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Abstract

Let $G"2_n$ be the graph obtained by the strong prism of a graph $G_n$ with a given degree sequence, i.e. the strong product
of $K_2% and $G_n$. In this paper, we give the relationship between $G_n"2$ and $G_n$ for Kirchhoff index and the total
number of spanning tress. which generalized the main results of Z.M. Li et al. ( Appl. Math. Comput., 2020, 382:125335),
Y.G. Pan et al. ( Int. J. Quantum Chem. 118 (2018) . E25787) and Y.G. Pan et al. (2019, ArXiv: 1906.04339). We also
presented the explicit expressions for the multiplicative degree-Kirchhoff indices of $G_n"2$ when $G_n$ is regular. Typically,
Using this results we get the explicit expressions for the Kirchhoff index, multiplicative degree-Kirchhoff and the total number
of spanning trees of the strong prism of a wheel $W_n$, respectively. It is surprising to find that the quotient of Kirchhoff (resp.
multiplicative degree-Kirchhoff) index of $W_n"2$ and its Wiener (resp. Gutman) index is almost a constant. More specially, let
$\mathcal{G}"2_{n,r}$ be the set of subgraphs obtained by randomly deleting $r$ vertical edges from $G"2_n$, where $0\leq r
\leq n$. Explicit formulas for Kirchhoff index and number of spanning trees for any graph $G"2_{n,r}\in \mathcal{G}"2_{n,r}$

are established, respectively.
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prism of a wheel W,,, respectively. It is surprising to find that the quotient of Kirchhoff (resp. multiplicative
degree-Kirchhoff) index of W2 and its Wiener (resp. Gutman) index is almost a constant. More specially,
let Q,Qw be the set of subgraphs obtained by randomly deleting r vertical edges from G2, where 0 < r < n.

Explicit formulas for Kirchhoff index and number of spanning trees for any graph G?” € gfm are established,

respectively.
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Introduction

Spectral graph theory tries to derive information about graphs from the graph spectrum (1997; 2010). There
is extensive literature on works related to the spectrum on various matrices such as adjacency, Laplacian
and normalized Laplacian matrices. Especially in recent years, the normalized Laplacian, which is consistent
with the eigenvalues in spectral geometry and in random processes, has attracted increasing attention from

researchers because many results which were only known for regular graphs can be generalized to all graphs.

In this paper, we only consider simple connected graph G = (Vg, Eg) with vertex set Vi and edge set Eg.
We call n := |Vg| the order of G and m := |E¢g| the size of G and refer to Bondy and Murty (2008) for
notation and terminologies used but not defined here. The adjacency matrix A(G) := (ai;)nxn of G is a 0-1
matrix with a a;; = 1 if v; » v; ( v; and v; are adjacent in G ) and 0 otherwise. Let d; denote the degree of
the vertex v; in G, and thus D(G) = diag (dy,ds, - - ,d,) is called the diagonal matrix of G. Then the matrix
L(G) := D(G) — A(G) is called as the Laplacian matrix of G, while the normalized Laplacian matrix of G
refers to equation £(G) := D(G)"2L(G)D(G)~2. Via a simple calculation, the (i,)-entry of £(G) can be

expressed as

1, ifi=j;

J— 1 1 ; y 7 ~ .
T ifi# j and @ ~ j;

0, otherwise;

Let d;; be the distance between vertices v; and v; in G, which represents the length of the shortest path
connecting vertex v; and v;. The Wiener index of G, introduced in and widely studied in the fields of
mathematics and chemistry, is defined as W(G) = > {050, } Ve d;; . Later, Gutman introduced the weighted
version of Wiener index, namely Gutman index , which is defined as Gut(G) = > {vi.0;}CVg did;dij. Moreover,
Gutman confirmed that Gut(G) = 4W(G) — (2n — 1)(n — 1) when G is an n-vertex tree.

