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Abstract

This paper considers a mathematical model to study the effect of stem cell transplantation on HIV-1 patients. The model

was recently proposed by the author. The viral dynamics is described by three ordinary differential equations covering three

populations: uninfected T-cells, infected cells and free virus, but, stem cells lineage passes through many stages to become

specialized T- cells. The stability of the equilibrium points has been previously analyzed locally. Here we study the global

stability. The proposed analysis can help medicine make the right decision about the proposed therapy

1 | INTRODUCTION

HIV-1 is a retrovirus discovered in 1984 Montagnier 1, that targets the helper CD+T cells of the immune
system, making people more vulnerable to diseases and infections. According to the World Health Organiza-
tion’s guidelines, there is no viable cure or vaccine for HIV, but treatments can improve patients’ quality of
life. Understanding the dynamics of HIV-1 by mathematical modeling plays an important role in medicine.
The basic mathematical model that describes the interaction of the immune system with HIV considers three
populations: uninfected T cells, infected T cells, and free virus 2-6


dT
dt = λ− dT − kTV
dTi
dt = kTV − ρTi
dV
dt = σTi − cV

amp; (1)

Inside any organism, damaged cells need to be regenerated by new ones. The new cells need a source, which
requires a continuous role to replace the older cells. In each organ stem cells are planning this important
role to replace the older cells. Hence, thinking about their transplantation in the patient can be a good idea
to replace injured cells and help in restoring the function of damaged cells. Recent studies have shown the
efficacy of this technique to regenerate some body organs 7. The author and coworkers recently proposed a
new mathematical model to treat HIV-1 patients by engraftment of the type of cells able to transform to

1
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T-cells (CD4+T)8,9 :



dS1

dt = (2a1 − 1) p1S1 − µ1S1 = F1(S)
dS2

dt = (2a2 − 1) p2S2 + 2 (1− a1) p1S1 − µ2S2= F 2(S)
...

dSn−1

dt = (2an−1 − 1) pn−1Sn−1 + 2 (1− an−2) pn−2Sn−2 − µn−1Sn−1 = Fn−1(S)
dT
dt = λ− (d+ µn)T − kTV + 2 (1− an−1) pn−1Sn−1 = G1(S, T, Ti, Ti)

dTi
dt = kTV − ρTi = G2(S, T, Ti, Ti)
dV
dt = σTi − cV = G3(S, T, Ti, Ti)

amp; (2)

Where Si denotes the density of stem cells at theith stage of differentiation, fori = 1, 2, . . , n − 1, pi
denotes the proliferation rate, ai denotes the fraction of self-renewal, and µidenotes the death rate. Sn−1

transforms to mature T-cells. These T-cells, The T cells transformed from Sn−1 cells, die at a rate µn. The
T cells produced by the thymus are generated at rate λ and die at a rate d. T cells become infected by free
virus at rate k. Infected cells, Ti, die at rate ρ. Virus particles V are produced at rate σ and are cleared at
rate c. S is the vector with componentsS1,. . . , Sn−1

Different numbers of compartment n for the lineage with different systems were chosen in previous stem cell
models 10- 15 .

All the constants in system (2) are non negative. We also suppose the following biologically relevant assump-
tions 16-17 :


Si (0) ≥ 0, for i = 1, . . . , n

µn > 0, µi ≥ 0, for i = 1, . . . , n− 1
c > 0, ρ > 0, d > 0, pi > 0, for i = 1, . . . , n− 1

ai ∈
[

0, 1
2

)
, for i = 1, . . . , n− 1

(2ai − 1) pi < µi , for i = 1, . . . , n− 1

amp; (3)

For simplicity, let

d+ µn = d′ (4)

R0 = k
cd′ (5)

We will study, in this article, the global dynamics of (2). In section 2, we shall state the fundamental results
concerning the stability of the system. In section 3, we present some lemmas, useful for the study of the
global stability that we prove in section 4. We then conclude in the last section and discuss the biological
significance of our results

2 | FUNDAMENTAL RESULTS

Theorem 2.1 | Theorem 1 , Alqudah 9

The system (2) has two equilibrium points given by the following:

Pu
(
S1, S2, . . . , Sn−1, T, Ti, V

)
= (0, 0, . . . , 0, λd′ , 0, 0), corresponding to the uninfected case, and

Pe
(
S1, S2, . . . , Sn−1, T, Ti, V

)
=
(

0, 0, . . . , 0, λ
d′

1
R0
, d′c
κσ

(R0 − 1) , d′

k (R0 − 1)
)

, corresponding to endemic
case.

