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Abstract

Integrated continuous downstream processes with process analytical technology offer a promising opportunity to reduce pro-

duction costs and increase process flexibility and adaptability. In this case study, an integrated continuous process was used

to purify a recombinant protein on laboratory scale in a two-system setup that can be used as a general downstream setup

offering multi-product and multi-purpose manufacturing capabilities. The process consisted of continuous solvent/detergent

virus inactivation followed by periodic countercurrent chromatography in the capture step, and a final chromatographic polish-

ing step. A real-time controller was implemented to ensure stable operation by adapting the downstream process to external

changes. A concentration disturbance was introduced to test the controller. After the disturbance was applied, the product

output recovered within 6 hours, showing the effectiveness of the controller. In a comparison of the process with and without

the controller, the product output per cycle increased by 27%, the resin utilization increased from 71.4% to 87.9%, and the

specific buffer consumption was decreased by 21% with the controller, while maintaining a similar yield and purity as in the

process without the disturbance. In addition, the integrated continuous process outperformed the batch process, increasing the

productivity by 95% and the yield by 28%.

Introduction

The increasing need to develop new biopharmaceuticals and reduce costs have led to higher demands on
processes being more versatile and efficient (Zydney, 2015). The opportunities and rationale for integrated
continuous processes have been discussed in several studies (Hammerschmidt, Tscheliessnig, Sommer, Helk,
& Jungbauer, 2014; Konstantinov & Cooney, 2015; Papathanasiou & Kontoravdi, 2020), and integrated
continuous processes is also encouraged by the U.S. Food and Drug Administration (FDA) (Woodcock,
2014). There is also a trend towards more stratified therapies, which will lead to an increase in the demand
for flexible multi-purpose facilities for smaller-scale production (Gronemeyer, Ditz, & Strube, 2014).

Upstream processes have historically been the subject of greater development in regard to integration and
continuous production than downstream processes (Gronemeyer et al., 2014), despite the fact that up to 60%
of the total manufacturing cost can be attributed to downstream processing (Dileo, Ley, Nixon, & Chen,
2017). Several methods have been developed to reduce this disparity, including periodic countercurrent
chromatography (PCC) (Godawat et al., 2012), multicolumn countercurrent solvent gradient purification
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(Müller-Spath, Aumann, Melter, Strohlein, & Morbidelli, 2008), and simulated moving bed chromatography
(Juza, Mazzotti, & Morbidelli, 2000). Integrated biomanufacturing has been found to give higher produc-
tivity and product quality than non-integrated batch processing (Andersson et al., 2017; Gomis-Fons et
al., 2019; Rathore, Agarwal, Sharma, Pathak, & Muthukumar, 2015; Schugerl & Hubbuch, 2005). Karst,
Steinebach, Soos, and Morbidelli (2017) suggested that the improvement in product quality was the result
of a more stable cellular environment and the shorter residence time. Furthermore, the need for manual
intervention is reduced, which increases the robustness and reproducibility of the process (Konstantinov &
Cooney, 2015; Sonnleitner, 1997). The FDA advocates the concept of quality by design for the production of
biopharmaceuticals (Rathore & Winkle, 2009). It is therefore important that the process design is retained
when the process is scaled up. This is an important reason for developing integrated and continuous processes
in research. Another reason for studying integrated and continuous processes is the need for flexibility to
allow many similar candidates to be rapidly produced and screened. Many studies on integrated continuous
biomanufacturing processes have been performed on monoclonal antibodies (Arnold, Lee, Rucker-Pezzini, &
Lee, 2019; Godawat, Konstantinov, Rohani, & Warikoo, 2015; Gomis-Fons, Schwarz, et al., 2020; Kamga,
Cattaneo, & Yoon, 2018; Steinebach et al., 2017). This paper describes a general integrated continuous
process for the production of various biopharmaceuticals, including a PCC operation and a truly continuous
solvent/detergent virus inactivation step (Martins et al., 2019). To the best of our knowledge, this is the
first time PCC and continuous virus inactivation have been integrated and run together.

Process analytical technology (PAT) is a tool that enables improved product quality and process efficiency
(Fisher et al., 2019), and can be used in the quality-by-design approach. The main goal of PAT is to ensure
consistent quality by both a sound understanding of the process and real-time monitoring of critical attributes
(Read et al., 2010). Measurements of the attributes can be used for feedback or feedforward process control
(Fisher et al., 2019). For example, Mendhe, Thukkaram, Patil, and Rathore (2015) analyzed a variety of
PAT-based pooling strategies and found that the most successful application was a feedforward approach
based on the retention time of a characteristic peak eluting prior to the main peak. Another example is the
implementation of a strategy to control the load factor in a twin-column periodic capture step coupled with a
bioreactor for the production of monoclonal antibodies, as in our previous study (Gomis-Fons, Schwarz, et al.,
2020), which was achieved by online estimation of the harvest concentration and the model-based assessment
of the dynamic binding capacity of the column. This type of control is necessary to avoid overloading the
column when the harvest concentration increases, or to maximize the resin utilization when the harvest
concentration is low. However, this approach required a very detailed and complex model, which involved
substantial experimental work for its calibration. In the present study, we developed a real-time control
approach in which no model is needed, and the control parameters are obtained automatically online, thus
avoiding expensive and time-consuming experiments. This constitutes a very powerful PAT-based tool that
can be used to improve process efficiency and facilitate the efficient integration of upstream and downstream
processes, since it allows greater adaptability of the downstream process to changes in the concentration and
flow rate from upstream processes.