Based on the electronic network theory, Klein and Randié¢ (1993) proposed a new distance-based parameter,

i.e., the resistance distance, on a graph. The resistance distance between vertices v; and v;, written by ry;, is



the effective resistance between them when one puts one unit resistor on every edge of a graph G. This novel
parameter is in fact intrinsic to the graph and has some nice interpretations and applications in chemistry (see
(D. J. Klein, 2002; 2001) for details). As an analogue to the Wiener index, define Kf(G) = Z{’Ui,vj}gVG Tij,
known as the Kirchhoff index (a structure-descriptor) of G (1993). This structure-descriptor can be expressed

alternatively as

where 0 = p; < pa < p3-+- < pp(2 < n) are the eigenvalues of L(G).

As an analogue of Kirchhoff index of G, Chen and Zhang (2007) proposed a novel resistance distance-based
graph invariant, defined by Kf*(G) =3_y,. ,.1cv(q) did;rij, which is called the degree-Kirchhoff index. Just
as the relationship between the Kirchhoff index and the Laplacian spectrum, the degree Kirchhoff index is
just closely related to the spectrum of the normalized Laplacian matrix £(G), For a simple connected graph
G of order n and size m, Chen and Zhang (2007) showed that

{vi,v; }CVa 1=2

where 0 = A\; < Ag < A3+ < A\, (2 < n) are the eigenvalues of L(G).

Note that it is difficult to carry out some algorithms to compute the Kirchhoff index in a graph from its
computational complexity. Clearly, it is much more difficult to use algorithms to compute the multiplica-
tive degree-Kirchhoff index in a graph. Hence, it is interesting to obtain the closedform formula for the
multiplicative degree-Kirchhoff index of a graph G. Methods to calculate Kirchhoff index and multiplicative
degree-Kirchhoff index were proposed in (2008; 2013; 2016; 2015; 2013; J. L. Palacios, 2001). In the last
decades, many researchers are devoted to give closed formulas for the Kirchhoff index and the multiplicative
degree-Kirchhoff index of graphs with special structures, such as cycles (1995), liner phenylenes (2019; 2019;
2019), linear polyomino chains (2016; 2008), linear pentagonal chains (2018; 2018), linear hexagonal chains
(2016; 2019; 2008) , linear crossed chains (Y. G. Pan & spanning trees of the linear crossed hexagonal chains,
2018; 1080) , and composite graphs (2009). Some other studies on the Kirchhoff index and the multiplicative
degree-Kirchhoff index of a graph are obtained in (2019; 1080; J. L. Palacios & the kirchhoff index, 2014;
2011; 2013; Y. J. Yang & triangulations of graphs, 2015; 2011; B. Zhou & kirchhoffindex, 2009; 2009).

Given two graphs G and H, the strong product of G and H, denoted by G X H, is the graph with vertex
set V(G) x V(H), where two distinct vertices (uy,v1) and (ug, v2) are adjacent whenever uy and ug are equal
or adjacent in G, and v; and vs are equal or adjacent in H. Specially, the strong product of G and Ks is
called the strong prism of G. Pan et al. (2020; Y. G. Pan et al., 2019; 1080) determined some resistance

distance-based invariants and number of spanning trees of graphs derived from the strong prism of some



special graphs, such as the path P,, the cycle C,, and the star S,,. For the sake of convenience, we let G2 be
the strong prism of G,, with a given degree sequence. Obviously, |V (G2)| = 2n and |E(G2)| = n + 4m. Let
E'={ii' :i=1,2,--- ,n}, which is defined as the set of vertical edges of G7. Let G2 . be the set of subgraphs
of G obtained by randomly deleting r vertical edges from E’, where 0 < r < n. Obviously, G2 , = {GZ} .

Let G, be a graph with degree sequences (dy,ds, - - ,d,). In this article, motivated by Refs. (2020; Y. G. Pan
et al., 2019; 1080), using the normalized Laplacian decomposition theorem, we determine the explicit formulae
for the Kirchhoff index, the multiplicative degree-Kirchhoff index, and the spanning tree numbers of G2. For
any graph G%,r € (],ZL’T , its Kirchhoff index and number of spanning trees are respectively determined. Using
these results, explicit expressions for Kirchhoff index, multiplicative degree-Kirchhoff index and number of
spanning trees of W2 41 are respectively determined, where w2 1 is the strong prism of a wheel W, 1 as shows
in Fig 1. We also confirmed that the Kirchhoff index (resp. multiplicative degree-Kirchhoff index) of W72, is
almost Constant times of its Wiener index (resp. Gutman index). Obviously, our conclusions generalize the
main results of Refs. (2020; Y. G. Pan et al., 2019; 1080).
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Figure 1: W2, with labelled vertices.



