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Abstract

Purpose Drug development strategies for genetic diseases depend critically on accurate knowledge of how pathogenic variants
cause disease. For some well-studied genes, the direct effects of pathogenic variants are well documented as loss of function,
gain of function or hypermorphic, or a combination of the two. For many genes, however, even the direction of effect of variants
remains unclear. Classification of Mendelian disease genes in terms of whether pathogenic variants are loss or gain of function
would directly inform drug development strategies. Methods We leveraged the recent dramatic increase in reported pathogenic
variants to provide a novel approach to inferring the direction of effect of pathogenic variants. Specifically, we quantify the
ratio of reported pathogenic variants that are missense compared to loss of function. Results We first show that for many genes
that cause dominant Mendelian disease, the ratio of reported pathogenic missense variants is diagnostic of whether the gene
causes disease through loss or gain of function, or a combination. Second, we identify a set of genes that appear to cause disease
largely or entirely through gain of function or hypermorphic pathogenic variants. Conclusions We suggest a set of 16 genes

suitable for drug developmental efforts utilizing direct inhibition.
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Introduction

Determining whether a genetic disorder is due to a gain, loss or change of protein function is a critical
first step in effective drug discovery. For many recessive disease genes, including many inborn errors of
metabolism, pathogenic variants have been clearly identified as loss of function. Similarly, for a number
of dominant disease genes, careful functional characterization of variants found in patients has provided
clear evidence of variantal effects. For example, dominant pathogenic variants in the NSD1 gene have been
shown to reduce or eliminate the function of NSD112, whereas nearly all apparently pathogenic variants in
SCNSA and KCNT1 have been clearly shown to be variants that increase channel current®#°:6. Furthermore,
some disease genes have been clearly shown to carry both pathogenic gain of function and loss of function
variants. For example, after the identification of loss of SMCHD1 function is causative for a form of muscular
dystrophy”, later research identified gain-of-function variants in SMCHDI1 as responsible for rare syndrome
BAMS?, a distinct genetic disease. Overall, although many recessive genes are classified as due to loss of
function (LoF) variants, and a subset of dominant genes are classified as haploinsufficient, meaning that
disease is due to loss of activity of one of the two alleles, many dominant genes remain not clearly classifiable
as due to either loss or gain of function variants. The secure identification of which of these unclassified
genes cause disease because of variants that increase or change the activity of the encoded protein would
have immediate implications for drug development.



Over the past decade, a wide range of approaches have been used to infer the functional impact of pathogenic
variants®1%11, Attempts to identify LoF and GoF variants have leveraged existing bioinformatic tools like
genetic tolerance sorting (SIFT), polymorphism phenotyping (PolyPhen)!? and conservation based Hidden
Markov Models'3. Additionally, highly supervised approaches that manually examine variants suggested to
be GoF within OMIM have been attempted!*. Despite these advances, identifying a subset of genetic diseases
well suited for therapeutic inhibition has yet to be well established. Surprisingly, no one has yet attempted
to use the distribution of reported pathogenic variants to infer whether pathogenic variants are strictly gain
or loss of function, or some combination. The intuition behind this approach is straightforward. Genome
wide it has been estimated that approximately 20% of missense variants are significant hypermorphic or loss
of function variants'®. In addition, on average, the proportion of variants in a human gene that are missense
versus nonsense variants has been estimated to be about 1.05'6. This means that for genes that cause disease
due to haploinsufficiency, the proportion of pathogenic missense to all missense and LoF variants should be
approximately 0.21. This intuition is clearly supported by considering the well-known examples of NSD1 and
KCNT1. Of all reported pathogenic (mostly de novo) variants in NSD1, the proportion of missense variants
is 0.27 (88 missense, 242 LoF'), whereas KCNT1 has 38 reported pathogenic missense variants and no known
pathogenic LoF variants. Based on this intuition, we have developed an evaluation of the proportion of
variant type in all autosomal dominant genes in order to infer the direction of effect of pathogenic variants.
Specifically, we seek to find a threshold on the proportion of variants that are missense versus LoF that
is diagnostic of whether the gene causes disease due to loss or gain of function / hypermorphism. For
convenience, hereafter, we will refer to both the gain of function and hypermorphism as “gain of function”
(GoF), without attempting to distinguish between the two.

