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Abstract

The development of computational methods to assess pathogenicity of pre-messenger RNA splicing variants is critical for

diagnosis of human disease. We assessed the capability of eight algorithms, and a consensus approach, to prioritize 250 variants

of uncertain significance (VUS) that underwent splicing functional analyses. It is the capability of algorithms to differentiate

VUSs away from the immediate splice site as ‘pathogenic’ or ‘benign’ that is likely to have the most substantial impact on

diagnostic testing. We show that SpliceAI is the best single strategy in this regard, but that combined usage of tools using a

weighted approach can increase accuracy further. We incorporated prioritization strategies alongside diagnostic testing for rare

disorders. We show that 15% of 2783 referred individuals carry rare variants expected to impact splicing that were not initially

identified as ‘pathogenic’ or ‘likely pathogenic’; 1 in 5 of these cases could lead to new or refined diagnoses.

Abstract:

The development of computational methods to assess pathogenicity of pre-messenger RNA splicing variants
is critical for diagnosis of human disease. We assessed the capability of eight algorithms, and a consensus ap-
proach, to prioritize 250 variants of uncertain significance (VUS) that underwent splicing functional analyses.
It is the capability of algorithms to differentiate VUSs away from the immediate splice site as ‘pathogenic’ or
‘benign’ that is likely to have the most substantial impact on diagnostic testing. We show that SpliceAI is the
best single strategy in this regard, but that combined usage of tools using a weighted approach can increase
accuracy further. We incorporated prioritization strategies alongside diagnostic testing for rare disorders.
We show that 15% of 2783 referred individuals carry rare variants expected to impact splicing that were not
initially identified as ‘pathogenic’ or ‘likely pathogenic’; 1 in 5 of these cases could lead to new or refined
diagnoses.
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A number of computational tools have been developed to assist in the interpretation of genomic variation
impacting splicing (Rowlands, Baralle, & Ellingford, 2019). These tools have been expanded recently to
include an array of machine learning tools that have been trained to prioritize splice-disrupting variation
through diverse means (Cheng et al., 2019; Jagadeesh et al., 2019; Jaganathan et al., 2019; Lee et al., 2017;
Xiong et al., 2015). Here we compare the accuracy of nine in silico strategies, including eight state-of-the
art algorithms and a consensus approach, to prioritize variants impacting splicing.

First, we ascertained and performed functional analyses for 250 VUSs to observe their impact on splicing
(Table S1). To the best of our knowledge, this is the largest set of VUSs that have been functionally
interrogated for impact on splicing as part of diagnostic services for individuals with rare disease. Variants
had been identified in individuals undergoing genome sequencing and targeted gene panel analysis, with
diverse phenotypic presentations including familial susceptibility to breast cancer (MIM #604370), syndromic
disorders such as Marfan syndrome (MIM #154700) and isolated inherited retinal disorders such as retinitis
pigmentosa (MIM #300029). The approaches for VUS functional analysis are described elsewhere (Wai et
al., 2020) and in the Supporting Information. We observed that 80/250 (32%) of the VUSs significantly
impacted splicing, and as a result could be reclassified as ‘likely pathogenic’ according to ACMG guidelines
for variant interpretation (Richards et al., 2015). This reclassification resulted in new molecular diagnoses
for individuals carrying these variants. All VUSs impacted regions outside of canonical splice acceptor and
donor sites, and included examples of deeply intronic cryptic splice sites, exonic cryptic splice sites and
branchpoint variants. In some cases, functional investigations demonstrated a range of consequences on
mRNA splicing (Figure 1), reinforcing the concept that the precise effect of splicing variants is an important
piece of evidence for consideration during clinical variant interpretation that, in the future, may enable
refinements in appropriate targeted treatments (Bauwens et al., 2019; Shen & Corey, 2018).