Preliminaries

In this section, we give some preliminary results. Throughout this article, we denote by ®(M, z) = det(zI—M)
the characteristic polynomial of the square matrix M, where I is the unitary matrix with the same order as
that of M.

An automorphism of G is a permutation 7 of V(G). It has the property: uv is an edge of G if and only if
m(u)w(v) is an edge of G. If 7 is an automorphism of G, then we may write it as the product of transpositions

and disjoint 1-cycles, that is,

T = (w1)(w2) - - - (W) (urv1) (ugv2) - - - (ugvy).

Therefore, one has V(G) = Vo U Vi U Vs, where Vy = {wy,wa, - ,wm}, Vi = {u1,uz, - ,ux}, and Vo =
{v1,v2, - ,vx}. Then we obtain

L(G) = (

Lv,, Lvy, Lv,, .wherely,; is the submatrix formed by rows corresponding to vertices in V; and columns

corresponding to vertices in Vj, 4,5 = 0,1,2. Bearing in mind that 7 is an automorphism of G yields
LV11 = LV22 and £V11 = £V22~ Let

T=(
I, 0 0
0 %Ik \%1]’“ betheblockmatrizsuchthateacho fitsblockshasthesamedimensionasthecorrespondingblockinL(G)and
O ﬁjk —%Ik;
TTL(G)T = (

La(G) O T _

0 Ls(G) T L(G)T = (
LA(Q) 0

0 Ls(G)

where
La(G) = (

LVOO \/iLVm
\/iLVw LV11 +LV12
(1)

) LS(G) = LV11 - LV12'



and

La(G)=(

£Voo \/§£V01
\/i‘cvl() Evll + LV12 ,
(2)

‘CS(G) - EVM - £V12'

Using the above method, Yang and Yu (2008) obtained the following decomposition theorem of Laplacian

polynomial, which is described in a some what different way as follows:

(2008) Let LA(G), Ls(G) be defined as above. Then

O(L(G), 2) = D(La(G), 2)@(Ls(G), ).

Huang and Li (2016) obtained the following decomposition theorem of the normalized Laplacian characteristic

polynomial.

(2016) Let L4(G), Ls(G) be matrices defined as the above forms, then

D(L(G),z) = ©(LA(G),2)P(Ls(G), z).

Further on we need the following lemmas.
Let G be an n-vertex connected graph and let 0 = p; < pa < --- < p,, be all the eigenvalues of L(G). Then
KF(@) =nyr, L.

Let G be an n-vertex connected graph let 0 = p; < pa < --- < p, be all the eigenvalues of L(G). Then
7(G) = L1I%_,p; , where 7(G) is the number of spanning trees of G.

Let G be a connected graph of order n and size m and let 0 = A1 < Ay < --- < A, be all the eigenvalues of
L(G). Then Kf*(G) =2m Y ", 5.



Kirchhoff index and the number of spanning trees of G2.

in this section, we mainly consider two types of graph invariants of G2, that is, the Kirchhoff index and the
total number of spanning trees. Let di,ds,--- ,d, be the degree sequence of G. Our main aim is to give
relationship between G2 and G,, for these two types of graph invariants (based on the laplacian of G2). Using
these relationship, we get the the Kirchhoff index and the total number of spanning trees of W2 1, where
W2 41 is the strong product of a path Ky and a wheel W, ;. We also determine the limited values for the

quotients of the Kirchhoff index and the Winner index of W32 |1, respectively.