R0 is the basic reproduction ratio of the viruses, given by (5)

Remark | 2.2

1- If R0 = 1, then Pu = Pe.

2
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2- If R0 < 1, then Pe is impossible.

Theorem | 2.3

If R0 > 1, then the endemic point Pe is globally asymptotically stable in Rn+2
+ .

Theorem | 2.4

If R0 ≤ 1, then the uninfected point Pu is globally asymptotically stable in Rn+2
+ .

Corollary | 2.5

The free disease case Pu is unstable if R0 > 1. The endemic point Pe is unstable if R0 ≤ 1.

3 | PRELIMINARY LEMMAS

Lemma | 3.1 (classical differential version of Gronwall lemma).

We assume that Θ [?] C1([0, T); R), T [?] (0, [?]), satisfies the differential inequality

Θ̇ (t) ≤ b (t) + ϕ (t) Θ(t)on (0, T) (6)

for some ϕ, b [?] C (0, T),

Then, Θ satisfies the estimate

Θ (t) ≤ Θ (0) eΦ(t) +
∫ t

0
b (ζ) eΦ(t)−Φ(ζ)dζ, ∀t ∈ [0, t )(7)

where we have defined the primitive function Φ(t) :=
∫ t

0
ϕ (ζ) δζ

Proof

Letχ (t) = Θ (t) e−Φ(t) +
∫ t

0
b (s) e−Φ(s)ds

Then χ is differentiable, and an application of the chain rule shows that

χ̇ (t) =
(

Θ̇ (t)−Θ(t)ϕ (t)
)
e−Φ(t) + b (t) e−Φ(t) = (Θ̇ (t)− ϕ (t) Θ(t)− b (t))e−Φ(t) ≤ 0

The differential inequality (6) means in particular,χ (t) ≤ χ (0) , ∀t ∈ [0, t )

and the claim follows.

Corollary | 3.2

If c1 6= 0 and c2 are constants, then,

{\displaystyle u’(t)\leq \beta (t)\,u(t),\qquad t\in Iˆ{\circ },}Θ̇ (t) ≤ c2 + c1Θ(t) ⇒ Θ (t) ≤ Θ (0) ec1t +
c2
c1

(ec1t − 1)

Lemma | 3.3

Consider the triangular system in Rn

(TS)

{
Ẋ = F (X),

Ẏ = G (X,Y )

With X ∈ Rn−k, Y ∈ Rk, F and G C1 functions. Moreover, we assume

A1: X = 0 is a globally asymptotically stable fixed point for Ẋ = F (X)

A2: Y = Yo is a globally asymptotically stable fixed point for Ẏ = G (0, Y )

A3: Every forward orbit of (TS) is bounded.

Then, (0, Yo) is a globally asymptotically stable point for (TS).

3
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Proof

This lemma is known in the case Yo = 0 ( see Seibert17-18)

Suppose now, Yo 6= 0, then take Z = Y − Yo,g (X,Z) = G (X,Z + Yo),

and apply the known result for the new system

{
Ẋ = F (X),

Ż = G (X,Z + Yo)

Lemma | 3.4 (see for example Farina ; Luenberger19, 20)

The nonnegative octantRn+ = {x = (x1, . . . , xi, . . . , xn) ∈ Rn/x ≥ 0}is a positively invariant region (i.e. a
trajectory that starts in the nonnegative orthant remains there for t≥ 0) for the dynamical system

ẋi = fi (x1, . . . , xi, . . . , xn) , i = 1, 2, . . . , n

if and only if:

fi(x1 ≥ 0, . . . xi = 0, . . . , xn ≥ 0) ≥ 0,∀i ∈ [1, n]

4 | GLOBAL STABILITY

4. 1 | Useful Simplification

Let us begin by noticing that, our system (2) can be written in the triangular form in Rn+2:

(TS)

{
Ẋ = F (X),

Ẏ = G (X,Y )

withX = S = (S1, S2, . . . , Sn−1) ∈ Rn−1,F (S) = MS

So,

Ṡ = F (S) = MS (8)

Where M is the triangular matrix


(2a1 − 1) p1 − µ1 amp; 0 amp; 0 amp; . . . amp; 0

2 (1− a1) p1 amp; (2a2 − 1) p2 − µ2 amp; 0 amp; . . . amp; 0
0 amp; 2 (1− a2) p2 amp; (2a3 − 1) p3 − µ3 amp; · · · amp; 0

: amp; : amp;
... amp;

. . . amp;
...

