Molecular characterization of pathogenic *OTOA* gene conversions in hearing loss patients Sacha Laurent¹, Corinne Gehrig¹, Thierry Nouspikel¹, Sami Amr², Andrea Oza³, Elissa Murphy³, Anne Vannier¹, Frédérique Bena¹, Maria Carminho-Rodrigues¹, Jean-Louis Blouin¹, Hélène Cao Van¹, Marc Abramowicz⁴, Ariane Paolini-Giacobino¹, and Michel Guipponi¹ September 17, 2020 ## Abstract Bi-allelic loss-of-function variants of *OTOA* are a well-known cause of mild-to-moderate hearing loss. Whereas non-allelic homologous recombination-mediated deletions of the gene are well known, gene conversions to pseudogene *OTOAP1* have been reported in the literature but never fully described nor their pathogenicity assessed. Here, we report two unrelated patients with mild-to-moderate hearing-loss, who were compound heterozygotes for a converted allele and a deletion of *OTOA*. The conversions were initially detected through sequencing depths anomalies at the *OTOA* locus after exome sequencing, then confirmed with long range PCRs. Both conversions lead to loss-of-function by introducing a premature stop codon in exon 22 (p.Glu787*). Using genomic alignments and long read nanopore sequencing, we found that the two probands carry converted alleles of widely different lengths, suggesting that they originated from different mechanisms of gene conversion. ## Hosted file Submission OTOA.rtf available at https://authorea.com/users/359784/articles/481590-molecular-characterization-of-pathogenic-otoa-gene-conversions-in-hearing-loss-patients ¹University Hospitals of Geneva ²Department of Pathology, Brigham & Women's Hospital and Harvard Medical School ³Partners Healthcare ⁴University Hospitals of Geneva | figures/Figure1/Figure1-eps-converted-to.pdf | | |--|--| | | |