We first label the vertices of G with labels {1,2,--- ,n}. According to the definition of strong product, we
label vertices of G2 with labels {1,1/,2,2--- ,n,n’} and i’ corresponds to i in G2. According to the labeled
vertices of G2, one may see that G2 has an automorphism: 7 = (1,1’)(2,2) - -+ (n,n’). That is to say, Vo = 0,

Vi={1,2,--- ,n}and Vo ={1,2/,---  n'}, respectively. By equation (1), we have

LA(GEI) = LV11(Gi) + LV12 (Gi)’ LS(G’I?L) = LVn(GrQL) - LV12 (Gi)

Consequently, Ly, (G2) and Ly,,(G?) are n x n matrices, which are given as follows:

Ly,, (Gi) = (

2di+1  —ai2 —ai,3 —ai4 o —Aig
—a2,1  2dp+1 —asgs —ag4 r —Q2g
—as; —azpy 2d3+1 —azsa - —azn
—ag4,1 —Q4,2 —a4.3 2ds +1  --- —Q4p, XN
—0an,1 —0an,2 —0an,3 —apa 0 2dy +1
and
Ly, (G7) = (
Vie\bpn) =
-1 —ai2 —a13 —ai4 -+ —ain
—az1 —1  —az3 —ags - —agn
—a31 —azz —1  —aza - —azy,
—a41 —G42 —aG43 —1 o —ag, nxn
—QGp1 —Apn2 —Qp3 —04np4 - -1
Hence



La(G}) =2(

dy —ai2 —a13 —AaAi4 - —Q1n
—as,1 d —Q23 —Q24 -+ —Q2p
—as,1 —azp ds —as4 -+ —a3p
—G41 —A42 —043 dy o TGO XM
—Qp,1 —Aap2 —Qp3 —0p4 -°°° dn
and
Ls(G2) =2(
di +1 0 0 0 0
0 do +1 0 0 0
0 0 ds +1 0 0
0 0 0 dy+1 0 nxn-
0 0 0 0 dy, +1

By Theorem , ®(L(G),z) = ®(La(G),2)®(Ls(G),z). Hence the Laplacian spectrum of L(G?2) consists of
eigenvalues of L4(G?2) andLg(G?2) . Let 0 = p; < p2 < --- < p,, be the L-spectrum of G, that is, the spectrum
of the Laplacian matrix of G. Since L4(G?) = 2L(G,,) and Lg(G?) is a diagonal matrix, one can easily see
that 2p;, 2d; + 2,7 € {1,2,--- ,n} are all the eigenvalues of L(G2). Then we obtain the following theorem.

For graph G,, with degree sequence dy,ds, - ,dp, let G2 = Ko X G,,. Then

Kf(G}) = kf(Gn) +n 320 -
7(G2) = 7(Gp) A" T, (d; + 1).

Proof.

(i) Since |[V(G2)| = 2n, by lemma , we have

(ii) It follows from lemma that



O

Let W, 41 be a wheel with n + 1 vertices and the degree sequence of W, 11 is n,3,3,---,3. It is completely
determined in (1985) that the eigenvalues of L(W,41) are 0, n+ 1, 1 + 4sin®(X%) k € {1,2,--- ,n — 1}. By
lemmas and , we have

n—1

Kf(Wog1) =14 (n+1))
k=1

M, P (Winir) = 21+ 4sin?(T)).

By theorem (), we obtain the following corollary.

For n > 3, let W,%H = Ko X W, 41. Then

KFOW2, ) = 2555 4 (0 41) (00 ety )-

T(W2,) = (n+ 12211 + 4sin?(E2)].

Considering the quotient of the Kirchhoff index and the Wiener index of W?2 1, we obtain the following result.
For n > 3, let Wﬁﬂ = Ky X W, +1. Then

lim KfWia) 1 V5

notoo W(W2,,) 16 20°

Proof. First we determine the Wiener index of W2, ;. Let d(i, W2 ;) be the sum of distance from the vertex

i to other vertices in W2, ;. For i = 0, we have

d(0,W2,,)=2n+1.

For i ={1,2,--- ,n}, we have

d(i,W2,)=T+2x (2n—6) = 4n — 5.

Then

10



Let f(z) =

Since

we have

As desired.

m,x € [0, 7], Obviously, the function f(z) is Riemann-Integrable on [0, 7]. Hence

n?+n+8 n! 1
Kfw2, ) =""T"T0 4 (g1 -,
FWiga) 4 ( ) ’; 1 +4sin2(’%)

. Kf(W2,,) 1 V5
11m T2 N T aa + —_—,
n—-+4oo W(Wn+1) 16 20

O

It is completely determined in (1985) that the eigenvalues of L(S,,) are 0, 1 with multiplicity n — 2, n and the

eigenvalues of L(C,) are 4sin?(5%), k € {1,2,--- ,n — 1,n}, where S, and C, are a star and a cycle with n

vertices. By lemmas and , we have

Kf(S,)=n*-2n+1, 7(S,) =1, Kf(C,) = , 7(Cp) =n.

