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Abstract

In this paper, the time-fractional advection-diffusion equation is solved by a cubic B-spline collocation method. For the fractional

derivative we use the concept of the fractional derivative of Capato. Calculating of this numerical scheme is very simple. The presented

numerical scheme is unconditional stable and highly accurate. We also obtain some error estimations with L2-norm and L[?]-norm.

Introduction
[nindent=0em,lines=3]N owadays finding the solution of the fractional differential equations is important
since many phenomena in the real-world like fluid flow, fluid mechanics, electrochemistry, mathematical bi-
ology, plasma physics, solid-state physics and other areas of application modeling are described by fractional
differential equations(Ciesielski & Leszczynski, 2003; Metzler & Klafter, 2000).

A type of partial differential equations (PDEs) with fractional derivatives is fractional advection-diffusion
equations (ADEs)(Chen et al., 2019; Huang et al., 2019; Amirat & Münch, 2019). The fractional advection-
diffusion equation of fractional order α (0 < α < 1) is

where t is time coordinate and x is spatial coordinate where a ≤ x ≤ b. f(x, t) is a sufficiently smooth
function. The equation (??) describes the advection-diffusion process in a finite plate with thickness (b−a).
β and γ are the positive constants fractional advection-diffusion coefficient and

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u

∂τ
(x, τ)

dτ

(t− τ)α
,

is the fractional derivative in the Caputo’s sense(Badr et al., 2018; Kilbas et al., 2006; Podlubny, 1999).

2
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cubic B-spline collocation method • - • Vol. XXI, No. 1
In general, it is not easy to derive the analytical and exact solutions of the fractional differential equations
and the numerical solution of fractional differential equations has the attention of many researchers. That’s
why we use numerical methods to solve this set of equations. In the past decades, several numerical meth-
ods have been applied to solve fractional differential equations. These methods include finite difference
methods(Yuste, 2006; Odibat, 2009), Adomian decomposition methods(Momani & Odibat, 2008; Momani
& Odibat, 2006), variational iteration methods(Wu & Lee, 2010; Odibat & Momani, 2006), and other meth-
ods. Now, we will describe the latest achievement of researchers in this field. Caglar(Caglar & Caglar, 2006;
Caglar & Caglar, 2009) in 2006 used the B-splines to solve the boundary value problems. In 2008, Saka
worked on the Quintic B-spline collocation method for the numerical solution of the RLW equation(Saka
et al., 2008) and a numerical solution of the RLW equation by Galerkin method using quartic B-splines
in (Saka & Dağ, 2008). In 2010, Zheng et al examined the finite difference method for the fractional
advection-diffusion equation(Zheng et al., 2010). Javed et al in (Javed et al., 2017) researched some solu-
tions of fractional order partial differential equations using the Adomian decomposition method in 2017. In
2019 Singh et al, presented numerical solution of nonlinear reaction-advection-diffusion equation(Singh et
al., 2019). In 2019 Shah et al in (Shah et al., 2019) worked on the numerical Adomian method to solve
fractional partial differential equations. But another method that is effective and accurate is the collocation
method. The collocation method with piecewise polynomial functions is developed as a method for solving
two-point boundary value problems. We consider the cubic B-spline as a piecewise polynomial function.
This is because of two useful features of B-splines. The B-spline is that the continuity conditions are in-
herent and compared with other piecewise polynomial interpolation function, the B-spline is the smoothest
interpolation function moreover, has small local support properties(Gholamian & Saberi-Nadjafi, 2018; Li,
2012; Mittal & Jain, 2012).

Most recently, the quantic B-spline collocation method is applied to obtain the numerical solution of three-
order partial integrodifferential equations in(Zhang et al., 2013).

The present paper studied the collocation method with the cubic B-spline as a piecewise polynomial to find
a numerical solution of the fractional advection-diffusion equation. The paper is organized as follows:

In the second part, we express the cubic B-spline function and by discretizing equation (??) and using the
Capato fractional derivative concept to discrete the fractional part of the equation (??), we arrive at the pro-
posed numerical scheme to obtain the numerical solution of the fractional advection-diffusion equation. In
section 3, we prove that the cubic B-spline collocation scheme for solving the fractional advection-diffusion
equation with conditions (??) and (??) is unconditionally stable. In the fourth section, we obtain some con-
vergence rank of the proposed scheme using some lemmas and theorems and show that the application of the
proposed scheme presented in this paper is to solve the fractional advection-diffusion equation and by giving
numerical examples in section 5, we show that the numerical scheme presented is accurate and efficient and
the results are compared with the exact solutions and this paper ends with a conclusion in section 6.

