 As such, we analyzed our confederate’s movements with this velocity threshold, and for
the purposes of the demonstration also at a velocity threshold of 7.4 mm/s. The results of our test revealed
the ICSAD counted quite accurately at the 15 mm/s velocity threshold (21.9 ±2.01 movements), but that
reduction of the velocity threshold to 7.4 mm/s had a profound impact on the accuracy of the count (28.8
± 4.16 movements).

Although the setting of the velocity threshold for a new movement is one of the most important decisions
to the calculation of the number of movements performed during an assessment, it is not one that exists
in isolation. The identification of new movements must also be considered with respect to the choices that
are made regarding data filtering. This is because the technologies of motion tracking systems are unable
to differentiate signals from meaningful movements of the sensor from those that result from hand tremor
or other sources in the environment. This idea is similar to the way an electrocardiogram signal that is
generated by the heartbeat of a baby in utero will be interfered with by the heartbeat of the mother. As a
consequence, meaningful signals must be extracted from a context of considerable noise before they can be
analysed.

In most signal processing applications, including motion analysis, this is accomplished via a Fourier transform,
which works to decompose a signal over time into its constituent frequencies. The history and logic that
underpin these mathematics fall outside of the scope of this commentary; it sufficient to understand that
the result is a frequency distribution.39 Given that we know that human movements occur a relatively low
frequency,40, 41motion analysis techniques demand that a low-pass filter, which omits overly high frequencies,
is applied, such that the total signal analyzed can be restricted as closely as possible with that that reflects
the movement. The distribution is then transformed back so that the cleaned version is once again expressed
as a signal over time. If the applied filter is not low enough or too low, then the frequency distribution will
respectively preserve excessive noise or remove meaningful data from the final analyzed profiles. As such,
the ability of the filter to accurately isolate the movement signals can interact significantly with the velocity
threshold for new movements to have a major impact on the number of movements counted.

Consider again our small controlled movement experiment; however, note that our confederate’s sliding track
movements were also measured with a second device: the VICON optoelectric system (Vicon Motion Systems,
Lake Forest, CA). The VICON is an integrated 13-camera system that is capable of providing 6 degree-of-
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freedom digital position data for markers with an accuracy of 0.5mm from up to 16m away. Importantly,
the VICON operates on the bases of custom MatLab scripts (MathWorks Inc., Natick, Massachusetts, USA)
that allow assessors to pre-determine the parameters for data filtering. In this case, a conservative stance
was taken and a low-pass Gaussian-Butterworth filter22 with 5 Hz cut-off frequency was applied. The same
sliding actions, recorded with this device, under this filtering protocol revealed accurate recordings at both
the 15 mm/s (20.6 ± 1.4 movements) and the 7.4 mm/s (20.9 ± 1.6 movements) thresholds.

Although the VICON provides greater spatiotemporal resolution than the ICSAD, the differences in these
two devices to accurately count movements at the lower velocity threshold is attributable to differences in
the data filter processes. Specifically, the algorithms that underscore the ICSAD operations also use a Fourier
transform method to filter data; however, they make the filter cut according to a standard deviation metric
for the frequency distribution rather than at an absolute frequency measure (for e.g., 5Hz). That is, the
ICSAD determines the standard deviation associated with the resulting frequency distribution and then sets
the filter cut point based on a pre-set magnitude of that value. The ICSAD used in the small experiment
was set to its default filter setting of 2, which means that all signals associated with frequencies above two
standard deviations below the distribution mean were removed from the function prior to analyses. In this
regard, the ICSAD allowed more noise to be incorporated into the analyzed function. While this noise was
insufficient to alter movement determinations at the more conservative 15 mm/s velocity threshold, it was
enough to register an increased number of movements at the lower 7.4 mm/s threshold. This is because the
filter methodology determines the cut-off more so by the noise inherent in the measurement context rather
than the frequencies of the target signals.

The intention of this demonstration is not to highlight the ICSAD as an inappropriate motion capture
device for technical skill assessment. Indeed, the ICSAD has been lauded throughout the surgical education
and assessment literature for the validity of its metrics, its ease of use, portability, and ability to capture
data without constraining operative performance. Furthermore, the point is also not to advocate for the
particular thresholds and filters tested here. Rather the goal is to emphasize that the effective practice of
motion analysis for skill assessment involves a sophisticated understanding of the way thata priori decisions
about data collection and analysis interact to influence outcomes. In this regard, it is essential that any
efficiency standard of competency that is based on number of movements is established with appropriately
and consistently applied analysis decisions; the determination of which will undoubtedly require numerous
concurrent and criterion validation studies across the spate of skills of interest. Moreover, the assessment
of trainees by way of motion capture techniques will require standards for measurement, as a differently
adjusted motion capture system at one institution could artificially inflate or deflate a learner’s performance
relative to the performances of those at other institutions.