The degree sequence of S, is {n —1,1,--- ,1} and C,, is 2-regular graph. Using theorem (), we obtain the

following two corollarys.

(2020) For n > 3, let S2 = K, X S,,. Then

Kf(G}) =

3n?—5n+4
2 )

7(S2) = n- 2373,

(Y. G. Pan et al., 2019) For n > 3, let C? = K5 X C,,. Then

Kf(C3) =

n3 +4n2 —n

12 ’

7(C2) =n-2%=2.3",

11



Multiplicative degree-Kirchhoff index of K; X G,
G, is a k regular graph

In this subsection, we will determine the relationship between G2 and G,, for multiplicative degree-Kirchhoff
index (based on the laplacian of G2). Not that

[’Vu (Gi) = (

1 —ai,2 —ai,s —ai,4 . —ai,n
2k+1 2k+1 2k+1 2k+1
—asz,1 1 —az,3 —az,4 . —az,n
2k+1 2k+1 2k+1 2k+1
—as1 —as.z2 1 —as.4 .. —a3.n
2k+1 2k+1 2k+1 2k+1
—a4,1 —a4,2 —a4,3 1 . —A4n  pxn
2k+1 2k+1 2k+1 2k+1
—Qn,1 —Qn,2 —Gn,3 —Qn,4 .. 1

2k+1  2k+1  2k+1  2k+1

and
Ly, (G7) = (
Via\Mp ) =
—1 —a1,2 —ai,3 —ai1,4 .. ~ain
2k+1 2k+1 2k+1 2k+1 2k+1
—a2,1 —1 —a2,3 —a2,4 . —a2,n
2k+1 2k+1 2k+1 2k+1 2k+1
—as,1 —as,2 —1 —as4 . TG3n
2k+1 2k+1 2k+1 2k+1 2k+
—a4,1 —a4,2 —a4,3 —1 .. —d4n  npxn-
2k+1 2k+1 2k+1 2k+1 2k+1
—an,1 —an,2 a—n,3 —Qan,4 . —1
2k+1 2k+1 2k+1 2k+1 2k+1

Since EA(G72’L> = EVII(G%) + ‘CV12 (G?z) and £S(G721) = £V11 (G%) - ‘CV12 (G%)’ thus

2
Ly G?)=—"—
(G 2k + 1 (

k —ai2 —ai3 —Gir4 - —Ain
—as,1 k —Q23 —Q24 - —Q2p
—as1  —as?2 k —asz4 -0 —a3p
—G41 —A42 —043 k i TGO MXM
—Qp,1 —Aap2 —0np3 —0p4 -°° k

and

12



Ls(G?

n

~—
I
—~~

2k+2
ﬁ 0 0 0 . 0
0 5 0 0 - 0
2k+2
0 X ﬁ 2k0+2 X
0 0 0 ka1 0 nxmn:
0 0 0 0 2k+2

2k+1

Let 0 =X < Xy <--- <)\, be the L-spectrum of G, that is, the spectrum of the normalized Laplacian

matrix of G. Since LA(G7) = 5727 £(Gr) and Lg(G3) is a diagonal matrix, one can easily see that 5250 );,i €
{1,2,--- ,n}, %ﬁ with multiplicity n are all the eigenvalues of £(G?2). Then we obtain the following theorem

by using Lemma .
For k regular graph G, let G2 = G,, ¥ Ky. Then

(2k +1)2

n?(2k + 1)2
k2 '

Kf'(G2) = Kf*(Ga) +

Since C), is 2-regular and the eigenvalues of £(C,,) are 2sin?(*%), k € {1,2,--- ,n—1,n}, we have Kf*(C,) =
”?’T_”. Then