The supervisory control and data acquisition system Orbit software (Nilsson, Andersson, Gomis-Fons, &
Lofgren, 2017) was used to store the generated data, analyze them, and control the hardware. This system
has been used in previous studies (Andersson et al., 2017; Gomis-Fons et al., 2019; Lofgren et al., 2018).
Orbit was modified so that the real-time controller could be implemented and to allow online monitoring of
process attributes.

The case studied

The case studied was the purification of a recombinant protein produced by a Chinese hamster ovary cell line,
provided by Swedish Orphan Biovitrum AB (Stockholm, Sweden). The purification process was based on
the integrated downstream process presented in our previous study (Lofgren et al., 2018). In that study, the
clarified supernatant was captured using a weak anion-exchange column (capture step), followed by a virus
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inactivation step and hydrophobic interaction chromatography (polishing step). In contrast to our previous
study, we used a 3-column PCC operation as the capture step with prior continuous virus inactivation, as
illustrated in Figure 1, and we implemented a real-time controller to adapt the system to changes in the load
concentration.

Two of the three capture columns in the PCC operation are interconnected during the loading phase so that
the product breakthrough from the first column is adsorbed on the second column, thus allowing the resin
utilization to be increased without reducing the yield (Godawat et al., 2012; Gomis-Fons, Andersson, et al.,
2020). At the same time, a third capture column carries out washing, elution, regeneration and equilibration
phases (recovery phases). PCC runs periodically in three cycles consisting of two stages each: one in which
the columns are interconnected during the loading phase, and the other in which they are interconnected
during the washing phase (see Godawat et al., 2012 or Gomis-Fons, Andersson, et al., 2020 for further
details). The position of the three capture columns is changed between each cycle.

Four different scenarios were compared to evaluate the performance of the implemented process: the process
run in batch mode with the virus inactivation step followed by a single-column capture step and the polishing
step (Case “Batch”), the integrated continuous process with constant load concentration (Case c0), and the
integrated continuous process with a change in load concentration with and without control (Cases c1A and
c1B, respectively). Case c1B was based on an extrapolation of Case c1A after the disturbance.

Material and methods

Materials

Three prepacked 1 mL HiTrapTM DEAE FF columns were used for the capture step, and a 5 mL HiTrapTM

Phenyl FF (high sub) column was used in the polishing step (all from Cytiva, Uppsala, Sweden). The buffers
in each step were the same as those used in our previous study (Lofgren et al., 2018), and the chromatography
columns were sanitized with 1 M NaOH after each cycle. Conditioning between the two steps was achieved
with inline dilution using a high-salt concentration buffer as a conditioning buffer and a 1.4 mL dynamic
mixer. The conductivity and pH of the conditioning buffer were adjusted to obtain the desired values after
inline dilution, thus ensuring product binding on the polishing column. The ratio of eluate volume from the
capture column to conditioning buffer volume was 1:1.6.

The continuous virus inactivation reactor was a Cytiva C-type column packed with 150-250 μm silica beads,
with an inner diameter of 16 mm and a maximum height of 400 mm. The clarified supernatant was diluted
inline at a ratio of 9:1 with a solvent/detergent mixture containing 10 vol% Polysorbate 20 and 3 vol%
Tri-n-butyl phosphate, which was loaded from a 50 mL SuperloopTM (Cytiva). A 1.4 mL dynamic mixer
was used for inline dilution of the supernatant. Cold water was pumped continuously through a cooling
jacket to minimize the risk of microbial growth in the reactor, as this could plug the reactor. In addition,
the reactor was sanitized with 1 M NaOH before the start of each run, and was filled with 20 vol% ethanol
for storage.

The integrated continuous downstream process was implemented in two ÄKTATM pure 150 systems, con-
trolled by the software UNICORNTM 7, (all from Cytiva, Uppsala, Sweden). One ÄKTA system was used
for virus inactivation and the capture step with the PCC operation, and the other ÄKTA system was used
for the polishing step. Each ÄKTA system included the following elements: two gradient pumps (pump A
and B), a sample pump, several versatile valves (VV) to adjust the flow path, several column and inlet
valves, an outlet valve, a fractionator to sample the product, and sensors for measuring UV light absorbance,
conductivity, and pH.

An AgilentTM 1260 Infinity II HPLC system (Agilent Technologies Inc., Kista, Sweden) was used for the
analytical experiments. The column used for concentration measurements was a PorosTM 50 HE column
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(Thermo Fisher Scientific Inc., Stockholm, Sweden) and a ZorbaxTM 300SB-C3 column (Agilent Technologies
Inc) for purity.