We obtained in silico prediction scores for each of the 250 functionally assessed variants using eight in
silicoprioritization algorithms (Table S1) and calculated sensitivity, specificity and receiver operating char-
acteristic area under the curve (AUC), observing significantly variable performances (Figure 2). Pairwise
statistical comparisons of AUC for the 250 functionally assessed VUSs, after Bonferroni correction for mul-
tiple testing, demonstrated that SpliceAI outperformed other single algorithm approaches (Figure 2; Table
S2). The AUC analysis for single algorithms calculated the optimal score for each of the algorithms to
distinguish between true positives (80 variants shown to impact splicing in our functional assays) and true
negatives (170 variants shown not to impact splicing in our functional assays) in this dataset. We acknowl-
edge that splicing machinery may be influenced by cell-/tissue-specific factors which are outside the scope of
assays performed here (Aicher, Jewell, Vaquero-Garcia, Barash, & Bhoj, 2020; Cummings et al., 2020; Vig
et al., 2020), and variants may have pathogenic impacts on gene expression and/or regulation without any
detrimental impact on splicing (Castel et al., 2018; Evans et al., 2018; Short et al., 2018; Zhang, Wakeling,
Ware, & Whiffin, 2020). Such factors will influence comparative metrics between algorithms, and future
investigations may uncover pathogenic roles for variants reported here. However, the optimal thresholds
calculated in light of these limitations for the 250 functionally assessed VUSs in this study are reported in
Table S3.

Global approaches to variant analysis, as assessed through the AUC, may fail to capture region-specific
intricacies in splicing disruption (Jagadeesh et al., 2019). For example, variants could be sub-divided by
their pathogenic mechanism, their effect on pre-mRNA splicing, their predicted molecular consequence or
the location of the variant with respect to known splicing motifs, and each of these sub-groups may require
different approaches or thresholds for accurate prioritization of pathogenic variation. We therefore predicted
variants to be ‘disruptive’ or ‘undisruptive’ according to pre-defined thresholds, utilizing region-specific
thresholds where appropriate (Table S4), and compared accuracy of each of the prioritization strategies
across 2000 iterations of sampling with replacement. We utilized a single score threshold for tools where
region-specific thresholds have not been previously identified (Table S4). This analysis highlighted differences
across the tools and significantly differentiated their ability to accurately predict pathogenicity (Kruskal
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Wallis, df=8, p<0.0001; Figure 2c-d). Similar to the AUC analysis, SpliceAI (using a threshold of 0.2) was
significantly the best performing strategy across all assessed single algorithms for our set of analysed VUSs
(Kruskal Wallis, p<0.0001 for all pairwise comparisons of accuracy between SpliceAI and other tools; Figure
2c-d).

To determine if combining one or more of these metrics could achieve greater accuracy than prioritization
scores in isolation, we developed a consensus score for each variant which considered the region-specific
thresholds for each tool (Table S4, consensus score range = 0-8 tools predicting splicing disruption). We
observed that the consensus approach performed similarly to SpliceAI when assessed through the receiver
operating characteristic AUC (Figure 2; Tables S2-S3). The consensus approach (using a threshold of 4/8
algorithms supporting splicing disruption) also performed more similarly to SpliceAI than other strategies
when measuring accuracy across sampling iterations (Figure 2c), but was less frequently the best performing
approach (Figure 2d). To understand if the relative scores from each algorithm could assist interpretation we
developed a novel metric which incorporates weighted scores from the prioritization strategies (Supporting
Information). This analysis considered the actual score of the variant relative to the maximum score possible
from each prediction algorithm (Supporting Information). Of note, the weighted approach considering scores
from SpliceAI and a consensus approach performs better than these two approaches in isolation (Figure 2b;
Table S3). Although not mutually exclusive and underpowered to detect significant statistical differences in
the AUC from this combined analysis - due to marginal gains in accuracy and sample size - this demonstrates
the potential utility of combined approaches utilizing combinations of scores to improve accuracy for the
identification of variants impacting splicing.