(Y. G. Pan et al., 2019) For n > 3, Let G,, = C,, ® Ky. Then Kf*(G2) = 25n24100n%-25n

G, is a wheel W,

In this subsection, we will mainly establish the explicit formulas for Multiplicative degree-Kirchhoff index of
W2, .. Obviously,

m

£V11 (W3+1) = (

—1 —1 —1 o —1 —1
1 7(2n+1)  +/7(2n+1) 7(2n+1) 7(2n+1)  +/7(2n+1)
—1 1 1
T 1 -1 0 e 0 -1
1 _1 1 —1 0 0
\/7(2n+1) 7 7
—1 0 _1 1 - 0 0
V/7(2n+1) 7 (n+1)x(n+1)
-1 0 0 0 1 _1
\/7(2n+1) 7
-1 1 1
—= 0 0 —= 1

V7(2n+1)

d

a

]

13



£V22 (W3+1) = (

VR VR Ve T e

E _I _i _1 0 07

7(2n+1) 7 7 7

JrantD 0 7 7 0 0 (n+1)x (n+1)-
\/ﬁ 0 0 0 -1 -1

T 7 0 0 -7 ~7

Since [’A(W5+1) = ‘CV11(W3+1) + ‘CV12 (W3+1) and £S<W3+1) = £V11(W3+1) - 'CV12 (Wr%Jrl)? thus

LaWii)=(

2n —2 —2 —2 —2 —2
2n+1 VT@n+1)  \/7@2n+1)  \/7(2n+1) V7@n+1)  \/T(2n+1)
=2 6 _2 R _2
\/7(2n+1) 7 7 0 0 7
- _2 6 _2 .
7(2n+1) 7 7 7 0 0
— _2 6 .
7(2n+1) 0 7 7 0 0 (n+1)x (n+1)
=2 6 _2
V/7(2n+1) 0 0 0 7 7
=2 _2 _2 6
\/7(2n+1) 7 0 0 7 7
and
£S(W3+l) = (
2n+2
27;1 0 0 0 0 0
0o %2 o0 o0 0 0
o o 2 o0 0 0
8
0 0 0 = 0 0 (nt1)x (nt1)-
0 0 0 8 0
0 0 0 0 0o 32

By a simple calculation, we obtain that the eigenvalues of EA(Wf_H) are 0, % + 253_1, %(1 + 45m2%ﬂ)7 k e

{1,2,--- ,n—1} and Lg(W}2,,) is a diagonal matrix. By Lemma , one can easily see that the eigenvalues of

14



‘C(WEJrl) are 0, % 2n+17 7(

the following theorem.

1+ 4sin?£ 0k € {1,2,- -1}, gZﬁ, £ with multiplicity n. Then we obtain

For n >3, let W2, ; = Ko ® W, ;1. Then

N 32+4+9n(1+n)(15+7n n—1
Kf*(W2,) =5 (4—_:36)75 0 4 (n + )(Zk 1 MT?(’”))'

. KffWip) _ 1 NG
litnn s oo B = 5 + 45

Proof.
(i) Since |[E(W2, ;)| =9n+ 1, It follows directly by Lemma lemma .

(ii) First we determine the Gutman index of W2 ;. We calculate d,;djdwml(i,j) for all the vertices (fixed @
and for all j), then add all of them together and finally the sum is divided by two.

Let g(i, W2,;) be the sum of multiplicative distance from the vertex i to other vertices in W72, . For i = 0

g(i, W2 ) =02n+1) x 2n+ 1)+ (2n+1) x 7 x 1 x 2n = (1 + 2n)(1 + 16n).

Fori=1,2,3,--- ,n

g, W2, ) =Tx[2n+1) x1x2+7Tx1x5+7x2x (2n—6)] =7 x (32n —47).

Owing to the symmetry of the G2, we obtain

1 ~ ~
Gut(W2, ) = 3 W2 +2) gl W,fﬂ)l =g(0, W2 )+ > g(i,W,,) =256n" — 311n + 1.
i=1 =1
Note that )
324 9n(1 +n)(15+7n) - 7
Kf*(W2 ) = +1) _
P Wat) 44 36n +n — 1+ 4sin?(kx)
Then
i KPOV20) 15
n—+oo Guit( n+1) 1024~ 1280°
As desired.