Description of the numerical method

Assume [a, b] be the solution domain and suppose ∆ : a = x0 < x1 < · · · < xN = b, be a uniform partition
in the interval [a, b] with xm = a+mh, (m = 0, 1, 2, · · · , N) for h = b−a

N .

The cubic B-spline function Qm(x) for m = −1, · · · , N + 1 in the uniform partition ∆ can be defined as
follows;

Qm(x) =
1

h3

3
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cubic B-spline collocation method • - • Vol. XXI, No. 1

(x− xm−2)3, [xm−2, xm−1],

h3 + 3h2(x− xm−1) + 3h(x− xm−1)2 − 3(x− xm−1)3, [xm−1, xm],

h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, [xm, xm+1],

(xm+2 − x)3, [xm+1, xm+2],

0, o.w.

(1)

It is obvious that the support of the B-spline Qm(x) and its derivative is [xm−2, xm+2]. In (Kadalbajoo
& Arora, 2009), it was shown that {Qm(x)}N+1

m=−1 construct a basis for the functions over the solution
domain. Let u(x, t) and U(x, t) are the analytical and numerical solutions of the differential equation (??),
respectively. Therefore, the numerical solution can be approximated as

u(x, t) ' U(x, t) =

N+1∑
m=−1

δm(t)Qm(x),

(2)

where δm(t) are unknown time-dependent parameters that should be computed from the initial and boundary
conditions using the collocation method.

Using (1) and (2), the values of U(x, t), Ux(x, t) and Uxx(x, t) are determined at the nodal points in terms
of the time dependent parameters δm as follows:


U(xm, t) = δm−1(t) + 4δm(t) + δm+1(t),

h Ux(xm, t) = 3(δm+1(t)− δm−1(t)),

h2 Uxx(xm, t) = 6(δm−1(t)− 2δm(t) + δm+1(t)).

(3)

In this part of the paper, we describe a numerical approach to approximate the solution of advection-
diffusion equation by cubic B-spline basis functions based on the collocation method. Let

0 = t0 < t1 < · · · < tn = T,

is a uniform partition on [0, T ] which tk = k∆t, (k = 0, 1, 2, · · · , n) for time step sizes ∆t = T
n . Similar

to the first order derivative, we use the following approximation to the time fractional derivative in Caputo

4
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cubic B-spline collocation method • - • Vol. XXI, No. 1
sense (Liu et al., 2007), we have(Badr et al., 2018):

where Γ(α) is the well-known Gamma function and the coefficients bj with b0 = 1 are as

bj = (j + 1)1−α − j1−α, j = 0, 1, · · · , n,

Rk+1
∆t is the truncation error of the approximation (??) and

Rk+1
∆t ≤ Cu(∆t)2−α,

(4)

where Cu is a constant that is only related to u(Lin & Xu, 2007).

Lemma 1 The following relations hold for coefficients bj (Liu et al., 2007),

(1) b0 = 1,

(2) bj > 0, j = 0, 1, · · · , n,

(3) bj > bj+1, j = 0, 1, · · · , n− 1.

By applying the difference form of the time derivative in (??), the fractional advection-diffusion equation
(??) can be written as

where Ukm = U(xm, tk) and fkm = f(xm, tk). Then using the collocation method and substituting (3) in
(??) for m = 0, 1, · · · , N and k = 0, 1, · · · , n − 1, leads to the following recurrence difference formula
corresponding to the parameters δkm,

5
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cubic B-spline collocation method • - • Vol. XXI, No. 1
where r = (∆t)−α

Γ(2−α) and δkm = δm(tk). Equation (??) can be converted into matrix form as following

Aδk+1 = B

(
bkδ

0 +

k−1∑
j=0

(bj − bj+1)δk−j
)

