Polinomial model revisited — a simple calculation of the
kinematical parameters of a 100 m sprint

Nataga Janji¢!, Darko Kapor?, Dragan Doder?, Jelena Nikoli¢!, and Nemanja Gvozdenovié!

!University of Novi Sad Medical Faculty
2University of Novi Sad Faculty of Science and Mathematics
3Serbian Institute of Sport and Sports Medicine

September 10, 2020

Abstract

We summarize and extend here a simple procedure allowing to obtain all important parameters of the 100 m run based on the
measured values for the distance S from the start line and expired time t. An example for testing the proposed model are the
results for segment values for S and t for elite sprinters, male: C. Lewis, M. Green and U. Bolt, and female: F. Griffith-Joyner.,
F. Ashford and H. Drecksler. The distance is approximated by a third order polinomial function S = f(t), which is easily fitted
from the split (segment) times. This function is a mathematical model enabling, by using a standard mathematical treatment, to
obtain the equations for determining the point of the maximal sprinter velocity vdmax, corresponding to vanishing acceleration,
its distance from the start line Sdmax and corresponding time moment tdmax. The function provides direct reading of the initial
velocity vo as well as finding the expressions for the sprinter instantaneous velocity vt and acceleration at. It also provides the
initial acceleration, enabling to determine the force acting at the begining of the run. Results obtained justified the proposed
approach for a universal and practical preparation tool and also showed that there do not exist so large differences in the values
of kinematical parameters between analyzed male and female sprinters. The didactical purpose of the paper is to demonstrate
how the combination of (unrealistic) exactly solvable model with the knowledge of the realistic behaviour can lead to a good

numerical fit.
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INTRODUCTION

Although unexpected, the athletic running, sprint in particular, is a typical chalenge for physicists, to try
to test their concepts and methods. One very simple idea is to write down an equation of motion, based on
Newton’s second law and then solve it. Simplifying assumptions are always welcome. So, we assume that a)
the force pushimg the athlete forwards is a constant one and b) that the air resistance is proportional to the
velocity (proportionality coefficient k ).

We shall consider only 100 m run, so it is the one dimensional motion. More details about kinematics of
the one dimensional motion and the quantities defining it (distance, velocity, acceleration) can be found in
general physics courses, for example.!

This problem was discussed already in seventies by Keller.> 3 Solving the differential equation based on
above assumptions, he obtained the well-known solution

e = e (1-€P7) (L)



Here v; [m/s] is the instantaneous velocity, ¢ [s] is the time interval elapsed from the start, whilev,,s [m/s] is
the maximal value of the velocity.f = k/p.

This behaviour, which occurs in many situations in physics is so called saturation*, and this equation tells us
that the velocity will asymptotically approach to vy,s after very long (,,infinite®) time. This situation might
correspond to some long distance running, but definitely not to the sprint. So we must look for a different
approach. We tested several ideas in our initial work®, but further study®®indicated that the best was an
approach based on experimental data which are broadly available. Actually, we wish to demonstrate that a
fit of the experimental data is much more efficient when combined with theoretical and euristical arguments.

It has become a common practice for athletic events, that in 100 m run, the path is divided into 10 equal
segments of 10 m length, each. At the begining and end of each segment, one measures its distance Sfrom
the start line and the time ¢ which took sprinter to reach that point. On the basis of the measured values of
S andt, it is possible, following the procedure described in the papers®?® to calculate the values of the average
segment velocities v5 and define the polinomial function S = f(t ). The function S = f(t ) is a mathematical
model describing precisely the dependence of the distance covered on elapsed time and can be used to derive
the expression for the maximal sprinter velocity during the race vgmq. and corresponding acceleration agmqz
, distanceSgmq, and elapsed timetg,q.. - This function enables direct reading of the initial velocity v, and
accelerationa, as well as the expression for the instantaneous sprinter velocity v; and acceleration a; .