15



Resistance distance-based graph invariants and the number of spanning trees of G%,T

Similar to the proof of Lemma 2.1 , the spectrum of L(G3 ,.) consists of the eigenvalues of both L4 (G2 ) and
Ls(G? ). Let d; be the degree of vertex i in G, and dj be the degree of vertex i in G2 . Then d = 2d; + 1
or 2d;,(i =1,2,3,--+ ,n) in wa. We rearrange the vertice such that {11’,22' --- [ rr'} is the deleted edges

of GZ .. Then we have

LV11 (Gi,r) = (

1 —Qai2 —a@13 —Ar4 - —A1gp
—as,1 5  —a23 —aGz4 - —a2n
—asz;1 —as2 é —a3z4 - —a3;n
—G41 —Q42 043 f; crr —Q4 MXT
—Qp,1 —Aap2 —0np3 —0p4 - d{n

where d} =2d;, (1 =1,2,--- ,r),d; =2d;+ 1,(i=r+1,--- ,n), and

LV12 (Gi,r) = (

tq —a12 —G13 —A14 - —A1pn
—as,1 to —Q23 —G24 -+ —Q2q
—as1  —as?2 t3 —asz4 0 —a3;p
—Q4,1 —Q42 —043 ty coe o —Qgy  nXT
—Qp,1 —Aap2 —Qnp3 —0p4 -°° tn

where t;, =0,(i=1,2,---,r)and t; = —=1,(i =r+1,7r+2,--- ,n). Then for any graph wa € gfw ydi 4t =
2d; holds for all 1 <4 < n. Since La(G?,) = Lv,, (G2 ) + Lv,,(G} ), Ls(G% ) = Lv,, (G2 ) — Ly, (G2 ).
we get that

dq —ai2 —ai3 —Gir4 -+ —Ain
—as,1 dy —Q23 —Q24 - —Q2p
—a3zy1 —asz d3  —aza - —a3p
—G41 —A42 043 dy o TGO MXM
—Qp,1 —Aap2 —0np3 —0p4 -"°° dn
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and

Ls(G3 ) =2(
2d; 0 0 0 0
0 2ds 0 0 0
0 0 0 2d, 0 0 X
0 0 0 0 24142 -~ 0
0 0 0 0 0 - 2d, +2

Since La(G} ) = 2L(G,) and Ls(GZ) is a diagonal matrix. Thus, the eigenvalues of L(G?

eigenvalues of L(G),). Then we obtain the following theorem.

G, is a graph with degree sequence {d;,ds, -+ ,d,}, Then for any G%,r € Q'?m, we have

KF(G2,) = Kf(Ga) +n 30, L.
T(GEM) = 7(Gp)4" I 5.
Where s; = d; if i3’ ¢ E(G%’T) and s; =d; +1if i1 € E(Gr%,,r)'

Proof.

(i) Let s; = d; if ii’ ¢ BE(G3,) and s; = d; + 1 if ii’ € E(G} ). Since [V(GZ )| = 2n, by lemma ,

(ii) It follows from lemma that

n,r

{1,2,---,n}, 2d;,i = {1,2,--- ,r} and 2d; + 2,i = {r+ 1,r + 2,--- ,n}, where p;,i = {1,2,---

) are 2p;,1 =

,n} are the

we have

O

Let W, 11 be a wheel with n + 1 vertices and the degree sequence of W, 41 is {n,3,3,---,3}. It is completely

determined in (1985) that the eigenvalues of L(W,, 1) are 0, n+1, 1 +4sin?(2%) k€ {1,2,--- ,n

n

theorem , we have the following result
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For any graph W2 nt1r € )/Vn+1 - we have

Kf( n+1 r) - {
3 r)n )N 1
3n°+(2+47) 12J;(23+ )n+12 T (n+1) (Zk h 1+4T2(’“’)) if 00" ¢ E(W2,,,),
2 T)n T
LA (1 1) (S0 b ) if 00" € B(W2,,,).