Process setup

The setup was an adaptation of that used previously (Gomis-Fons, Andersson, & Nilsson, 2020); the main
difference being the inclusion of continuous virus inactivation with solvent/detergent before the capture step
(see Figure 2). In this setup, the capture columns used in the PCC operation were loaded directly from the
virus inactivation reactor (red line in Figure 2). The recovery phases were performed with the sample pump
(dotted blue line in Figure 2). The eluate from the third capture column was passed through a number of
sensors (to measure UV absorption, conductivity, and pH) and was then loaded directly onto the polishing
column, without a hold-up volume. Two outlet valves allowed the collection of the product in different parts
of the downstream process for quantification of the productivity and the yield.

Two pumps were necessary for continuous virus inactivation: one to load the supernatant solution (pump
AP), and another to dilute the supernatant inline with the solvent/detergent mixture (pump BP). Pumps
AP and BP were also used to vary the load concentration by setting different proportions of the flow rate
provided by the two pumps. Case c0 was run with detergent, and Case c1A was run with water. The reason
why water, instead of detergent, was used in Case c1A was that the load concentration could not be changed
in the current setup at the same time as inline dilution with detergent, since pump BP was used for both
purposes. Thus, in Case c1A, pump BP was used to dilute the supernatant with water to adjust the load
concentration, and in Case c0, pump BP was used to inject the detergent and mix it with the supernatant.

Analytical methods

A breakthrough curve experiment was performed with an ÄKTA pure 150 system. The supernatant was
mixed inline with water at a ratio of 9:1 to emulate the loading conditions in the capture step, and then
loaded onto the capture column. The outlet stream was sampled with a fractionator with a sample size of 2
mL. The breakthrough samples, together with a sample of the clarified supernatant, were then analyzed on
the HPLC system. For the concentration measurements, aqueous buffers with different salt concentrations
were used at a flow rate of 0.5 mL/min. The absorbance at a detection wavelength of 280 nm was used to
determine the concentration, by using an extinction coefficient of 1.33 mL-1 mg cm-1, knowing that the path
length of the cell was 0.2 cm. Resin utilization, defined as the amount of adsorbed product divided by the
maximum amount of adsorbed product at a specific load concentration, was estimated from the breakthrough
curve.

A U9-M UV monitor, included in each ÄKTA system, was used to obtain the amount of purified product
in each cycle (hereinafter referred to as “product output”). The absorbance at a detection wavelength of
280 nm was measured and the concentration of the final product, which corresponds to the eluate from the
polishing step, was then determined by using the extinction coefficient. The product output was calculated
as the concentration multiplied by the eluate volume, which was obtained by multiplying the elution flow
rate by the pooling time. The product output was used for the loading control, and to calculate the yield,
defined as the product output divided by the amount of product loaded; the productivity, defined as the
mass of product output divided by the process time and the total amount of resin in the process; and the
specific buffer consumption, defined as the total amount of buffer consumed divided by the product output.

The breakthrough of both the capture and the polishing columns were collected during the run. The eluate
from the polishing step was also collected during the whole run, while the eluate from the capture column
was only sampled in the fourth cycle, when steady state had been achieved. Reversed-phase chromatography
was performed to determine the purity of all these samples. Two buffers with different contents of water
and acetonitrile were used (one as equilibration and loading buffer with 5 vol% acetonitrile, and another
as elution buffer with 95 vol% acetonitrile) at a flow rate of 1 mL min-1. The absorbance at a detection
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wavelength of 280 nm was used to determine the concentration. The purity was then calculated by dividing
the area under the peaks corresponding to the pure product by the total area under the peaks.

An ÄKTATM pure 150 system was used to validate the design of the continuous virus inactivation reactor
by obtaining a residence time distribution curve. A U9-M UV monitor, included in the same ÄKTA system,
was used to detect the product in the outlet of the reactor at a wavelength of 280 nm.

Process design

PCC design

The design of the PCC operation was based on the approach described by Godawat et al. (2012), in which
several equations corresponding to a continuity constraint and several yield constraints were used to deter-
mine the PCC cycle times with the aid of an empirical model of a breakthrough curve. This approach is
only valid for a specific flow rate, and different breakthrough curves must thus be obtained at different flow
rates. For this reason, the loading flow rate was determined beforehand, and an experimental breakthrough
curve was then obtained for this specific flow rate.

The flow rate was calculated by dividing the load volume by the minimum cycle time. The load concentration
and volume were 0.74 mg mL-1 and 27 mL, respectively, as in our previous implementation of the process
(Löfgren et al., 2018). The cycle time must be equal to, or longer than, the recovery time, based on the
continuity constraint (Godawat et al., 2012). In this case, the capture and polishing steps were run simulta-
neously, and therefore the minimum cycle time was determined by the longest recovery time of these steps,
as described previously (Gomis-Fons, Andersson, et al., 2020). By determining the flow rate in this way,
at least the same yield and resin utilization as we obtained previously could be obtained at the minimum
cycle time (Löfgren et al., 2018). The minimum cycle time was 79 min (the recovery times for the capture
and polishing steps were 61 and 79 min, respectively), which led to a flow rate of 0.34 mL min-1. As the
supernatant was mixed with detergent at a ratio of 9:1, the total incoming flow rate was 0.38 mL min-1. If
the downstream process were to be connected to a perfusion bioreactor, the load flow rate and concentration
would be determined by the harvest stream of the bioreactor, and would therefore be variable. For this
reason, the values of flow rate and concentration given above should be considered as nominal design values,
and they would correspond to the expected steady-state values from the bioreactor. Therefore, connection
to a perfusion bioreactor would be possible by scaling the columns in the downstream process up or down
to obtain the desired flow rate and resin volume.