0 amp; 0 amp; 0 amp; · · · amp; (2an−1 − 1) pn−1 − µn−1


(9)

and

Y = ( T, Ti, V ),

G ( S, T, Ti, V ) =

4
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λ− (d+ µn)T − kTV + 2 (1− an−1) pn−1Sn−1

kTV − ρTi
σTi − cV

,

G (0, T, Ti, V ) =

λ− (d+ µn)T − kTV
kTV − ρTi
σTi − cV


Ẏ = G (0, T, Ti, V )⇔ system (1) , with ”d” replaced by ”d′ = (d+ µn)”

So, we need to study the global stability of the system (1)

Let us begin by proving the boundedness of the solutions of system (2)

4. 2 | Positivity and boundedness

Since in our model (2), we study the evolution of cells, we need the following result:

Theorem | 4.1

The nonnegative octant Rn+2
+ is positively invariant by system (2)

Proof

We have just to apply lemma 3.4

F1(S1 = 0, S2 ≥ 0, . . . , Sn−1 ≥ 0) = 0 ≥ 0,

F2

(
S1 ≥ 0, S2 = 0, . . . , Sn−1 ≥ 0

)
= 2 (1− a1) p1S1 ≥ 0, since a1 ≤ 1

...

Fn−1

(
S1 ≥ 0, . . . , Sn−1 = 0

)
= 2 (1− an−2) pn−2Sn−2 ≥ 0, since an−2 ≤ 1

G1 (S ≥ 0, T = 0, Ti ≥ 0, V ≥ 0) = λ+ 2 (1− an−1) pn−1Sn−1 ≥ 0, since an−1 ≤ 1
G2 (S ≥ 0, T ≥ 0, Ti = 0, V ≥ 0) = kTV ≥ 0
G3 (S ≥ 0, T ≥ 0, Ti ≥ 0, V = 0) = σTi ≥ 0

Theorem | 4.2

Every forward orbit of (2) inside Rn+2
+ is bounded.

Proof

The simple integration of the equation (8) gives the solutionS (t) = etMS (0), which is bounded, since the
eigenvalues of the matrix M (given by (9) are negative)

Let W (t) = T + Ti, then,

Ẇ (t) = λ− d′T − kTV + 2 (1− an−1) pn−1Sn−1 + kTV − ρTi

= λ+ 2 (1− an−1) pn−1Sn−1 − d′T − ρTi ≤ λ′ −min (d′, ρ)W (t)

and,

Ẇ (t) ≤ a− bW (t)

5
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we deduce, by corollary 3.2,

W (t) ≤ a
b + (W (0)− a

b )e−bt ≤ 2a
b + W (0) = c1

Finally,

V̇ (t) = σTi − cV ≤ σc1 − cV

and we conclude by corollary 3.2, in a similar way.

4. 3 | Stability of system (1), with d replaced by d’

We need to remark that if (T, Ti, V) is a solution for (1), then (0, T, Ti, V) is also a solution for (2), so, will
remain in the positive octant, and bounded.

For simplicity, we drop the prime from d’

Theorem 4.3

1. If R0 [?] 1, then the infection free-equilibriumPu
∗ = (λd , 0, 0) is globally asymptotically stable for (1)

in the positive octant R3
+.

2. If R0 > 1, then, the endemic equilibrium pointPe
∗ = (λd

1
R0
, dc
κσ

(R0 − 1) , d
k (R0 − 1)) is globally

asymptotically stable for the system (1) in the positive octant R3
+

Where R0 is the basic reproduction ratio, given by (5)

Proof

We use the Lyapunov method. Let

L = σ
ρ

∫ T
λ
d

ξ−λd
ξ d ξ + σ

ρTi + V

on R3
+

Evidently, L (Pu
∗) = 0 and L > 0, inR3

+\ {Pu
∗}

The derivative of L along the solutions of (1) is

L̇ =
σ

ρ
(λ− dT − kTV )

T − λ
d

T
+
σ

ρ
(kTV − ρTi) + σTi − cV

=
σ

ρ
(λ− dT − kTV )

T − λ
d

T
+
σ

ρ
(kTV)− cV

=
−σ
δΤρ

(λ− dT )2 − σκ

greekdTV(d+-λ
T )+σk

ρ TV−cV

=
−σ
δΤρ

(λ− dT )2 +

(
k

d
+ c

)
V =

−σ
δΤρ

(λ− dT )2 +

(
k

dc
− 1

)
cV

L̇ =
−σ
d′Τρ

(λ− dT )2 + (R0 − 1) cV

And L̇ < 0 inR3
+\ {Pu

∗} if and only if R0 ≤ 1

6
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Now, for the endemic point, we use LaSalle’s principle. letT ∗ = λ
d