T(W3+1 r) = {

n2on=2rHigr=lR il + dsin?(EX)], i 00" ¢ E(W2,,,),
(n+1)24"~ 2T3THZ 11 +4sin?(E5)], if 000 € E(W2 4 ).
Kf( 7L+lr)_ 1 _'_\/5

limyp, 400 W(W2,,,) 16 20°

Proof. (i)-(ii) Note that|V(W2,, )| = 2n + 2 for any graph W72, , € W2, . We now consider two cases.

Case 1: If the edge 00’ is included in the deleted edges:

As the eigenvalues of L(W2,, ) are 0, 2n + 2, 2 + 8sin? (5),k € {1,2,- — 1}, 2n, 6 with multiplicity

r — 1 and 8 with multiplicity n + 1 — r, by lemma , we obtain

In addition, by Lemma , we have

Case 2: If the edge 00’ is not included in the deleted edges:

As the eigenvalues of L(W,

n

multiplicity r and 8 with multiplicity n — r, by lemma , we obtain

In addition, by Lemma , we have
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2+17r) are 0, 2n + 2 with multiplicity 2, 2 + 8sin? (7”) ke{1,2,--

)

n—1}, 6 with



(iii)It is obvious that W (W2, ) = W(W2, ) +r = 4n® — 3n 4+ 1 4 r, No matter which value we choose as
Kf(W2,,,) , we have

n

. Kf(W72L+1 r) 1
lim — "+ =—+
n—+oo W(Wn+1,r) 16

O
s

Using theorem () and equations (3), we obtain the following two corollarys.

(2020) For any graph S7 . €S2 ., we have
Kf(S7,) ={

BEGrTE OSSN i1 ¢ B(SE,),

I (rB)ntd if 11 € B(S2,).
(S5 = {

(TL o 1) . 23n7r72’ if 11/ ¢ E(Sg,,r)7

n . 93n=r=3 if 11/ € B(S2,).

where 1,1’ is the vertice with degree 2n — 1 in S2.

(Y. G. Pan et al., 2019) For any graph C3 , € C2 ., we have

n,r’

n3+4n2+ 2r—1)n
Kf(cg,r) = 12( ) .

7(C2 ) =mn-2%nHr=2.gn=r,

Concluding remarks

Let G,, be a graph with given degree sequence. By using the normalized Laplacian decomposition theorem,
we first establish the relations between the Laplacian eigenvalues of G, K K5 and G,,. Using this relations we
give the explicit closed formula between G2 and G,, for the Kirchhoff index and the total number of spanning
trees, which generalize the main results of Z.M. Li et al. ( Appl. Math. Comput., 2020, 382:125335), Y.G.
Pan et al. ( Int. J. Quantum Chem. 118 (2018) . E25787) and Y.G. Pan et al. (2019, ArXiv: 1906.04339).
Typically,using this relationship we get the explicit expressions for the Kirchhoff index and the total number
of spanning trees of W2 11 = Wyt W Ky, where Wy,41 is a wheel with n + 1 vertice. We also find that
the Kirchhoff index of W72, is almost constant times of its Wiener index. Later, we presented the explicit
expressions for the multiplicative degree-Kirchhoff indices of G2 when G,, is regular. We also given The
explicit expressions for the multiplicative degree-Kirchhoff indices of W? 1 and the limited values for the
quotients of multiplicative degree-Kirchhoff index and the Gutman index of W?2 1. Finally, we construct a

family of graphs Gfm, obtained from G2 by deleting any r vertical edges of G2, The Kirchhoff index and the
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total number of spanning tree of G%yr have been given and we show that the Kirchhoff indices of these graphs
are almost constant times of their Wiener indices. It would be interesting to determine their multiplicative

degree-Kirchhoff indices and Gutman indices. We will do it in the near future.

Motivated by the construction Ky X P, in (Y. G. Pan & spanning trees of the linear crossed hexagonal chains,
2018), Ky X Cp, in (Y. G. Pan et al., 2019), K3 K S, in (2020) and this paper, we propose the following two

questions for further study.

For a simple connected graph G, how can we determine the Laplacian spectrum and normalized Laplacian
specteum of the graph K, X G?

How to determine the Kirchhhoff index, multiplicative degree-Kirchhoff index and number of spanning trees

of graphs derived from the Catersian product of K5 and G?
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