The load volume was then optimized with the breakthrough curve in order to maximize resin utilization and
obtain a high yield. Godawat et al. (2012) proposed a method based on the area under the breakthrough
curve in the loading phase, in which two columns are interconnected to avoid any loss of product in the
breakthrough. The area under the breakthrough curve of the first interconnected column, which corresponds
to the amount of product breaking through this column and loaded on the second interconnected column,
must be smaller than the dynamic binding capacity, to avoid product breakthrough in the second column.
The design in the present study was more flexible, allowing this area to be greater than the dynamic binding
capacity, thus some product loss was tolerated in the breakthrough. The concept for the design of the PCC
operation based on a breakthrough curve is presented in Figure 3.

When a PCC cycle starts, the first column is already loaded with product from the previous cycle, corre-
sponding to a load volume V1. At the end of a PCC cycle, the total loaded volume in a column isV2. The
load volume in a cycle (hereinafter referred to asVcycle or “cycle load volume”) is therefore equal toV2 − V1.
The area under the curve between V1 andV2 (k1) corresponds to the amount of product loaded onto the
second column. In other words, the breakthrough of the first column during Vcycle corresponds to a load
volume on the second column of V1. The area under the curve duringVcycle (k1) must therefore be equal to
the rectangle area between zero and V1, which is equivalent tok2 + k3. The area under the curve between
zero and V1(k2) is the product loss due to breakthrough, and was used to predict the yield by dividing the
amount of product adsorbed (k3 + k4) by the total amount loaded in the column (k2 + k3 + k4). The resin
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utilization was estimated by dividing the amount of product adsorbed (k3 + k4) in the column by the total
binding capacity, estimated ask3 + k4 + k5.

It can be seen from Figure 3 that increasing the load volume (V2) increases the resin utilization, but the
yield falls as the result of increased product loss at breakthrough in the second column (k2). There is thus
a relationship between resin utilization, yield and load volume, as shown in Figure 4. The resin utilization
remains above 70% for load volumes greater than 35 mL, while the yield is not significantly affected until
load volumes of 60-70 mL are reached. In other words, the resin utilization can be significantly increased by
allowing some product loss at breakthrough, as opposed to the approach described by Godawat et al. (2012),
in which no product loss is allowed and the yield is therefore set at 100%.

The loss of binding capacity over time, due to column degradation, must be taken into consideration in the
design of a chromatography process. An empirical model previously used by Godawat et al. (2012) was used
to predict new breakthrough curves with reduced capacities corresponding to 80 and 90% of the original
capacity:

C = CF
1
2

(
1 + erf

(
x−ks
σ

))
(1)

where C and CF are the outlet and feed concentrations in mg mL-1, respectively, erf is the error function, x
is the loaded mass in mg per mL resin, ks is the binding capacity in mg per mL resin, and σ is an empirical
dimensionless constant.

New yields were obtained with this model with the same amount of adsorbed product as in the original
scenario with 100% capacity. In other words, we studied how the yield was affected by reduced binding
capacity at constant amount of adsorbed product in the capture step. Loss of binding capacity does not
affect the yield for low load volumes (see Figure 4), but the yield decreases at load volumes of 35 and 45
mL for the 80% and 90% capacity scenarios, respectively. It is not possible to obtain the same amount
of adsorbed product in these scenarios with capacity loss by loading more product, which is why yields
are not shown in these cases at higher load volumes. For example, at a load volume of 40 mL, where the
resin utilization is around 83%, it would not be possible to maintain the amount of adsorbed product if
the capacity decreased 20%, as the maximum attainable amount of adsorbed product would be 80% of the
original resin capacity, but the desired amount would be 83% of the original resin capacity.

The design criterion was to maintain product output with the loading controller while taking a loss of resin
capacity into account. Thus, the feasible load volumes are those that are lower than 35 or 45 mL, depending
on whether a capacity loss of 20% or 10% is assumed, to ensure constant amount of adsorbed product in
the capture step and therefore constant product output. A 10% loss in resin capacity was assumed in this
study in the design of the PCC operation. The load volume was therefore set at 45 mL, which corresponds
to a cycle load volume of 36 mL. The cycle time is then 95 min with a load flow rate of 0.38 mL min-1. This
fulfills the constraint of the minimum cycle time, which was 79 min.