1
R0

,Ti
∗ = dc

κσ
(R0 − 1) , V ∗ = d

k (R0 − 1),
and

L =
∫ T
T∗

ξ−T∗
ξ d ξ +

∫ Ti
Ti∗

ξ−Ti∗
ξ d ξ + ρ

σ

∫ V
V ∗

ξ−V ∗
ξ d ξ

The derivative of L along the solutions of (1) is

L̇ = (λ− dT − kTV ) T−T
∗

T + Ti−Ti∗
Ti

(kTV − ρTi) + ρ
σ
V−V ∗
V (σTi − cV)

= (λ− dT )− (λ− dT − kTV ) T
∗

T −
Ti
∗

Ti
(kTV − ρTi) + ρ

σ (−cV)− ρ
σ
V ∗

V (σTi − cV)

=λ− dT − λT
∗

T + dT ∗ − kTVTi
∗

Ti
− ρTi V

∗

V + ςρ

σ V
∗ + ρTi

∗

= dT ∗
[
2− T∗

T −
T
T∗

]
+ ρTi

∗
[
3− k

ρ
TV
Ti
− ρ

k
Ti
∗

TV ∗ −
V ∗Ti
V Ti∗

]
Since

x+ 1
x − 2 and x+ y + 1

xy − 3

are non negative for all x, y positive, we deduce L̇ ≤ 0

L̇ = 0⇔
[
2− T ∗

T
− T

T ∗

]
=

[
3− k

ρ

TV

Ti
− ρ

k

Ti
∗

TV ∗
− V ∗Ti
V Ti

∗

]
= 0

⇔ (T − T ∗)2
=

[
3− k

ρ

TV

Ti
− ρ

k

Ti
∗

TV ∗
− V ∗Ti
V Ti

∗

]
= 0

⇔ T = T ∗and

[
2− c

σ

V

Ti
− σTi

cV

]
= 0

⇔ T = T ∗ and (cV − σTi)2
= 0

⇔ T = T ∗ andV = σ
c Ti

The largest invariant subset of
{
L̇ = 0

}
by (1) in the positive octant, satisfies T = T ∗, then Ṫ = 0and

λ− d′T ∗ − kT ∗V = 0⇔ V = V ∗

So, the largest invariant subset of
{
L̇ = 0

}
by (1) is reduced to {Pe∗}

then from LaSalle’s invariance principal, we conclude the global asymptotic stability.

4. 4 | Proof of the principle results

Let us prove the free disease casePu = (0, 0, . . . , 0, λd , 0, 0) is globally asymptotically stable in Rn+2
+ if R0 ≤ 1

If R0 ≤ 1 , we have just to apply lemma 3.3. Since A3 is already done in subsection 4.2, we have to verify
A1 and A2

A1: The global stability of S = 0 for the liner system Ṡ = MS, where M is the matrix given by (9), is
insured by the negativity of the eigenvalues of the matrix M.

A2: Xo = (λd , 0, 0) is globally asymptotically stable in R3
+, for the equation

Ẋ = G (X, 0)⇐⇒ (1) , ”d” replaced by ”d′ = (d+ µn)”

This is already given by part (i) of theorem 4.3

7
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If R0 > 1, then, let us prove the endemic point Pe is globally asymptotically stable for (2) in the positive
octantRn+2

+ . Like for the previous paragraph, we have just to apply lemma 3.3, so,

we have just to verify A1, since A2 and A3 have been already done.

A2 :Xo = (λd
1
R0
, dc
κσ

(R0 − 1) , d
k (R0 − 1)) is a globally asymptotically stable point for

Ẋ = G (X, 0)⇐⇒ (1) , ”d” replaced by ”d′ = (d+ µn)”

This is already given by part (ii) of theorem 4.3

5 | NUMERICAL SIMULATIONS

5.1 | Before infection: system1

1-Patient 1 ( R0> 1)

TABLE 1 Estimates of parameters values

Parameter Biological Meaning Normal Value

T [0]
The concentrations of uninfected
CD4+T cells at time t=0

10ml-1 [21]

Ti [0] Infected cells at time t=0 0 ml-1 [21]

V [0] free virus particles at time t=0 10−6 ml-1 [21]