+ fk+1, k = 0, 1, · · · , n− 1,

(5)

where δk = [δk−1, δ
k
0 , δ

k
1 , · · · , δkN , δkN+1]T is the vector of time dependent unknown parameters,A andB are

the coefficients matrices and fk = [fk0 , · · · , fkN ]T . These two tridiagonal matrices are in (N +1)× (N +3)

dimensions. Thus we have (N + 1) equations with (N + 3) unknown parameters δk for k = 0, 1, · · · , n.
To make the system (5) solvable, by using the boundary conditions (??), the unknown parameters δk−1 and
δkN+1 may be eliminated from the system as follows;

For m = 0 and m = N , by using the relations (??) and (3) we have

{
U(x0 = a, t) = δ−1(t) + 4δ0(t) + δ1(t) = 0,

U(xN = b, t) = δN−1(t) + 4δN (t) + δN+1(t) = 0.

Thus, for every k:

{
δk−1 = −4δk0 − δk1 ,
δkN+1 = −4δkN − δkN−1.

(6)

Therefore the matrix equation (5) reads

Aδk+1 = B

(
bkδ

0 +

k−1∑
j=0

(bj − bj+1)δk−j
)

+ fk+1,

(7)

where the matrices A and B can be defined as

6
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cubic B-spline collocation method • - • Vol. XXI, No. 1

A =

12β
h + 36γ

h2

r − 3β
h −

6γ
h2 4r + 12γ

h2 r + 3β
h −

6γ
h2

r − 3β
h −

6γ
h2 4r + 12γ

h2 r + 3β
h −

6γ
h2

. . . . . . . . .
r − 3β

h −
6γ
h2 4r + 12γ

h2 r + 3β
h −

6γ
h2

r − 3β
h −

6γ
h2 4r + 12γ

h2 r + 3β
h −

6γ
h2

12β
h + 36γ

h2


,

B =

0 0 0 0

r 4r r 0

0 r 4r r
. . . . . . . . .

r 4r r 0

0 r 4r r

0 0 0 0


, fk+1 =



0
...

fk+1

...
0

 .

The matrixA is a symmetric positive definite matrix in (N +1)× (N +1) order and therefore invertible.
Having the initial vector δ0, the system (7) is solvable, has a unique solution and can be solved by an iterative
algorithm such as Thomas algorithm. The starting vector δ0 = [δ0

−1, δ
0
0 , · · · , δ0

N+1]T can be determined by
(3) and initial conditions of the problem, as the following forms

U(xm, 0) = δ0
m−1 + 4δ0

m + δ0
m+1 = g(xm), m = 0, 1, · · · , N,

Therefore, the initial vector δ0 is determined from the following matrix equation;

7
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cubic B-spline collocation method • - • Vol. XXI, No. 1
1 4 1

1 4 1

. . .
. . .

. . .
1 4 1

1 4 1

 (N+1)×(N+3)


δ0
−1

δ0
0

...
δ0
N

δ0
N+1

 (N+3)×1 =


g(x0)

g(x1)
...

g(xN−1)

g(xN )

 (N+1)×1

Corresponding to the time fractional derivative discretization, and as regards the matrix A is positive
definite, then the proposed numerical scheme (7) is consistent to the differential equation (??)-(??)(Rektorys
& Media, 2012).

The stability of the method
To investigate the stability conditions of the present numerical method, we use the Von-Neumann stability
analysis and mathematical induction.

Theorem 1 The numerical scheme (??) for solving the initial and boundary value problem (??)-(??) is
unconditionally stable.

Proof: We used the Von-Neumann processes and suppose that f(x, t) = 0. Since the error of the method
is only related to the time parameters δkm, denoting ek := δk+1 − δk as the error of scheme at time level k,
the numerical scheme (??) can be rewritten as

Then substituting the Fourier mode ekm = vkeimρ(i :=
√
−1) into (??) results

8
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cubic B-spline collocation method • - • Vol. XXI, No. 1
or

vk+1 = Q{bkv0 +

k−1∑
s=0

(bs − bs+1)vk−s},

(8)

where

Q =
2r(1 + 2 cos2( ρ

2
))

2r(1 + 2 cos2( ρ
2
)) + 24γ

h2 sin2( ρ
2
) + i 6β

h
sin(ρ)

.

It is easy to verify that |Q|2 ≤ 1. For k = 0, (8) gives the following form: v1 = Qb0v
0 and then

|v1| = |Q||b0||v0| ≤ |v0|.