Continuous virus inactivation

In the downstream process we used previously (Löfgren et al., 2018), virus inactivation was performed at low
pH after the capture step. In the present study, it was performed before the capture step to allow continuous
flow through the virus inactivation reactor, as the inlet stream to the capture step is continuous, but not
the outlet stream. Since the input to the capture column must have neutral pH, virus inactivation at low
pH would involve two subsequent dilution steps to decrease and then increase the pH. This would require
an extra pump and an extra mixer, and the total volume to be treated by the capture column would be
higher. For this reason, solvent/detergent virus inactivation, based on the process presented by Martins et
al. (2019), was used instead. Performing virus inactivation before the capture step allowed the detergent to
be removed from the product in two consecutive steps.
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The continuous virus inactivation reactor was designed to ensure a minimum product residence time of 60
min. The mean residence time is given by dividing the void volume by the flow rate. The design void volume
was calculated by multiplying the residence time by the loading flow rate (0.38 mL min-1) and adding an
extra 20% to account for dispersion. The void fraction was assumed to be 0.36, as estimated by de Klerk
(2003) for a packed bed with a high column to particle diameter ratio. Then, the total reactor volume was
76.0 mL, and the height was 378 mm. An experiment was run with supernatant to check the residence time
distribution and validate the design. It was found that 99.8% of the product remained in the reactor for
more than 60 min, which is higher than the 99% suggested by Martins et al. (2019). The mean residence
time was 75.5 min, and the ratio between the residence times at 50% and 1% of the cumulative residence
time distribution curves was 1.16; 1 being the ideal value, i.e. equal residence time for all the molecules. This
value is similar to that obtained by Martins et al. (2019) in a small-scale packed-bed reactor. A portion of
the product (4%) resided in the reactor for more than 100 min. In low-pH virus inactivation, such a long
residence time could have led to the risk of the formation of aggregates; however, such a risk has not been
reported in a solvent/detergent virus inactivation process.

Column design

The column design was based on the approach described by us previously (Gomis-Fons et al., 2019), where
it was shown that several constraints must be fulfilled for the integration of the columns. One of these
is related to the column capacities, i.e., the polishing column must have sufficient capacity to handle the
product eluted from the capture column. As it was desirable to keep the scale of the process as small as
possible, the capture column volume was set to the minimum possible, 1 mL, and the polishing column
volume was calculated based on its capacity and the amount of product per cycle. The concentration of the
supernatant diluted with the detergent was 0.74 mg mL-1, and the volume loaded in a column was 45 mL, as
mentioned above. Therefore, the maximum amount of product loaded on the polishing column per cycle was
33.3 mg. The capacity of that column was approximately 10 mg per mL column, thus leading to a minimum
column volume of 3.3 mL. Due to the limited availability of volumes in prepacked columns, a 5 mL column
was chosen.

Another constraint that must fulfilled for the successful integration of the columns is related to the residence
times, i.e., the residence time in the columns must be equal to, or longer than, a certain reference value in
each phase, which, in this case, was obtained from our previous study (Löfgren et al., 2018). Therefore, the
residence time was set equal to the reference value in all the phases, except for the loading phase of the
polishing step. In this phase, the flow rate, which is directly related to the residence time, is given by the
flow rate in the elution phase of the capture step (0.55 mL min-1) plus the flow rate of the conditioning
stream (0.88 mL min-1). The load flow rate was thus 1.43 mL min-1, and the residence time was 3.5 min,
which was longer than the reference value for this phase, of 2 min.

Process control

Control software

The ÄKTA pure systems were controlled by external software called Orbit (Nilsson et al., 2017). The software
is written in the general-purpose, object-oriented scripting language Python 3.7. Orbit sends instructions to
UNICORN sequentially, and UNICORN forwards them to the ÄKTA system. Separate Orbit programs were
used for each system. Synchronization between and within the systems was achieved through event flags. For
example, the system in which the polishing step is performed sends a flag when this column is ready to be
loaded, and the other system sends another flag when the elution phase is about to start in the capture step;
the elution phase starts when both systems have sent their respective flags. (Further details on the control
of multi-system setups by Orbit can be found in Gomis-Fons, Andersson, et al., 2020). The control strategies
were implemented in the Orbit programs, for which process data, such as the cycle load volume or the UV
absorbance, was monitored online.
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Loading control

As the feed concentration and flow rate from a bioreactor can vary over time, a real-time iterative learning
controller was implemented to adapt the system to these changes (Figure 5). The aim was that the same
amount of product would be purified in the downstream process for every PCC cycle, i.e. to maintain a
constant product output. The cycle load volume was modified to control the amount of product purified in
a cycle. For example, if the concentration was lower than the nominal value used in the design, the product
output would be lower. In order to correct for this, the volume loaded onto the capture step would be
increased by extending the PCC cycle, so that the product output became higher in the next cycle. The
control software Orbit tracked the loading flow rate, which allowed obtaining the right PCC cycle time to
achieve the desired cycle load volume.