λ The recruitment rate of
uninfected T cells from the
body

0.17ml-1 day-1 [22]

d The death rate of T cells
produced by the body

0.017 day-1 [22]

K Infection rate of T cells by free
viruses

6.3X 10−4 ml day-1 [22]

ρ The death rate of cells 0.39 ml-1 day-1 [22]

σ The rate of production of
virions by infected cells

870 day-1 [22]

c The clearance rate of free virus 3 day-1 [22]

a b

c

FIGURE 1 Numerical solutions to model (1) for a patient with parameters given by table 1, R0= 4.68

2- Patient 2 ( R0< 1)

TABLE 2 Estimates of parameters values

Parameter Biological Meaning Normal Value
T [0] The concentrations of uninfected CD4+T cells at time t=0 10ml-1 [21]

Ti [0] Infected cells at time t=0 0 ml-1 [21]

V [0] free virus particles at time t=0 10−6 ml-1 [21]

λ The recruitment rate of uninfected T cells from the body 30ml-1 day-1 [23]

8



P
os

te
d

on
A

u
th

or
ea

12
A

u
g

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

72
45

61
.1

71
62

46
9

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

d The death rate of T cells produced by the body 0.01 day-1 [23]

K Infection rate of T cells by free viruses 0.001 ml day-1 [23]

ρ The death rate of cells 0.8 ml-1 day-1 [23]

σ The rate of production of virions by infected cells 5 day-1 [23]

c The clearance rate of free virus 23 day-1 [23]

a b

c

FIGURE 2 Numerical solutions to model (1) for a patient with parameters given by tables 1,R0= 0.815

5.2 | After treatment: system 2

System(2) with n=2 becomes


dS1

dt = (2a1 − 1) p1S1 − µ1S1 = F1(S)
dT
dt = λ− (d+ µ2)T − kTV + 2 (1− a1) p1S1 = G1(S, T, Ti, Ti)

dTi
dt = kTV − ρTi = G2(S, T, Ti, Ti)
dV
dt = σTi − cV = G3(S, T, Ti, Ti)

amp; (2)

TABLE 3 Estimates of parameters values for the stem cell division model

(2a1 − 1) p1 − µ1 -0.222 24,25

(d+ µ2) 1.397 24,25

2 (1− a1) p1 1.0836 24,25

a b

c d

FIGURE 3 Numerical solutions to model (2) for a patient with parameters given by tables 3, (R0 = 0.0341).

6 | CONCLUSION AND DISCUSSION

This paper presents a study on the global stability of a system of ODEs, recently introduced 8. The
system represents a new model to study the influence of the treatment of HIV-1 infection with stem cell
transplantation, with multistage stem cell lineage. The results show that the basic reproduction number of
virusR0 = k

c(d+µn) is a sharp number that decreases with increasing µn, a constant that depends on the flux

to death of the final stage of stem cell lineage.

If R0 > 1, then we found that the endemic point Pe is globally asymptotically stable in Rn+2
+ .

If R0 ≤ 1, then we proved that the uninfected point Puis globally asymptotically stable in Rn+2
+ .

So, a person with R0 = k
cd < 1 (before stem cell injection, corresponding to equation (1)), do not need to be

treated, since the uninfected point Pu
∗ is globally asymptotically stable for the system (1). The ill person

will be automatically healed after a certain time, without any need to the therapy.

Contrariwise, for a person withR0 = k
cd > 1 (before stem cell injection), there are two possibilities:

9
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If biologically, it is possible to inject stem cells to lower the reproduction numberR0 = k
c(d+µn) to make

it smaller than 1, then, the patient will be healed after a certain time of therapy, since Pu is globally
asymptotically stable for the system (2).

If medically, it is not possible to lower the reproduction numberR0 = k
c(d+µn) , to make it smaller than 1,

then, the patient will never be healed.

Moreover, since the endemic point

Pe
(
S1, S2, . . . , Sn−1, T, TI , V

)
=

(
0, 0, . . . , 0,

λ

d′
1

R0
,
d
′
c

κσ
(R0 − 1) ,

d
′

k
(R0 − 1)

)

of our stem cell therapy (2), in the case R0 > 1 , is globally asymptotically stable , and has all its first
componentsS1, S2, . . . , Sn−1 (corresponding to stem cell stages) equal to zero, then, either in the case when
stem cell therapy can not offer a cure to that infected person with very high reproduction number, if we
repeat the transplantation of stem cells in a manner to prevent its exhaustion from the patient, we delay
progression to the chronic stage, and can prevent AIDS.
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