Impressive tensile properties development of Ta0.5Nb0.5Hf0.5ZrTi1.5 future generation refractory high entropy alloy

VEERESHAM MOKALI¹

¹Affiliation not available

August 27, 2020

Abstract

The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800°C and 1000°C temperatures for 1h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (ODF analysis) and microstructural examinations (analytical EBSD maps) permitted to establish a good relationship between annealing texture and microstructure and UTM utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combined with the tensile strength (1380 MPa) and (24.7%) elongation achieved for the 800°C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000°C annealed temperature ascribed to the influence of high thermal energy.

Hosted file

adma.202005628.pdf.pdf available at https://authorea.com/users/354255/articles/477883-impressive-tensile-properties-development-of-ta0-5nb0-5hf0-5zrti1-5-future-generation-refractory-high-entropy-alloy