Let |vj | ≤ |v0|, j = 1, 2, ..., k. Hence, by equation (8) we have,

Thus, for every k, we have |vk+1| ≤ |v0|. This relation shows that |ek+1| ≤ |e0|, i.e., the error of this
method in time level k, for every k, does not grow and is less than or equal to its initial error. So, the method
is unconditionally stable.

�

Error analysis
In this section, we will give an error analysis of the present method and prove its convergence. To this end, we
begin with some lemmas and theorems that give the properties of the B-spline functions and interpolation
polynomials of spline type, which are important for the proof of uniform convergence of the numerical
method. Assume ∆ : a = x0 < x1 < · · · < xN = b be a partition od [a, b]. The spline functions Sk,∆ of
degree k are polynomial functions of degree k, where ∆t = T

n , that are (k − 1)-times differentiable at the
interior knots xm, 1 ≤ m ≤ N − 1, of ∆. It can be seen that Sk,∆ is a vector space of dimension N + k

(Kadalbajoo & Arora, 2009).

Theorem 2 The functions {Q−1, Q0, ..., QN+1} form a basis of Sk,∆.

9
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cubic B-spline collocation method • - • Vol. XXI, No. 1
Proof: See (Kadalbajoo & Arora, 2009).

�

Theorem 3 Let sN ∈ Sk,∆ be a unique spline interpolating the solution u(x, t) of initial boundary value
problem (??)-(??). If f(., .) ∈ C2[0, 1] and u(., .) ∈ C4[0, 1], then there are constants mi, independent of h
and N , so that for every t > 0, we have for i = 0, 1, 2

‖Di(u(x, t)− sN (x, t))‖∞ ≤ mih
4−i,

(9)

where Di = ∂
∂xi .

Proof: See (Kadalbajoo & Arora, 2009).

�

Lemma 2 For the B-spline set {Q−1, Q0, ..., QN+1}, we have the following inequality

N+1∑
m=−1

|Qm(x)| 6 10, a ≤ x ≤ b,

Proof: See (Kadalbajoo & Arora, 2009).

�

The following theorem shows that the present method is convergence. It also gives an order to convergence
of the numerical method in spatial coordinate.

Theorem 4 Let U(x, t) be the collocation approximate from the space S3,∆ to the solution u(x, t) of the
problem (??)-(??). This approximate exists and further, if f(., .) ∈ C2[0, 1], then there is a constant C
independent of h that we have

‖u(x, t)− U(x, t)‖∞ 6 Ch2,

for every t > 0 and h sufficiently small.

Proof: To prove of theorem, we use the best approximation of u in Sk,∆ defined as sN (x, t) and write

10
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Thanks to theorem 3, for t > 0, we have the following bound for the first term

‖u(x, t)− sN (x, t)‖∞ 6 m0h
4.

(10)

Corresponding to theorem 2, the function sN (x, t) can be written in terms of B-spline basis as

sN (x, t) =

N+1∑
m=−1

λm(t)Qm(x).

Let LsN (xm, t) = f̂(xm, t), for m = 0, 1, ..., N in any time level k, in (??), we can write the difference
L(u(xm, t)− sN (xm, t)) as follows

where ηkm = δkm − λkm for m = 0, ..., N − 1 and ζkm = h2[fkm − f̂km] for m = 0, 1, ..., N . From inequality
(9), it is evident that |ζkm| = h2|fkm − f̂km| ≤ m0h

4. Let ζk = max1≤m≤N−1|ζkm|, ekm = |ηkm| and
ek = max1≤m≤N−1|ekm|. From the initial condition of the problem, we have e0 = 0 and setting k = 0, we
have

Using absolute values of ζkm and ηkm with sufficiently small h we have

e1
m ≤

ζ1

4rh2 + 12γ
≤ m0h

6

4rh2 + 12γ
≤ C1h

4, m = 1, 2, ..., N − 1,

where C1 is a constant independent of h. Also for m = 0 and m = N , we have e1
0 ≤ C1h

3 and e1
N ≤ C1h

3

and the values e1
−1 and e1

N+1 can be bounded using the boundary conditions given by (6), as follows:

e1
−1 ≤ C1h

2, e1
N+1 ≤ C1h

2.

