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Automatic pollen image identification using neural networks

increases accuracy for hay fever forecasts
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Automatic pollen image identification using neural networks increases accuracy for hay fever
forecasts

To the Editor,

Pollen allergies are on the rise globally. Therefore, for more and more people, fast and accurate monitoring
of airborne pollen provides an essential early warning system. Although the allergenic pollen from some
plants can be monitored at the species level (e.g. ragweed,Ambrosia artemisiifolia L.1), many species cannot
be accurately identified to this level based on their pollen. In many taxa, only a genus- or family-level
identification is possible using current microscopic methods, even if they possess very different allergenic
profiles. An extra challenging factor in airborne pollen identification is that they are collected directly from
the air2. Because they are not acetolyzed3, and thus still contain all organic material, defining features are
less apparent in these pollen grains4.

The identification challenge is exemplified in the case of the nettle family (Urticaceae). Pollen grains produced
by all species from the genus Urtica L. (stinging nettles) are allergenically irrelevant, while pollen from several
species of Parietaria L. (pellitory) are a major cause of hay fever, in particular P. judaica L. andP. officinalis
L.5 Both these species of pellitory are native to the Mediterranean, but throughout the second half of the
twentieth century, a range expansion occurred through north-western Europe, the Americas and Australia as
a result of anthropogenic distribution and climate change6. Their pollen is virtually indistinguishable from
that of native Urticanettles and their contribution to the total aerial pollen load is currently not assessed.

Automatic image recognition can be used to improve identification of pollen taxa that are difficult to distin-
guish. Subtle variations in morphology that are not readily apparent through microscopic investigation may
be consistently detected by neural networks. Here we use the Deep Convolutional Neural Network (DCNN)
model VGG16 to distinguish morphologically similar, unacetolyzed pollen from the nettle family (see online
supporting information for details on VGG16).

Pollen from all five species of the nettle family present in the Netherlands was collected from plants in
multiple locations (both fresh and herbarium material) to account for potential intraspecific variability. This
includes pollen from three species of Urticaand two exotic Parietaria species (Supplementary Table 1). To
train the VGG16 model, a minimum of 1000 pollen images per species were taken at 100x magnification
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using a Widefield Zeiss observer. We wrote a custom script in ImageJ7 to automatically extract individual
pollen grains from raw multifocal images. Three different image projections were produced to visualize the
pollen in two rather than three dimensions, and to emphasize distinguishable features (Figure S3, script
available on https://github.com/pollingmarcel/Pollen Projector). The VGG16 model was pre-trained on
the ImageNet dataset and contains 13 convolutional, and three fully connected layers. To mitigate potential
overfitting and to increase the size and variability of the training data set, we used 10-fold cross-validation
and data augmentation (Figure S4). We used 90% of the pollen images to train the model, and 10% were
used for subsequent testing (see online Supplementary Information for a complete description of materials
and methods).

The trained VGG16 model accurately identified pollen to the genus level in 95.9% of the time for Urtica
and 97.8% for Parietaria(Figure 1). The species Urtica membranacea was confidently distinguished from all
other Urticaceae species (99.2%), but distinction at the species-level was not possible for the otherUrtica and
Parietaria species. This is because the distinguishing differences between pollen from these species could
not be resolved in the image projections used.

From the raw pollen images, we further identified clear intra-specific differences in the pollen grains that
result from natural variability within each species. To test whether VGG16 learned the correct distinguish-
ing features rather than sample-specific details, we produced feature maps (Figure 2). Despite the highly
variable input images of unacetolyzed pollen, the model learned distinct features such as edges in the first
convolutional layers, while finer features, such as pores and annuli, were learned in deeper layers.

This is the first time a DCNN model has been used to increase the accuracy of unacetolyzed pollen. The
model represents a significant improvement of earlier attempts in distinguishing Urticaceae using automatic
image recognition. In a previous study using shape and texture features, pollen from three Urticaceae species
could be distinguished from another (89% accuracy8), though only a small image dataset was used. DCNN
models have shown similar accuracy rates to ours on larger and more varied pollen datasets as well, but
these either focussed on the family level9 or on insect-collected pollen for honey analysis10. Moreover, all
of these studies used acetolyzed pollen that allow for easier recognition of distinguishing features, and used
pollen collected from only a single location.

In conclusion, using a combination of an image-processing workflow and a sufficiently trained DCNN model,
we were able to differentiate unacetolyzed pollen grains from two genera in the nettle family. These are
genera that are indistinguishable with current microscopic methods but possess different allergenic profiles,
and thus the ability to differentiate them is of medical significance. We expect this method can be more
broadly applied to distinguish pollen from similarly challenging plant families and will aid in producing more
accurate hay fever forecasts.

KEYWORDS

automatic image detection – deep convolutional neural networks – hay fever – nettle family – pellitory –
pollen – Urticaceae – VGG16
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SUPPORTING INFORMATION

Additional supporting information can be found in the online Supplementary Information file

Figure 1. Results

Training Test

CCR 99.0% 97.3%
Precision 0.990 0.973
Recall 0.990 0.973
F1 score 0.990 0.973
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Figure 2 Feature Maps
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