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Abstract

Point 1: Deep learning algorithms are revolutionizing how hypothesis generation, pattern recognition, and prediction occurs
in the sciences. In the life sciences, particularly biology and its subfields, the use of deep learning is slowly but steadily
increasing. However, prototyping or development of tools for practical applications remains in the domain of experienced
coders. Furthermore, many tools can be quite costly and difficult to put together without expertise in Artificial intelligence
(AI) computing.

Point 2: We built a biological species classifier that leverages existing open-source tools and libraries. We designed the
corresponding tutorial for users with basic skills in python and a small, but well-curated image dataset. We included annotated
code in form of a Jupyter Notebook that can be adapted to any image dataset, ranging from satellite images, animals to
bacteria. The prototype developer is publicly available and can be adapted for citizen science as well as other applications not
envisioned in this paper.

Point 3: We illustrate our approach with a case study of 219 images of 3 three seastar species. We show that with minimal
parameter tuning of the AI pipeline we can create a classifier with superior accuracy. We include additional approaches to
understand the misclassified images and to curate the dataset to increase accuracy.

Point 4: The power of AI approaches is becoming increasingly accessible. We can now readily build and prototype species

classifiers that can have a great impact on research that requires species identification and other types of image analysis. Such

tools have implications for citizen science, biodiversity monitoring, and a wide range of ecological applications.

Keywords:

Artificial Intelligence, Deep Learning, Species Classification, Neural Network, Pattern Recognition, Big Data

Introduction

Deep learning, a branch of machine learning, is an artificial intelligence approach which has been used for
pattern recognition across multiple domains (Shen et al.; Golden; Min et al.; Heaton et al.; Esteva et al.;
Esteva et al.). Whereas other machine learning approaches have been used for acoustic classification (Aide et
al.), ecological modelling and studying animal behaviour (Olden et al.; Valletta et al.; Christin et al.), deep
learning approaches have demonstrated the ability to overcome several machine learning limitations. One
of the challenges of machine learning approaches is the need for superior domain knowledge and high-level
programming skills (LeCun et al.; Christin et al.)(Deng et al.; Yosinski et al.). Further, the data feature
engineering step in machine learning is a complex and often tedious task that discourages many from using
these techniques. Deep learning overcomes this feature engineering step by ensuring that the algorithm finds
features by itself automatically (Jiang et al.).

In ecology, however, the use of deep learning is still in its infancy. This is despite its potential to revolutional-
ize applied ecology in identification and classification of species, behavioural studies, population monitoring

1
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. and citizen science, ecosystem management and conservation (Christin et al.; Lamba et al.; Miao et al.;
Ditria et al.). Several research articles continue to implement new and interesting applications (Terry et al.;
Talas et al.; Priyadarshani et al.). However, the techniques used still remain cryptic and inaccessible to most
ecologists who are experts in their domains but who have no experience with these techniques.

Ecology is particularly ripe for the applications of deep learning owing to the increase in complex ecological
datasets over the past few years ranging from genomic to ecosystem-scale data, also known as Big Data. The
Big Data derived from the increasingly sophisticated automatic monitoring by sensors can no longer be
manually processed as it is redundant and time consuming (Weinstein; Norouzzadeh et al.). Deep learning
is specifically better than other methods in dealing with non-linear complex data commonly encountered in
ecology (Christin et al.). In fact, all winning methods for the most recent LifeCLEF contests have been deep
learning-based (Joly et al.). Reviews and proposals for these have been put forward and the field feels right for
disruption (Christin et al.; Lamba et al.). Deep learning has been touted as a contender in solving problems
with immediate application ranging from illegal trafficking of wildlife products to large scale automated
ecosystem management tools - areas that are expensive and logistically expensive to manage (Cantrell et al.;
Christin et al.).

A lot of the challenges that prevented deep learning from having practical applications have been eliminated
with advancements research on transfer learning and data augmentation (Shorten and Khoshgoftaar). This
has led to a reduction in the data required to make accurate world-class models. Furthermore, the recent
wave in computer hardware innovation for GPU’s and CPU’s has also accelerated by reducing the cost of
accessing the processing power required for accurate model development.