Iterative learning control is an approach to minimize the difference between the desired value and the
measured value in systems that operate in a repetitive mode (Longman, 2000). Control was based on the
so-called previous cycle learning scheme (Ouyang & Pipatpaibul, 2010; Xu, Heng Lee, & Zhang, 2004), since
only the signals from the previous iteration are used to obtain the control signal for the next iteration (see
Figure 5). A learning control law was used to update the control signal, as shown in Eq. (2). In this learning
control law, the control signal at iteration k (uk) depends on the control signal at the previous iteration
(uk−1), the tracking error between the reference (yref) and the output signal at the previous iteration (yk−1),
and the controller gain (K).

uk = uk−1 +K(yref − yk−1) (2)

In this case, the control signal is the cycle load volume in units of mL, and the output signal is the product
output in units of mg. The relationship between these signals can be approximated by a linear expression
that depends on a transfer function of the process (G), and neglects system uncertainties and measurement
errors.

yk = Guk (3)

The design criterion for the selection of the controller gain is the convergence, i.e., the tracking error should
tend to zero, and the condition for this is (Xu et al., 2004):

‖1−GK‖ = a < 1 (4)

Therefore, the controller gain can be defined as a function of a parameter (a), which has values between zero
and one.

K = (1− a)G−1 (5)

When the value of a is close to one, the controller response will be slower because the controller gain decreases,
but the controller will be more robust to system uncertainties and measurement errors, since it is far from
being in the instable region defined by Eq. (4). If a is close to zero, the controller will respond more quickly,
but there will be a higher risk of oscillations and divergence. In the extreme case, when a equals zero,
called the deadbeat scenario, convergence is achieved after one iteration, but an exact model of the system is
required to predict the transfer function, and there must be no external disturbances or measurement errors
(Xu & Tan, 2002). In the present study, the parameter a was set to 0.3.

The transfer function was updated online for each cycle during the experiment, i.e., the transfer function

8
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was calculated after each iteration with the values obtained for uk−1 and yk−1, using Eq. (3). The controller
gain was also updated for each cycle as this depends on the transfer function. This allows correction for
possible disturbances in the downstream processing, such as loss of capacity of the columns or changes in
the concentration or flow rate of the feed. Therefore, the speed of the controller was adjusted depending on
the variation in the transfer function. Combining Eq. (5) with Eq. (3) allows the learning control law in
Eq. (2) to be re-written as follows:

uk = uk−1

(
a+ (1− a) yref

yk−1

)
(6)

The reference output (yref) was also determined online during the experiment after process startup. The
previously calculated PCC cycle time was applied during the first few cycles until steady state had been
reached. The area of the eluate peak from the polishing step was then automatically calculated and was
used to calculate the product output, which was set as the reference signal.

Pooling control

The cutoff times of the pooling of the product in the polishing step were obtained based on the UV absorbance
at a wavelength of 280 nm, measured online with a U9-M UV monitor, i.e., pooling started and ended at
a certain value of absorbance, as described previously (Löfgren et al., 2018). In addition, in the present
study, the second absorbance cutoff (i.e., when pooling ends) was automatically adjusted to compensate for
the variation in the incoming concentration. The height of the eluate peak was obtained online, and the
absorbance cutoff was calculated based on the height. Previous runs of the process were used to determine
the linear relationship between the absorbance cutoff and the peak height.

Results and discussion

Experimental validation

The complete integrated continuous downstream process was run on laboratory scale with the process setup
presented in Figure 2. If the downstream process were connected to a perfusion bioreactor, the load con-
centration would vary over time. Therefore, in order to test the performance of the control strategies, an
external disturbance was introduced in the form of a 20% decrease in the load concentration, to emulate a
change in the harvest concentration that would occur during a perfusion run.

The chromatogram shown in Figure 6 corresponds to a run with 9 cycles, including an initial loading stage
for process startup. After startup, steady product output was achieved by cycle 4, after running the process
with a cycle load volume of 36 mL. The reference value obtained for the product output used in the loading
control was 23.1 mg. The load concentration was reduced by 20% at the beginning of cycle 4, and the effects
in the final product were seen after a further two cycles due to the residence time in the virus inactivation
loop, as well as the delay between the capture and polishing steps. The measured product output decreased
to 18.0 mg, and as this value differed from the reference value, the loading controller provided a new cycle
load volume proportional to the decrease in concentration. This led to a gradual increase in the cycle load
volume from 36 mL in cycle 5, to 44.6 mL in cycle 9, which resulted in an increase in product output until
a value similar to that of the reference value was reached. In fact, the product output had already reached
22.3 mg only one cycle after the disturbance was detected in the pool of the final product. This means that
the product output had almost reached its original value approximately 2 hours after the disturbance was
detected in the final product, thus confirming the effective implementation of the loading controller with a
rapid response. In a typical perfusion run, a change in concentration of 20% would be made over a much
longer time, thus giving sufficient time for the controller to adjust the cycle load volume to maintain the
desired product output. The pooling strategy was also successfully validated, since the absorbance cutoff for

9



P
os

te
d

on
A

u
th

or
ea

16
S
ep

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

02
99

24
.4

03
93

43
0

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

the end of product pooling in the polishing step was adjusted according to the peak height, as shown in
Figure 7.