Methods

To develop a pipeline to distinguish genes that cause disease due to LoF or GoF, we first extracted all
pathogenic and likely pathogenic variants from ClinVar’s GRCh37 weekly VCF file with minor allele fre-
quencies of 0 in all three of Exac, GO-ESP and GMAF (figure 1). We hypothesized Autosomal Dominant
variants will predominantly cause disease via haploinsufficiency or GoF. Thus, we focused our analyses on
known Haploinsufficient genes (n=361) and OMIM annotated autosomal dominant (“AD”) genes (n=219).

We then categorized variants as “likely LoF” if they were annotated as “nonsense”, “frame-shift” or “stop-
loss” and as “missense” if they were annotated as “missense.” All other variant types were not binned as
either missense or likely LoF variants and were not include in ratio calculations. On the occasions where the
same variant was annotated as both “likely LoF” and “missense,” the variant was excluded from downstream
analyses.

To assess whether the variant ratio is generally diagnostic of how variants caused disease, we first considered
a set of genes that have been defined previously as haploinsufficient. To this end, we leveraged two separately
generated lists of genes. First, we considered a list of genes (“Dang”) generated through Dang et al.’s robust
database-mining of OMIM and PubMed!”. We additionally considered ClinGen’s manually curated and
reviewed list of 312 genes (“ClinGen”) determined to have “sufficient evidence of haploinsufficiency.” Out
of these gene lists, a total of 361 unique haploinsufficient (“HI”) genes had more than 10 P/LP variants. Of
these 361 entries, 93 were shared, 63 were unique to Dang and 205 were unique to ClinGen. We considered
both lists in order to identify a threshold on the variant ratio for autosomal dominant genes not annotated as
haploinsufficient. Noting that genes that cause more than one Mendelian disease can have different directions
of effects for different diseases, we also separately distinguished genes responsible for only one Mendelian
disease.

Results
Autosomal Dominant Genes Enriched for Missense Variants

In all genes considered (HI = 361, OMIM autosomal dominant, ‘AD’, = 219), we identified pathogenic or
likely pathogenic variants classified as either missense or LoF (figure 1). We first evaluated the ratio of
missense to all pathogenic variants for HI genes that are associated only with a single Mendelian disease



(figure 1). We found that for known HI genes associated only with a single Mendelian disease, 95% of all HI
genes have a missense ratio less than 0.8 (128/135) and the median missense ratio for all haploinsufficient
genes is 0.22, nearly identical to the a priori predicted ratio of missense variants. Importantly, since the
generation of Dang’s list of HI genes, more recent research has clearly demonstrated haploinsufficiency is not
the predominant mechanism of disease for variants of, MYOC and SH3BP2, while additional pathogenic GoF
or dominant-negative variants have been identified in KCNQ4 and SLC40A1'8:19:20.21.22 Fyrther, the three
HI genes from ClinGen surpassing a threshold of 0.8 (OTC,PGK1,SMS) are all found on the X-chromosome.
Importantly, a simple threshold may identify more false positives when the total number of variants is lower.
Thus, we alternatively considered the lower bound of a 95% binomial confidence interval and did not find a
significant enhancement of signal (figure S1). Given similar results when considering a binomial lower bound
and the successful exclusion of haploinsufficiency, a simple threshold is sufficient to exclude haploinsufficiency
as a likely mechanism for AD genes.

Based on this finding, we considered all AD genes not known to be HI that are associated with only a single
Mendelian disease, and we find 51 out of 110 applicable AD genes that appear to cause disease through GoF.
Among this set of genes with variant ratios indicative of GoF, we find genes well known to cause disease due
to GoF, such as GFAP and RIT1 (figure 2a).