In order to determine the point in the path corresponding tovgmaz, tdmaz andSqmaz , certain researchers, like
Henry and Trafton? tried to develop a mathematical model using the function of acceleration at 60 yards and
presented a model based on separated exponential functions for acceleration and deceleration phase during
100 m run. Prendergast!'®, following the idea of Lames'!, produced a unified model valid for all 100 m of
the run, by combining the exponential functions describing both the increase and decrease of the sprinter
velocity. The model includes a set of parameters with special meaning whose calculation demands very
sophisticated computer program, making its application a complex one.

Looking for a more realistic, yet simple model, we tried to formulate the function S=f(t) not as an exponential
function, but as a third order polinomial of the form S(t)=P; t + Py t°- Pst® . The reasons will be explained
further on. Fitting this polinomial to the given values for S and ¢ , we obtained the particular expression
for the function S=f(t) which enabled finding vgmaz, Sdmazs Vo, Go, V¢ anda; for an individual sprinter. The
values obtained justified the idea of the approach and its suitability for a universal and practical application.

The example for testing how the polinomial function S=f(t) can serve as a model for determining vgmaz,
tamazs Sdmaz, Vo, Go, V¢ and a; ,will be the segment results for S and ¢ in 100 m run of the elite sprinters.
Tables with results for men appear in Ref.58 and for women in®® and we are not going to repeat them here.
We intentionally use the same examples as in previous studies to demonstrate to what extent the application
of the model can be extended.

The distribution of obtained results (Table 3) allowed to review to what extent there exist the differences
in values of the kinematic parameters of male and female sprinters, clearly confirming expressed gender
differences, which are not large in 100 m run and also to expose the dominant and impressive result of
U.Bolt, who according to our model, achieved the maximal velocity of 12.66 m/s.

In order to give the paper a more pedagogical approach, we shall formulate our procedure ,,in three easy
steps“. In this way, the athletic coaches can follow the procedure easily.

METHODS

The subject of our research were the results for elite sprinters, male: C. Lewis, M. Green and U. Bolt,
and female: F. Griffith-Joyner, F. Ashford and H. Drecksler according to'?. Nevertheless, the study design
conformed to the ethical standards of the Helsinki Declaration and the ethical standards in sport and exercise

science research described by Harriss and Atkinson'3.

Theory



2.1.1 Step one: simple mathematical expressions

If we wish to obtain the values for the parameters characterizing 100 m run, starting from the segment values
of distance S and timet, we need an analytical expression for the dependence S = f(t).

We have already mentioned that the solution (1.1) of the differential equation for given initial conditions
includes an exponential term, providing so called saturation property, ¢.e. the maximal velocity is achieved
only after very long (infinite) period of time, which is in discrepancy with the real situation.

On the other hand we know that during the sprint, velocity is rising achieving a maximum and then decaying
after some time. So it is obvious that the mathematical form of the velocity vs time should be a curve having
a maximum. One good candidate for such a behaviour is the inverted quadratic function (parabole). If we
want to relate this to the above obtained solution, we can assume that the whole run happens in a short
time period far away from the saturation. Then we can treat the obtained solution as the sum of Taylor’s
expansion in time variable. This also simplifies the mathematics. Taking into account the mathematical
structure of the solution, we retain only certain terms of this series. Since we wish the velocity to be a
quadratic function of time, the path must be one power higher, i.e. a cubic function which would then give
a quadratic function for the derivative. In the same manner, the acceleration as a linear function of time.
Denoting the positive coefficients attributed to ¢, t2, t° as P;, P, Pj3 respectively, the expression for the
distanceS(t) can be represented as a third order polinomial, without a constant term

S(t)=P; t + Pat® - P5 t° (2.1)

where the coefficients can be obtained by fitting the data for Sand ¢. Notice that the cubic term has the
negative coefficient providing negative quadratic term in the expression for velocity, necessary for the function
with the maximum. (No constant term is, of course, the consequence of the initial condition, S=0 fort=0. )

After the derivation, it follows from (2.1) that the velocity is
vy =dS/dt = P; + 2Pg t -3P3 t* (2.2)

and acceleration

a; =dv; /dt =2P4-6P3 t (2.3)

Initial condition gives

P, = v 2Py= a, (2.4)

which allows a direct, yet simple determination of the initial velocity and acceleration. (For mathematical
simplicity, we use the initial conditions for the moment ¢t=0, although more accurate approach would be to
measure time after start reaction time, but this will be the subject of some further studies.) Data fit can be
performed by any convenient program, and in our previous work®® we used the program Origin 6.1.