The effect of the controller on the response of the downstream process is shown in Figure 8. At the new
steady state following the disturbance, implementing the controller led to an increase in the product output
of 21.8% per cycle (Case c1A) compared to the process without the controller (Case c1B), while the cycle
load volume increased by 23.9%. The process was run without any disturbance (Case c0) to provide a baseline
to compare the process response with and without the disturbance.

An external disturbance in the load flow rate was considered, but not investigated experimentally. The reason
for this was that a change in flow rate would not affect the process as the load volume was continuously
tracked by the control software Orbit. In other words, if the flow rate was reduced, the cycle time would be
extended, but the cycle load volume would be unaffected, thus having no impact on the product output.

Process performance indicators

Table 1 presents the values of several process performance indicators at steady state for the 4 scenarios
studied. The batch process, which was run at a load volume of 45 mL to achieve the same resin utilization as
in the continuous process, had a yield of 68.3%, which is significantly lower than the 87.5% obtained in the
continuous process (Case c0). This is because there is no interconnection between the columns during the
loading phase of the capture step, which leads to a higher product loss due to breakthrough. The product
output was similar in both cases (22.6 mg in Case “Batch”, compared to 23.5 mg in Case c0) since the total
amount of product loaded onto the capture column was the same. Therefore, the specific buffer consumption
is also close to the value obtained in the continuous process (16.7 mL mg-1compared to 16.0 mL mg-1 in Case
c0). Three parameters affect the productivity: the product output, the process time and the total volume of
resin. The higher the product output and the lower the process time and the resin volume, the higher the
productivity. On the one hand, the process time in the batch process was higher (240 min compared to 95
min) due to the fact that the loading phase and the recovery phases were not carried out simultaneously,
unlike in the PCC operation. On the other hand, the resin volume in the batch process was 6 mL (1 mL of
capture resin + 5 mL of polishing resin), which was less than in the continuous process (8 mL) because, in
this process, 3 columns were used in the capture step due to the PCC operation. In this case, the difference in
the process time had a much greater effect than the difference in the resin volume, which led to a significantly
lower productivity in the batch process (22.6 mg day-1mL-1) in comparison to the continuous process (44.1
mg day-1 mL-1), as can be seen in Table 1.

In an evaluation of the effect of the controller on the performance indicators, it was found that the amount
of purified product per cycle was higher in the process with control (Case c1A) than in the process without
control (Case c1B). This, in turn, led to an increase in resin utilization of 24% (from 71.4% to 87.9%), as
estimated from the breakthrough curve, as more product was purified in each cycle compared to the process
without the controller. In addition, the resin utilization and the product output in Case c1A had similar
values to those of the process with no external disturbance. Another effect of the higher product output per
cycle was the decrease in the specific buffer consumption, i.e., the volume of buffer consumed to purify a
certain mass of product. The reduction in specific buffer consumption was estimated to be 21% compared
to the process without the controller. The productivity was lower in Cases c1A and c1B than in Case c0, as
the concentration decreased, leading to a lower amount of product being purified per unit time. Regarding
the yield, 87.5% of the incoming protein was recovered in the final product in the case without disturbance.
When the load concentration was decreased, the yield was not negatively affected, as the yield was 87.2% in
Case c1A and 85.1% in Case c1B. If the disturbance had been a concentration increase instead, the control
system would have reduced the PCC cycle length until the minimum cycle time was reached (79 min), and
the yield would have been similar. In contrast, in the process without control, the cycle length would have
remained the same, and the yield in the loading of the capture step would have decreased significantly.

The purity was analyzed at different stages of the process in Case c0 to ensure product quality, and the
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results are given in the Supplementary Material, where it can be seen the purity of the product increased
after each chromatography step. The purity of the final product was 99.1%. The main impurities were present
in the breakthrough of the capture step, as shown in the chromatograms corresponding to the supernatant
(Figure S1 in Supplementary Material), the capture pool (Figure S4), and the capture breakthrough (Figure
S3). A significant amount of impurities was also present in the breakthrough of the polishing step (Figure
S5). The chromatogram of the pure product (Figure S6) did not contain any of the peaks corresponding to
the detergent (Figure S2), thus showing that the detergent was effectively removed in the process. Product
purity was not measured in Case c1A, but the only difference between Case c0 and c1A was the change in
the load concentration, while the impurity profile was the same. It is therefore reasonable to assume that
the purity would have remained unchanged in Case c1A.

Conclusions

An integrated continuous downstream process with PCC and continuous virus inactivation with detergent
was successfully implemented in a two-system setup in a case study of the purification of a recombinant
protein on laboratory scale. The 3-column PCC operation was designed with minimal experimental effort as
only a breakthrough curve was necessary to obtain the required flow rates and cycles times. The residence
time distribution in the continuous virus inactivation step was obtained experimentally to check that the
protein had a minimum residence time of 60 min. A simple yet effective real-time loading controller based on
iterative learning control was implemented to allow adaptation of the downstream process to a change in the
load concentration. After a 20% decrease in concentration, the cycle length was automatically adjusted, giving
almost the same product output as before the disturbance in only 2 hours, thus showing the effectiveness of
the controller in ensuring a consistent output with rapid response. In addition, a real-time pooling strategy
allowed adaptation of the pooling absorbance cutoff levels to the size of the peak in the elution of the
polishing step.