Next, we sought to examine the impact of these approaches on clinical variant analysis. Therefore we
integrated region-specific prioritization strategies (Table S4) into an accredited diagnostic service for 2783
individuals with rare diseases (Ellingford et al., 2016). All individuals included in this analysis have received
genetic testing for rare disease within the UK national healthcare service through a clinically accredited
laboratory. We calculated in silico scores for 20,617 variants (18,013 of which were rare), observed a total of
1,346,744 times in the cohort. We observed substantial variability in the number of rare variants prioritized
by each in-silico tool (Figure 3a; Table S5) and in the specific variants prioritized by the most correlated in-
silico splicing tools (Figure 3b). We observed that while variants which show the highest consensus between
in silico splicing tools impact the canonical splice site (Figure 3c; Table S6), 99% (n =17,871) of variants
analysed impact exonic or intronic regions of genes outside of the canonical splice sites. Splicing variants are
often considered as a single class of variants and canonical splice site variants are therefore highly susceptible
to over-prioritization by in silico tools, as such variant represents the majority (˜70%) of known splicing
pathogenic variants (Krawczak et al., 2007; Stenson et al., 2014; Xiong et al., 2015). Our data further
underline the need to develop effective and unbiased strategies for prioritizing variants impacting splicing
outside of the canonical splice sites, and this will be especially important for VUS in known disease genes.
Overall, these data demonstrate that different in silico strategies for splicing variant prioritization will alter
the burden of variant analysis for clinical scientists. This is an important consideration for the analytical
specificity and the throughput of diagnostic testing.

To assess the clinical impact of such strategies, we integrated a single prioritization strategy, SpliceAI, in
parallel to outcomes from routine diagnostic testing. This analysis involved extensive curation of genomic
findings for the 2783 referred individuals, all of which were classified in accordance with ACMG guidelines
by clinically accredited scientists. We added SpliceAI predictions alongside these analyses and observed that
this approach influenced analysis for 420 (15%) individuals receiving genomic testing for rare disease, and
could result in new or refined molecular diagnoses in 81 (3%) cases. Overall, we prioritized 758 variants (528
unique variants) in 646 individuals (23% of cohort) with a range of predicted molecular consequences. Most
(99.6%, 526/528) variants were prioritized by at least one other in silico tool (Table S7). The strength of the
score from SpliceAI correlated highly with prioritization from other in silico tools (Figure 3d) and differed
between regions of genome that were impacted (Table S8). We defined prioritized variants as:

• New , variant not previously highlighted or reported through diagnostic testing;

3
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• Clarified, variant previously reported through diagnostic testing but pathogenicity or pathogenic mech-
anism was unclear;

• Reported , variant already described or established as ‘pathogenic’ or ‘likely pathogenic’ through diag-
nostic testing.

In this regard, we identified 379 new variants in 337 individuals, 87 clarified variants in 83 individuals and
292reported variants in 274 individuals. We found most (91%, 697/758) variants to be in genes known as a
recessive cause of genetic disease. To understand if these variants impacted normal splicing, we interrogated
the GTEx datasets (GTEx, 2013) for individuals carrying variants in a heterozygous state, identifying 40
carriers of variants prioritized by this analysis. Of these, 21 had suitable RNAseq datasets available for
evaluation, and we were able to clearly observe significant alterations to splicing in four cases (Table 1).
Whilst most variants will require bespoke functional investigations to establish precise effects on splicing
and protein synthesis, leveraging the use of publicly available datasets for individuals carrying potentially
pathogenic rare variants in the GTEx dataset can quickly increase certainty of variant impact and refine
clinical variant analysis.

The incorporation of the prioritization and functional strategies described in this study for variants impacting
splicing significantly improved molecular diagnostic services. However, we expect that the true impact of
such analysis strategies will be more profound. Targeted next generation sequencing approaches employed
within this large cohort ignore deeply intronic regions of genes, which, as shown here (Box 1, Case Example)
and in other studies (den Hollander et al., 2006; Montalban et al., 2019; Sangermano et al., 2019), can
harbor variants which result in aberrant splicing through the production of novel cryptic exons. The recent
availability of genomic datasets within healthcare amplifies the current limitations in interpreting variation
within the non-coding genome, particularly in large genome sequencing cohorts. Our findings demonstrate
the opportunity to expand bioinformatics analysis to the pre-mRNA regions of known disease genes and
provide immediate increases to diagnostic yield. Moreover, we demonstrate a requirement to functionally
assess variant impact on pre-mRNA splicing as the delineation of the precise effects may be important
in considerations for variant pathogenicity. The prioritization and identification of pathogenic variants
impacting splicing is therefore an important consideration for diagnostic services and for the development of
new targeted treatments.