Simple mathematics offers some additional information, not discussed previously.
The sprinter achieves the maximal velocity vgmqfor vanishing acceleration, i.e.
Admaz :0 (25)

at the corresponding moment of time ¢ =tgyq, , which, according to (4) and (6) equals to
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tamax = 375 (2.6)
Substituting (7) into (3), one gets the maximal velocity
Vamaz =P1+ 2Pslimaz (27)

corresponding to the distance
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(2.8)
2.1.2 Step two: fitting the polinomial

Presented theoretical treatment allows us to determine the following parameters of the run: maximal sprinter
veloCity Ugmaz in 100 m run, corresponding distanceSg,q, and time momenttg ., , as well as the initial
velocityv, | instantaneous velocityv; and acceleration a; .We need to know the function. S for any particular
sprinter in a given run. The sample for our analysis will be measured segment data for Sand ¢ of elite
sprinters; male: C. Lewis (1988, Seoul), M. Green (2001, Berlin) and U. Bolt (2009, Berlin) and female: F
Griffith-Joyner., F.Ashford and H. Drechsler (1988, Seoul). These data, presented in our previous works®>®
were used to fit the polinomial coefficients, for each of the sprinters.

We have at our disposal 11 pairs of data, sufficient to perform a fit by using any convinient program. The
polinomial functions obtained in this way previously® ® are reviewed in the Tables 1 and 2. The quality of
the fit was discussed in detail in our previous work®.



Insert here Table 1.
Insert here Table 2.

Good agreement of measured points (pairs S and ¢ ) with the curve S=f(t ) as shown in the previous works® 8,
indicates the conclusion that for the description of the dependence of S on ¢ , one can use the function in
the form of third order polinomial with no constant term.

2.1.3 Step three: the values of the parameters
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Using the numerical values of the coefficients P; Py Ps in the equations (2.9) to (15) (Tables 1 and 2)
to calculate the expressions (2.2) to (2.8), one obtains the values for the initial velocity v, , instantaneous
velocity vy and accelerationa; , as well as for the positionSg,q. at which the sprinter achieves the maximal
velocity Vgmaz » (corresponding t0a,,., = Oafter the time g4, from the start, all presented in the Table 3.
Part a) of the Table 3 presents results evaluated from the polinomial model, while part b) is based on crude
estimates based on segemnt times and it is offered here for the sake of comparision.

Table 3 also includes the the initial accelerationa, , i.e. the acceleration at the begining of the run. More
important, multiplying it with the sprinter’s mass, one can evaluate also the force acting at this moment,
we call it ,,latent force® Fjq; .

Insert here Table 3 .

The distribution of the obtained results in Table 3 allows to observe the degree of variation of kinematic
parameters and the gender differences related to 100 m, which exist, but are not substantial. Calculated
values for the maximal velocity vgmaszclearly differ from the values of the maximal segment velocity vsmaz
listed in the papers by®® and presented in the Table 3. This difference for studied sprinters ranges from 2.1
to 2.9 % for male, and from 3.2 to 3.9 % for female ones. More clear reasons for this difference follow from
the very definitions for two different forms of the velocity, the instantaneous vgmq. and average onevsmag -

The value of the maximal velocity of 12.66m/s achieved by Bolt at the distance of 61,43m at the time 6.41
s in the segment between 60-70m, being the first sprinter to run it for 0,81 s and the world record of 9.58 s
is more than impressive and a dominant one.