It was shown that the continuous process outperformed the batch process, with a productivity increase of
95% and a 28% higher yield. Additionally, by comparing the integrated continuous process with and without
the controller after the concentration disturbance, it was found that the amount of product loaded was lower
in the process without the controller, thus leading to a lower resin utilization and lower product output. This,
in turn, led to a higher specific buffer consumption than in the process with the controller. The controller
thus ensured similar resin utilization and product output with and without the disturbance.

The whole downstream process was implemented in a two-system setup with minimal use of resources and
space. This process setup and the control strategies developed could be used for any downstream process.
This configuration is thus well suited in a ballroom-like facility that offers multi-product and multi-purpose
manufacturing capabilities, allowing quick responses to market demands.
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Tables

Table 1 . Process performance indicators in different process scenarios

Parameter Units Process scenarios+ Process scenarios+ Process scenarios+ Process scenarios+

Batch Case c0 Case c1A Case c1B
Product output per cycle mg 22.6 23.5 22.9 18.0
Resin utilization wt% 89.2 89.2 87.9 71.4
Productivity mg day-1 mL-1 22.6 44.1 35.1 34.3
Yield wt% 68.3 87.5 87.2 85.1
Specific buffer consumption mL mg-1 16.7 16.0 16.5 20.9

+Batch: Batch process with virus inactivation followed by a single-column capture step and the polishing
step; Case c0: Continuous process with controller and without disturbance; Case c1A: Continuous process
with controller and with disturbance; Case c1B: Continuous process without controller and with disturbance.

Figure captions

Figure 1. Block diagram of the integrated continuous process studied. The clarified supernatant is mixed
with detergent and loaded onto the virus inactivation (VI) reactor. The output stream from the reactor is
loaded onto two of the capture columns (C1 and C2) run with a PCC operation. The periodic eluate from
one of the capture columns (C3) is conditioned inline and directly loaded onto the polishing column (P)

Figure 2. The two-system setup. The system on the left was used for the continuous virus inactivation
and the capture step run with a PCC operation. The system on the right illustrates the polishing step. The
red line indicates the flow path during the interconnected load phase of capture column 1 (C1) with the
breakthrough going to capture column 2 (C2). The blue dotted line shows the flow path during elution of
the fully loaded column 3 (C3) and the simultaneous loading of the polishing column (P). The gray lines
show inactive flow paths. The versatile valves (VV) were used to select different flow paths, the loop valve
(LV) directs the flow to one of the three capture columns, the column valve (CV) allows the diluted feed to
pass through the virus inactivation reactor (VI), and two outlet valves (OutV) allowed product collection in
different parts of the process. In the system on the left, Pumps AP and BP were used to load the supernatant
onto the capture columns, and the sample pump (SampP) was used in the recovery phases of the capture
columns. In the system on the right, the gradient pump (GradP) was used in the recovery phases of the
polishing column, and the sample pump was used for the inline conditioning between the two steps.

Figure 3. Areas under the breakthrough curve in relation to the loaded volume.

Figure 4. Effect of the load volume on the resin utilization and yield for different scenarios with respect
to the binding capacity in the capture column. Data in the graph correspond to an empirical model (Eq.
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(1)) calibrated with the experimental breakthrough curve. Load volume refers to the total volume loaded
onto a column in the 100% capacity scenario. Yields for 80% and 90% capacity scenarios were calculated for
loadings with the same amount of adsorbed product as that in the 100% capacity scenario.

Figure 5. Illustration of the iterative learning control strategy with a previous cycle learning scheme. The
variables uk and yk are the control and output signals, respectively, at iteration k; and yref is the reference
value of the output signal.

Figure 6. Upper panel: Chromatographic profile of the capture step including the UV absorbance signal
from the breakthrough stream from the interconnected capture columns (UV Breakthrough) and the outlet
stream from a capture column during the recovery phases (UV Recovery). Alternate PCC cycles are indicated
by light and dark gray backgrounds. Lower panel: Chromatographic profile of the polishing step where the
shaded peaks represent the product pool.

Figure 7 . Product pools in cycles 3 and 6 showing the absorbance cutoffs, obtained with the pooling
control strategy based on the peak height.

Figure 8 . Effect of the controller on the evolution of the downstream process. The process in which the
controller was implemented following a concentration disturbance (c1A) is compared to a process without
disturbance but with the controller (c0), and a process with disturbance but without the controller (c1B).

15



P
os

te
d

on
A

u
th

or
ea

16
S
ep

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

02
99

24
.4

03
93

43
0

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

16



P
os

te
d

on
A

u
th

or
ea

16
S
ep

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

02
99

24
.4

03
93

43
0

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

17



P
os

te
d

on
A

u
th

or
ea

16
S
ep

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

02
99

24
.4

03
93

43
0

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

18