Figure Legends

Figure 1. Results from in-vitro minigene assays demonstrating multiple consequences as a
result of variants proximal to the canonical splice site. Left , gel electrophoresis snapshots of
cDNA products amplified from primers designed for control exons within the minigene (exon 1 & exon
2 ). All prominent bands were cut out and Sanger sequenced. Right , solid red blocks illustrate align-
ment of sequenced cDNA transcripts to features within the minigene vector: control exons (grey boxes )
and inserted exons (purple boxes ). (a) SCN2A c.2919+3A>G , showing complete exon exclusion and
exon truncation in minigene vectors containing the c.2919+3A>G variant (top two alignments) and nor-
mal splicing in minigene vectors containing the WT sequence (bottom alignment). The first resulted in a
transcript with a truncated exon, NM 001040142.1:r.2563 2710del, and the second resulted in a complete
exon skip, NM 001040142.1:r.2563 2919del. While we interpreted both events as ‘likely pathogenic’ it is
noteworthy that these events were considered differently using ACMG criteria; the exon truncation event
resulted in a frameshift and introduction of a premature stop codon (PVS1 ), whereas the complete exon
skipping event resulted in the inframe removal of 119 amino acids from the transcript (PM4 ).(b) MERTK
c.2486+6T>A , showing a shifting of the exon included in the reading frame in minigene vectors contain-
ing the c.2486+6T>A variant (top alignment) and normal splicing in minigene vectors containing the WT
sequence (bottomalignment). This novel variant is present in two individuals with severe rod-cone dystrophy,
and resulted in the simultaneous usage of a cryptic exonic splice acceptor site and a cryptic intronic splice
donor site creating a novel exon (chr2: 112,779,939-112,780,082, GRCh37 ), and a premature stop codon in
the penultimate exon, p.(Trp784Valfs*10).

Figure 2. Comparison of in silico strategies to prioritize 250 variants of uncertain signifi-
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cance with functional investigations performed. (a) Receiver operating characteristics area under the
curve (AUC) comparisons for nine in silicoprioritization strategies demonstrating that SpliceAI (AUC=0.95,
95%CI=0.93-0.98) and a consensus approach (AUC=0.94, 95%CI=0.91-0.96) outperform other strategies for
prioritization. (b) AUC comparisons between SpliceAI, a consensus approach and a novel metric, demon-
strates that a weighted approach slightly increases accuracy of prioritization over single approaches alone
(AUC=0.96, 95%CI=0.94-0.98). (c-d) Accuracy comparisons of each insilico prioritization approach across
2000 bootstraps utilizing region-specific pre-defined thresholds: (c) violin plot demonstrating the calculated
accuracy of eachin-silico prioritization approach; (d) frequency that each strategy is the best or joint best
performing.

Figure 3. Summary of the overlap and correlations observed between the scores from in silico
splicing prediction algorithms for 18,013 unique rare variants identified in a large cohort of
2783 individuals with rare disease undergoing genetic testing, specifically for syndromic and
non-syndromic inherited retinal disorders. (a) Bar chart showing overall count of unique variants
prioritized using pre-defined thresholds for each in silico prediction algorithm. (b) Overlap between the
unique variants prioritized by the five most correlated in silico prediction tools. (c) Grouped bar chart
demonstrating the overlap of variants prioritized by each tool segregated by the region of the genome that
the variant impacts, as defined by Jagadeesh et al . (d) Correlation between SpliceAI score and the number
of additional tools also prioritizing the variant for the 528 unique rare variants prioritized by SpliceAI.
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