DISCUSSION

In order to demonstrate how many different information one can get from this simple fit, let us now analyze
the results based on the polinomial fit S=f(t) , presented in Table 3. It also includes the data for the
maximal average segment velocity Vgmae taken from our previous papers®® with the purpose to indicate the
need of using the values of maximal instantaneous velocityvgmae, and confirm thatvgmas [?] Vsmas - Evident
differences (with respect ot time and distance) indicate to the error made in eventual declaring of vgpq, for
the maximal velocity of the run. As mentioned above, this error equals 2,1-2,9 % for male and 3,2-3,8 %



for female sprinters, in the examples discuassed above. This is incorrect also from the kinematic point of
view since we are dealing with two different kinds of velocity: the instantaneous one v, 4, corresponding to
a single point of a particular segment and the average oneuvgy,q, related to the whole segment in which the
maximal instantaneous velocity was achieved. It is important for students to understand this difference.

The values for v; and alisted in previous works, unambiguously indicate that sprinters during the short
period of the 100 m run, pass through four different phases of the velocity which are:

1. initial velocity,
2. velocity corresponding to the phase of acceleration (a; positive),

3. maximal velocity which is the highest possible velocity that an individual can realize running and which
is considered to be the most important part of the run (agma=0) 14-16 4nd

4. velocity endurance in the phase of deceleration from the maximal velocity till finish (a;negative)'”> 18.

The results presented, confirm that these are top sprinters of excellent performances, so they can be used as

the referent ones for the comparative analysis of the velocity of average sprinters'®.

Presented values (Table 3) for achieved maximal velocityvgmq, and duration time of the acceleration and
deceleration during the run, are dominated by the uprecendented results of U. Bolt. It seems that they
demand reexamining of the existing concepts and models.

At this point we wish to make a particular comment on the relation between our values, and the values for
the quantities concerning the maximal velocity, obtained by?°. They performed measurements on sprinters
(including 100 m run) during 2009 TAAF World Championship in Athletics in Berlin, combining cameras
for segment times and lasers (using IR radiation with 50 Hz and 100 Hz frequency) obtaining in this way
nearly 1000 pairs time — distance. Since laser beam was always directed at the same spot of sprinter’s
body, the results contained intracyclical oscillations which were eliminated by filtering. The curve was then
differentiated to produce the velocity. The paper offers data for the first three runners, but we are interested
in the results for U. Bolt. According to them, his maximal velocity was 12.34 m/s achieved at the distance of
67.90 m. It is important to notice that the velocity equal to 99 % of maximal velocity was achieved already
at 51.27 m. Let us repeat that our results arevgmqee =12.66 m/s,Sgmar =61.43 m (tgmas =6.41 s).

First of all, the difference in the value of the maximal velocity is 2.7 %, which in absolute sense is significant,
but for a coach it does not mean much. There are two possible reasons for this discrepancy. First one, our fit
is based on the points separated for 10 m apart, and it is actually possible that in a segment that large, the
velocity can deviate from a typical parabolic peak to a more ,,flattened“ curve and the fit can not ,,see* this.
Also, within this segment, the position of the peak can be displaced with respect to the maximum of the
parabole. So, it is the size of the segment which can cause this discrepancy. However, there exists another
option, and that is that the filtering of data is the reason of ,,flattening“ of the velocity curve. An argument
in favour of this assumption is the fact that according to Graubner and Nixdorf, the maximal velocity is
smaller than the maximal segment velocity which is rather difficult to accept. For this reason, we think that
our polinomial fit is still a reasonably good measure for the coaches who need a simple and easily tractable
procedure for determining the kinematical parameters of a 100 m sprint run.

Let us consider the force Fjq: also given in the Table 3. In our previous work® we have estimated the
horizontal starting force Fy; as the ratio of the change of the linear momentum (mwv,) to the start reaction
time which can be measured. This force is also quoted in the Table 3. It cn be seen that it is an order of
magnited higher thanFj,; and at the moment we are not sure about their mutual relationship. However, it
is our opinion that thisFj,; actually ,,produces® initial velocity.