Interpreting Movements

As mentioned, it has largely been the case in the medical education literature that the number of movements
an individual makes is indicative of their overall efficiency. That is, the fewer the movements, the more
efficient the performance. While, construct validation studies show this to be the general case when expert
and novice performances are compared,27, 28 there is less clarity on the way that efficiency develops through
the intermediate stages of learning. In particular, one perspective on the study of human motor control
describes learning with respect to the way in which individuals vary and explore components of the action as
they search for the optimal approach to performance.42-45 As a consequence, different components of action
can shift between phases of stability (i.e., low movement variability) and instability (i.e., high movement
variability) as learners attempt to organize their movements. The idea is that these shifts occur in response
to constraints placed on the performance by the task or environment, and even as a function of changes
in the learner’s ability and motivation. A good example of this is Guerin and Kunkle’s (2004) study of
individuals learning to kick a ball over a barrier onto a target. Measurement of the participants’ kick height
and accuracy over 12 extensive practice sessions demonstrated that they focused initially on ensuring that
the ball crossed over the barrier, with little concern for accuracy.46 However, as they became able to clear
the height of the barrier consistently, their focus shifted to landing the ball accurately on the target. That
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is, as the learning experience progressed, the height constraint deteriorated in importance and the accuracy
constraint emerged as increasingly more pertinent.

With respect to metrics of efficiency, such as number of movements, this type of shifting means that skill
assessors need to understand the performance constraints to which learners are currently attending. A small
study exploring the validity of an instrumented simulator for the assessment of surgical knot tying skills
provides a nice example.8 In this study, the simulator incorporated flexometer technology that measured
the quality of the knots tied by pre-medical undergraduate students (i.e., novices), medical clerks (i.e.,
intermediates), and senior medical residents (i.e., experts). Interestingly, the technology also permitted the
experimenters to measure the economy of action via the amount the walls of the simulated wound moved
while the participants performed. Not surprisingly, the results showed that the completed knots were tighter
and more sustainable as the performers increased in expertise. That is, the experts’ sutures were better than
those of the intermediates, and the intermediates’ sutures were better than those of the novices. However,
the movement economy metric revealed that the intermediates performed far more inefficiently than both the
experts and the novices. Taken together, the two metrics reveal how the intermediate group had sacrificed
attention to efficiency in order to achieve stronger final products. Given that learners will shift focus from
outcome to efficiency at different stages of practice, it is essential that the assessor of clinical technical skills
remembers that an objective computerized assessment of performance efficiency– defined in terms of number
of movements or otherwise - exists independently of the outcome of the performance. As a consequence, the
relationship between efficiency and expertise is not always direct.47 Thus, as a construct for assessment, it
may be necessary to avoid motion efficiency as a measure of competence until after the learner’s proficiency
at reliably producing quality outcomes is well established. In surgery, this may be particularly important, as
learners will often value accuracy at the expense of efficiency.

Furthermore, when interpreting number of movements, one should also keep in mind the way in which
contexts of performance and individual performer differences can impact how a metric such as number
of movements is used as a competency standard. With respect to the former, differences in task rules or
equipment can have significant impacts on movement performance. In this regard, for example, it would not
be fair to compare the number of movements associated with open surgical performance to those associated
with laparoscopic surgical procedure.48 Indeed, even changes in the time a performer is allotted to complete
a task has shown to disrupt the metrics of efficiency that so often characterize the most expert performers.49

Moreover, skills that occur in closed, static environments are fundamentally different than those that occur in
open, dynamic environments. The former afford approaches to skill performance that are largely anticipatory
in nature, which allows for fuller action plans to be generated prior to initiation, while the latter requires
more attention to be given to online control processes that determine the movements needed as a procedure
unfolds.31 Thus, it would also be unfair to compare performances that permit and don’t permit prior planning,
as the latter would most certainly be associated with higher movement counts.

Closing Thoughts

Taken together, the message for skill assessors considering the use of motion capture data for generating
metrics of performance efficiency is that they must work to ensure a high degree of consistency between data
processing techniques and assessment contexts; and given that acceptable ranges for movement efficiency
can be established for particular clinical skills, progressions of efficiency should be evaluated specifically
within the constraints posed on the task by the individual performer. In presenting this commentary, the
hope is to convey that an incomplete knowledge of the tenets of objective movement capture can yield
inaccurate results. It is my position, then, that a solid understanding of motion capture and human motor
control is essential to the effective implementation of objective computerized competency-based assessment
in medical education contexts. Beyond concerns about the way movements are defined and counted, this also
includes consideration for the nature of learning progressions and challenges the assumption that number
of movement measures will reflect greater efficiency as a learner progresses from novice to expert. In this
regard, it is essential that educators and assessors are careful to reflect any efficiency data through the lens
of task success.
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