We then investigated whether or not our HI- threshold could be extended to all genes with at least one disease
annotated as AD, including those that cause multiple Mendelian conditions. We found similar enrichment
of AD genes and absence of HI genes above our threshold (figure 2b). Using our HI- threshold and more
permissive inclusion criteria, we generated a list of 121 AD genes (table S1) likely to act through a gain-of-
function. Importantly, we find the presence of aforementioned known GoF genes such a KCNT1 and SCNSA
within this gene list.

Finally, we sought to examine the topological distribution of missense variants in GoF AD genes, given
GoF variants in the aggregate tend to be more spatially clustered?®. As hypothesized, AD genes tended to
be more clustered than known HI genes and autosomal recessive OMIM genes (figures S2). However, the
distributions of clustering were overlapping and a clear way to incorporate clustering to complement a simple
missense threshold was not apparent.

Identifying GoF Genes for Drug Targeting

Once we generated a threshold capable of reliably identifying likely GoF genes, we aimed to determine
a subset of genes well suited for therapeutic inhibition. To assess whether inhibition is likely to be well
tolerated, we considered whether the genes are under strong selection against loss of function variants. To
this end, we only considered GoF genes highly tolerant to loss of function variants?* (pLI<0.1).

When considering all AD and HI genes, lower pLI scores are correlated with increasing ratio of missense
variants. However, the strength of correlation is minimal. Further, the distributions of AD genes and HI
are not cleanly distinguished and 11 of the 35 genes with pLI<0.1 are known HI genes, including two genes,
PKD2 and TRAPPC2, that are found in both HI sources (figure 3). Thus, the addition of pLI is not
redundant and complementary to our missense ratio threshold.

Amongst the AD genes that appear to act through a GoF based on missense ratio, we identified 36 that
show no evidence of strong selection against loss of function variants in the human population. Finally, we
manually cross-referenced our list with “The Drug Gene Interaction Database”?® to identify a set of genes
known to be therapeutically accessible. Following curation, we identified a list of 16 druggable, LoF tolerant,
likely GoF' genes (table 1).

Discussion

Identifying causal GoF disease genes tolerant of reduced dosage would provide therapeutic targets of immedi-
ate interest. Further, publicly available drugs are more often inhibitors than activators, suggesting enhanced
therapeutic potential for downregulation®®. Identifying likely GoF genes has proved relatively difficult, as
displayed by the distribution of pLI scores for known Haploinsufficient genes and significant reduction in



performance of Polyphen and SIFT compared to prediction of LoF variants'?. Despite these difficulties,
several groups have developed methods to identify likely GoF variants, but a definitive list of GoF genes
remains elusive. Here, we leveraged the increasing number of known pathogenic / likely pathogenic variants
to generate a HI- threshold that identifies likely GoF genes. We further parsed these likely GoF genes to
identify a subset of targets that were both therapeutically accessible and LoF tolerant.

Well characterized GoF genes, such as SCN8A, SOS1 and KCNT1 are present in the list of likely GoF
genes, alongside mischaracterized “known haploinsufficient genes” like MYOC and SH3BP2. However, these
genes all have been relatively robustly assessed in vitro , while many pathogenic variants have very limited
functional evidence in the literature and can benefit particularly from a hypothesis on functional mechanism.
Further, our list of likely GoF genes with low pLIs includes GFAP, which when targeted with antisense

inhibition, has shown the potential benefit of utilizing drug inhibition on candidate genes?”.

Importantly, within our analyses, we did not attempt to distinguish between hypermorphic variants and
other GoF mechanisms. Similarly, we did not consider whether or not a variant may act through a dominant
negative mechanism. Such genes may be present within our GoF list and additional strategies would be
required to confidently exclude them.

Finally, as publicly available datasets continue to increase in size, the list of genes with more than 10
variants that surpass HI- threshold will continue to increase. Thus, the list of therapeutically accessible likely
GoF genes will expand and may provide important context when considering which treatment candidate to
prioritize in wvitro when investigating novel causal variants. Further, recent work from our lab and others
has leveraged published RNA sequencing data to identify downregulators of gene targets®2?. A similar
approach in this context would be complementary and may lead to rapid successful drug repurposing capable
of providing direct benefit to patients.
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