CONCLUSION
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The general idea of the paper was to demonstrate how we can combine various approaches to look for the
most suitable analytical form necessary for a fit. Developing our previous proposition to model the distance
— time dependence (S=f(t) ) by a third order polinimial without a constant term, we have shown in this
paper how simple mathematical procedure can provide the values for the kinematic parameters related to
the maximal velocity, more precisely: the positionSg,q, at which the sprinter achieves the maximal velocity
Vdmaz , (corresponding to

Agmaz =0) after the time tg,q, from the start. This are tthe information every coach would be glad to have.
Model was tested for six top sprinters (both male and female) and in our opinion lead to reasonable results,
especially with respect to maximal segment velocity, often used in practice.

The discrepancy between our fit and a more sophisticated fit?° is also discussed.

The results produced in the present work have justified the idea of the polinomial treatment for a universal
application leading to simple calculation of all essential kinematic parameters for 100 m sprint run.

5 WHAT NEXT ?

There are various options how to extend this approach. We must stress here that the expansion of the
solution was only a guidance towards the form of the function for fitting. We treated polinomial coefficients
just as the numbers to be fitted and nothing else.

However, one can also accept the idea that the expressions (2.1) is actually obtained from the expansion,
and then the coefficients P2 and Py are expressed in terms of k/m. If this were taken into account, then there
exist relations enabling us to calculate the coefficient k if the massm of the sprinter is known ®7.

Another broad field is the idea that there may exist another form of the resistance force, the one proportional
to v? . Probably the first research related to define an expression which would describe the effect of some
aerodynamic factors influencing the result of 100 m run were the equations of Hill?! which used measurement
in the air (wind) tunnel to derive the expressions for the air resistance and wind velocity. Later, this kind
of studies attracted more interest??26. So, there is a lot of room for different interpretation of the physical
meaning of the polynomial coefficients and it is a completely new field for research.



ACKNOWLEDGEMENTS

The authors wish to thank Professor. dr. Jevrem Janji¢ for his valuable comments and suggestions.

CONFLICT OF INTERESTS

The authors declare that they have no competing interests.
ORCID iDs

Natasa.Janjic https://orcid.org/0000-0003-4034-9808

Darko Kapor https://orcid.org/0000-0002-2958-5044

Dragan Doder https://orcid.org/0000-0002-9510-7518
Jelena.Nikolic https://orcid.org/0000-0003-3399-8543
Nemanja.Gvozdenovic https://orcid.org,/0000-0001-8501-8389

References

1. Halliday D, Resnick R, Walker J. Fundamentals of physics(Chapter 2, 10" ed.) Hoboken, NJ; John
Wiley and Sons. 2013.

2. Keller JB. Theory of competitive running Phys. Today. 1973;26:43-47.
https://doi.org/10.1063/1.3128231

3. Keller JB. Optimal velocity in a race The American Mathematical Monthly. 1974;81:474-480.

4. Shive JN, Weber RL. Similarities in Physics Hilger.1982.

5. Janjic N, Kapor D, Doder D, Doder R, Savic B. Model for the determination of instantaneous values
of the velocity, instantaneous and average acceleration for 100 m sprinters J. Strength Condit. Res.
2014;28: 3532-39. doi: 10.1519/JSC.0000000000000606

6. Janjic N, Kapor D, Doder D, Petrovic A, Jaric S. Model for assessment of the velocity and force at the
start of sprint race J. Sport. Sci. 2016;35:302-309. https://doi.org/10.1080/02640414.2016.1164331

7. Janjic N, Kapor D, Doder D, Petrovic A, Doder R. Model for determining the effect of the wind velocity
on a sprinter in 100 m run J. Hum. Kinet. 2017;57:159-167. https://doi.org/10.1515/hukin-2017-0057

8. Janjic N, Kapor D, Doder D, Savic I. Evaluation of the final time and velocity of a 100 m run under
the realistic conditions J. Hum. Kinet. 2019; 66:9-29. https://doi.org/10.2478/hukin-2018-0048

9. Henry FM, Trafton IR. The velocity curve of sprint running with some observations on the muscle
viscosity factor Res. Q. 1951;22:409-422

10. Prendergast K. A mathematical model of the 100m and what it meansNew studies in Athletics.
2001;16:31-38.

11. Lames M. Mathematical Modelling of Performance and Underlying Abilities in Springing In: ISBS-
Conference Proceedings Archivel1990;1:291-297.