11
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Therefore with a constant C1 independent of h, we have e1 ≤ C1h
2. Then, we use the mathematical

induction on k to prove the theorem. To this end, we first write the following form of (??):

Suppose that C = max1≤l≤kCl. As before, we can obtain the estimates for

ek+1
m ≤ Clh2, m = −1, 0, · · · , N + 1.

Then, applying all of these relations, it can be concluded that for every k, there is a constant w independent
of h, so that ek+1 ≤ wh2. The above inequality together with lemma 2 enable us to obtain a bound for
‖U(x, t)− sN (x, t)‖∞, and hence a bound ‖u(x, t)− U(x, t)‖∞. In particular

U(x, t)− sN (x, t) =

N+1∑
m=−1

(δm(t)− λm(t))Qm(x),

and thus

‖sN (x, t)− U(x, t)‖∞ ≤ 10wh2.

By considering the above results with the first inequality (??), we have

‖u(x, t)− U(x, t)‖∞ ≤Mh2,

where M is a constant independent of h and therefore the proof is completed.

�

Theorem 5 The numerical scheme (??) for solving fractional initial and boundary value problem (??)-(??)
is convergent.

12
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Proof: Let u(x, t) be the exact solution of problem (??)-(??) and U(x, t) be the approximate solution of u
by using scheme (??). Then, theorem 4 with relation (4) show that there are constants C1 and C2 such that

‖u(x, t)− U(x, t)‖∞ ≤ C1h
2 + C2(∆t)2−α = O(h2 + (∆t)2−α).

Thus, the presented numerical scheme is convergent and this completes the proof.

�

Numerical examples

In this section, numerical results of the proposed scheme for solving advection-diffusion equation were
obtained by using the cubic B-spline basis functions and collocation method. We show that the numerical
solution obtained above agree with those established in these examples.

The accuracy of the numerical method is measured by both the L2 error norm

‖uexact − uh‖22 ' h
N∑
j=0

|(uexact)j − (uh)j |2,

and the L∞ error norm

‖uexact − uh‖∞ ' max
j
|(uexact)j − (uh)j |.

Example 1 Consider the following fractional initial and boundary value problem


u

(α)
t (x, t) + βux(x, t) = γuxx(x, t) + f(x, t), 0 < x < 1, t ≥ 0, 0 < α < 1,

u(0, t) = 0, u(1, t) = 0 t ≥ 0,

u(x, 0) = 0, 0 ≤ x ≤ 1,
(11)

Let γ = β = 1 and

u(x, t) = t2x(1− x),

13
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is the exact solution of the equation (11). So

f(x, t) =
2t2−α

Γ(3− α)
x(1− x) + t2(3− 2x).

Table 1: Comparison of the errors of approximate solutions in L2-norm and L∞-norm and convergence rate when
h = 0.001 and t = 0.5.

α i ∆t L2-norm L∞-norm Rate

1 0.5 0.1080367× 10−3 0.1524078× 10−3 –
α=0.05 2 0.25 0.3121606× 10−4 0.4404524× 10−4 1.79

3 0.125 0.1059793× 10−4 0.1495987× 10−4 1.55
4 0.0625 0.2880765× 10−5 0.4073438× 10−5 1.87

1 0.5 0.2088790× 10−2 0.2945819× 10−2 –
α=0.5 2 0.25 0.8217371× 10−3 0.1159131× 10−2 1.34

3 0.125 0.3074675× 10−3 0.4337398× 10−3 1.41
4 0.0625 0.1145140× 10−3 0.1615462× 10−3 1.42

1 0.5 0.6818897× 10−2 0.9614983× 10−2 –
α=0.95 2 0.25 0.3630189× 10−2 0.5120979× 10−2 0.90

3 0.125 0.1832533× 10−2 0.2585692× 10−2 0.98
4 0.0625 0.8996515× 10−3 0.1369528× 10−2 1.02

Table 2: Comparison of the errors of approximate solutions in L2-norm and L∞-norm and convergence rate when
∆t = 0.001 and t = 0.5.