12. International  Association of  Athletics Federations (IAAF). Retrived 2019, from

http://www.iaaf.org/records/by-discipline/sprint /100-metres/outdoor /women

http://www.iaaf.org/records/by-discipline /sprint /100-metres/outdoor/men

http://www.sports-reference.com/olympics/summer/1988 /ATH /womens-100-metres-final. html

1.

2.

e

Harriss DJ, Atkinson G. Update — ethical standards in sport and exercise science research. Int J Sports
Med. 2011; 32:819-821. http://dx.doi.org/10.1055/s-0035-1565186

Arakawa K. Analytical Study on Running Velocity Curve. Research Reports of Kanagawa Institute of
Technology (Bulletin of Universities and Institutes ) 1990:14 105-109.

Bowerman WJ, Freeman WH. High-performance training for track and field Human Kinetics. 1991.
Cunha L. 2005 The relation between different phases of sprint run and specific strength parameters of
lower limbs In: ISBS-Conference Proceedings Archive. 2005:183-186.

Smith M. High performance sprinting Crowood. 2005.



11.

12.

13.

14.

Sugiyama K, Murata K, Watanabe Y, Takayuki H, Iwase M. Factor Analysis of Sprint Phases of the
Speed Curve of the 100m dash In:ISBS-Conference Proceedings Archive . 2000;25 — 30.

Misjuk M, Viru M. Running velocity dynamics in 100 m sprint: comparative analysis of the world
top and Estonian top male sprintersActa Kinesiologiae Universitatis Tartuensis. 2011:17 131-138.
https://doi.org/10.12697/akut.2011.17.11

Graubner R, Nixdorf E. Biomechanical analysis of the sprint and hurdles events at the 2009 TAAF
World Championships in AthleticsNew Studies in Athletics. 2011;26 19-53.

Hill AV. The air-resistance to a runner Proc. Royal Soc. B: Biol. Sci. 1928;102:380-385.

. Ward-Smith AJ, Radford PF. A mathematical analysis of the 4x100 m relay J. Sport. Sci. 2002;

20:369-381. https://doi.org/10.1080/026404102317366627

Pritchard WG. Mathematical models of running Siam rev. 1993;35:359-379.  htt-
ps://doi.org/10.1137/1035088

Mureika JR. A realistic quasi-physical model of the 100 m dashCan. J. Phys. 2001;79:697-713.
https://doi.org/10.1139/p01-031

Mureika JR. A simple model for predicting sprint-race times accounting for energy loss on the curve
Can. J. Phys. 1997;75: 837-851. https://doi.org/10.1139/p97-032

Goémez JJ, Hernandez Marquina V, Gomez, RW. On the performance of Usain Bolt in the 100 m sprint
Eur. J. Phys. 2016;34:1227. https://iopscience.iop.org/article/10.1088/0143-0807/34/5/1227 /meta

Hosted file

Tables.doc available at https://authorea.com/users/355397/articles/478652-polinomial-model-
revisited-a-simple-calculation-of-the-kinematical-parameters-of-a-100-m-sprint


https://authorea.com/users/355397/articles/478652-polinomial-model-revisited-a-simple-calculation-of-the-kinematical-parameters-of-a-100-m-sprint
https://authorea.com/users/355397/articles/478652-polinomial-model-revisited-a-simple-calculation-of-the-kinematical-parameters-of-a-100-m-sprint