α i h L2-norm L∞-norm Rate

1 0.5 0.1660360× 10−2 0.2858375× 10−2 –
α=0.05 2 0.25 0.5100537× 10−3 0.9653501× 10−3 1.70

3 0.125 0.1410359× 10−3 0.2801856× 10−3 1.85
4 0.0625 0.3706499× 10−4 0.7549026× 10−4 1.92

1 0.5 0.2076855× 10−2 0.3182867× 10−2 –
α=0.5 2 0.25 0.5099334× 10−3 0.9529274× 10−3 2.02

3 0.125 0.1350067× 10−3 0.2760782× 10−3 1.91
4 0.0625 0.3511436× 10−3 0.7482045× 10−3 1.94

1 0.5 0.6818897× 10−2 0.9614983× 10−2 –
α=0.95 2 0.25 0.3630189× 10−2 0.5120979× 10−2 0.90

3 0.125 0.1832533× 10−2 0.2585692× 10−2 0.98
4 0.0625 0.8996515× 10−3 0.1369528× 10−2 1.02

In Table 1 and Table 2, we present the results of applying the numerical scheme (??) to equation (11) with
different α, ∆t and h. In example 1, first we consider h = 0.001 and t = 0.5 and we compare the numerical
solutions of scheme (??) with the exact solution, and we report the error in L2-norm and L∞-norm in Table
1 as well as the order of convergence of the numerical scheme to L2. Now, considering ∆t = 0.001 and
t = 0.5, we show the error for different α and h from L2-norm and L∞-norm in Table 2. Given the table
1 and 2, it can be concluded that the numerical scheme is convergent, that is, when the h and ∆t tend to
zero, the numerical solution of numerical scheme tends to the exact solution and the order of convergence
is proportional to O(h2 + ∆t2−α). The order of convergence obtained by applying the numerical scheme
(??) in equation (11) indicates the efficiency and accuracy of the desired numerical scheme. Now, in Figure
1 and Figure 2, we present the numerical results of the proposed scheme (??) for the approximate solution
of the problem (11) for example 1.
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figures/1/1-eps-converted-to.pdf

Figure 1: Numerical solutions of the equation (11) in example 1, when α = 1
4
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figures/5/5-eps-converted-to.pdf

Figure 2: Numerical solutions of the equation (11) in example 1, when α = 1
3

Let α = 1
4 , n = 40 and N = 40. In Figure 1, for different space x = 0.2 and x = 0.4, the results of

applying the numerical scheme (??) in the equation of example 1 are shown. Now, we considering n = 40,
N = 40 and α = 3

4 . For different times in Figure 2, we comparison numerical solution of problem (11)
with the exact solution. The computed results for the problem (11), corresponding to the time and spatial
step size, show that the results show that the proposed numerical scheme is (??) accurate and efficient.

Example 2 As the second example, consider the nonhomogeneous advection-diffusion problem (11) with

and the exact solution is u(x, t) = t sin(2πx).

16
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figures/3/3-eps-converted-to.pdf

Figure 3: Numerical solutions of (11) in example 2, for α = 3
4

.
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figures/7/7-eps-converted-to.pdf

Figure 4: Numerical solutions of (11) in example 2, for α = 2
3

.

Table 3: Comparison of errors of approximate solution for α = 0.5 in t = 0.5.

i ∆t h L2-norm L∞-norm Order

1 0.25 0.25 0.4606681× 10−1 0.7442468× 10−1 –
2 0.125 0.125 0.1086532× 10−1 0.1750665× 10−1 1.80
3 0.0625 0.0625 0.2677718× 10−2 0.4392840× 10−2 2.02
4 0.03125 0.03125 0.6670461× 10−3 0.1100802× 10−2 2.05
5 0.015625 0.015625 0.1666378× 10−3 0.2751365× 10−3 2.03
6 0.0078125 0.0078125 0.4170648× 10−4 0.6888954× 10−4 1.99

The numerical errors at α = 0.5 and for several h and ∆t have been shown in Table 3 and shows the error
of the proposed method in comparison with the numerical and exact solutions. In Figure 3 and Figure 4,
the numerical solution of problem (11) are shown. The graphs of the numerical and analytical solutions are
similar to each other.

Conclusions
In this study, a collocation method based on the B-spline basis functions method has been successfully
used to obtain the numerical solutions of the time-fractional advection-diffusion equations. In this process,
the time-fractional derivative is denoted in the Caputo sense and approximated by a backward difference
formula. Finally, two examples were provided to demonstrate the applicability of the method. The results
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which we obtained in this research show that the cubic B-spline collocation method is accurate and efficient
for the numerical solution of time-fractional advection-diffusion equation.
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