Naturalists have been identifying species for the past two centuries, laying the foundations of the ecological
science. However, even today, most of the taxonomic work and species identification work is still manual
and reliant on a few domain experts. Therefore, to illustrate to non-experts how they can prototype these
previously mysterious techniques this paper takes you step by step on the various stages and offers open-
source code in form of an annotated Jupyter Notebook that can be used by anybody in the world to produce
expert-level accuracy on whatever supervised species classification they want to carry out. The tutorial
is designed in a way that it can be implemented in the lowest resourced environment and unlock great
application in taxa image identification in ecology the world over that we can hardly imagine at the moment.

The code can be accessed from the Jupyter Notebook here: https://bit.ly/39woeLt

2
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Figure 1: Overview of the various phases for prototyping of image data species classifiers using deep learning

LIBRARIES AND TOOLS

Python is a user-friendly general-purpose programming language that has been used to develop many data
science libraries and recently deep learning frameworks due to its ease of use and similarity to plain En-
glish. Fast.ai is a high-level AI library built on top of the open-source deep-learning library Pytorch released
by Facebook in 2017 (Paszke et al.; Howard and others). The library specializes in rapidly implementing
state-of-the-art techniques from newly published research papers. Jupyter notebooks was used as the plat-
form to implement the python code due to its ease of use and reproducibility - in fact, they have been the
go-to tool for data scientists in the recent past as notebooks can be easily shared and run compared to scripts
that were sometimes cryptic to non-experts (Kluyver et al.; Randles et al.).

Google Colab is our training platform, because of its free GPU’s offered by Google. To train the deep
learning model, GPUs have been identified to be better and faster for matrix multiplications compared to
CPUs (Shi et al.; Kayid et al.). These processing units that started out with applications for video games
have gained popularity as the go-to for training deep learning models.

In this paper, we are going to use a Jupyter notebook running on top of Google Colab to help guide the
readers to implement it on their own as they read the paper. We will default to Google Colab since most
of the configuration has been set up for us to use in this platform. This will ensure we worry only about our
problem of building a species classifier and not waste time in the configuration.

3
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. DATA COLLECTION

Data collection is an important phase and the first phase in the AI model development pipeline as data
collected will determine the accuracy of models or lack thereof. Many approaches can be employed to
achieve this: from data discovery, data augmentation to data creation (Roh et al.). In our ecological con-
text, depending on your species of interest - data can either be manually gathered or acquired from other
sources. For image classification tasks such as in our case study, online repositories such as the iNaturalist
or GBIF websites have tons of image data that can be accessed using APIs or other advanced data min-
ing approaches (GBIF ; INaturalist). Here we go with the assumption that you already have a relatively
clean curated dataset and that has balanced classes for each species and which has no noise in the ground
truth labels and that the problem is a supervised learning challenge i.e where we already know the labels
of our datasets. Other interesting methods beyond the scope of this study are unsupervised learning and
reinforcement learning where the algorithm discovers the patterns in the data itself.

Species Image Data used for Classification

In this case study we will use three sea star species. Sea stars are important species in our understanding
of marine invertebrate communities. Intertidal relationships between the sea star Pisaster ochraceus and
the mussel Mytilus californicus was actually used to coin the term keystone species (Paine). Following that
classical study, it would, therefore, be interesting to use sea stars as case study species to prototype the
classifier AI system. Further, seastars have complicated morphology that might be a challenge even for
expert humans - Following that classical study, it would, therefore, be interesting to use sea stars as model
species to prototype the classifier AI system. Further, seastars have complicated morphology that might be
a challenge even for expert humans - for these reasons we use them to prototype our AI system. Figure 1
illustrates our the general workflow of a deep learning pipeline meant to achieve a minimum viable product:

Implementation

I. PREPARATION

Gpu Session Initialization

Go to the code repository here: https://bit.ly/39woeLt. Click on the open with Colab button at the
top of the page. It will open a Google Colab page with the Jupyter notebook that runs on an underlying
CPU. Before starting out it is important to change your session to a GPU session to take advantage of the
aforementioned Google free GPUs that will greatly accelerate your model creation by following the following
steps:

• Click on Runtime on the Menu
• on the panel that appears click on Change runtime type
• on the new pop-up change the Runtime type to Python 3 (if it is not already the default) and most

importantly the hardware acceleration to GPU

Importing Libraries

We mentioned several libraries that we are going to use above. Here is our chance to import them for our
use. On the Jupyter Notebook, It is good practice to begin by importing all your libraries. In our case the
easy to use fast.ai AI algorithm, and on the second line accessing and importing its vision functionalities to
our session:

4
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. Refer to #CODE BLOCK 1# on the Jupyter Notebook

II. DATA PHASE

Importing Data

In this case study we use three sea star species: Pisaster ochraceus, Pycnopodia helianthiodes and Solaster
dawsonii . We will simplify the exercise by organizing data in a format similar to this:

Figure 2: Data organization for the classification of three sea star species: Pisaster ochraceus, Pycnopodia
helianthiodes and Solaster dawsonii

The species image data is arranged into subfolders for each class of species that contain different images of
the same species. The data is then uploaded as a folder to the platform that we are going to use. In our case
study, we simply uploaded our data to google drive and were able to access this data from Google Colab by
running the first line of code in the Jupyter notebook.

Refer to #CODE BLOCK 2# on Jupyter Notebook

This connects your data on google drive to your Jupyter notebook session running on Google Colab. You
might need to provide a secret code on the output to give permissions for this to happen.

Organizing Data

The next thing you have to do is save that data path as a path variable and use that path to create training,
validation datasets.

Refer to #CODE BLOCK 3# on Jupyter Notebook

5
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. The training dataset is what the deep learning algorithm will use to learn the features of how one sea star
class differentiates itself from another. The validation set avoids overfitting of the data to ensure that our
model can generalize broadly to other sea stars it has not seen before. This prevents the danger of overfitting
- which is simply the model “cramming into memory” the sea stars that are in the training set, this could
lead to misleading interpretations where there is high model accuracy, but which cannot generalize to other
sea stars, not found in the original training data set (Kohavi; Ripley).

The training dataset depends on the dataset, but would commonly be around 60-80% of the dataset, vali-
dation around 20% of the original dataset . You can automate this using the built-in function in fast.ai and
creates a data subset to be fed into the neural network for the creation of the species classification model as
illustrated by the following code blocks:

Refer to #CODE BLOCK 4# on Jupyter Notebook

We can ensure what we have in our data block is accurate by viewing the images and exploring the basic
statistics of our various data organization folders created by the build-in fast.ai function by running the
following code blocks:

Refer to #CODE BLOCKS 5,6,7 # on Jupyter Notebook

We can see that our folders have 3 classes, 219 images in the training dataset and 54 on the validation
dataset. We can also see the visual of the images and their respective labels.

III. DEEP LEARNING PHASE

Deep Learning Model Creation

In our case study, we have a computer vision problem, so we will use Convolutional Neural Networks
(CNN) (Krizhevsky et al.). In our case, we will use the RESNET 34 architecture that is not too complicated
but delivers superior results compared to other architectures (He et al.). We use accuracy as a test metric for
our model. We then call in the build-in CNN-learner from the fast.ai library pass in our data, the RESNET
34 architecture and the metrics we are measuring for as illustrated in the following code blocks:

Refer to #CODE BLOCK 8 # on Jupyter Notebook

We can then run it for one cycle, passing in the number of epochs that we want the model to run for. In our
case, we run for 10 epochs and achieved an accuracy of about 85%.

Refer to #CODE BLOCK 9 # on Jupyter Notebook

Too few or too many epochs can be a problem and it is best to aim for stopping when there is no reduction
in error rate or increase in accuracy if using accuracy metrics. We then save the model - we can already
have good enough accuracy for the next stage of inference and deployment as illustrated by the following
code blocks:

Refer to #CODE BLOCK 10 # on Jupyter Notebook.

Model Tuning

If there is a need to create a more accurate model particularly while up against benchmark problems there
are techniques such as retraining an already trained model, automatically searching for a suitable learning
rate using the build-in learning rate finder which is novel to fast.ai. The technique to further tune the model
can be found in the below code blocks:

Refer to #CODE BLOCKS 11,12,13 # on Jupyter Notebook

6
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. Then using that learning rate you can fit other cycles until the model gets to a suitable accuracy. Using this
approach for our species classifier, we are able to improve the accuracy to 87%.

Model Tuning by Data Exploration

With a trained model, we now investigate particular images that might be causing the model to be less
accurate. First, we draw a confusion matrix of the species to see the map of the true positives and true
negatives and understand which species are making your model less accurate (Ting). In our case, and
according to figure ??, we have misclassified 4% of Pisaster ochraceus, 1% of Pyncopodia helianthoides, and
2% of S. dawsoni. We also examined each misclassifed image to check the original data curation accuracy
(Fig. 4).

Figure 3: Confusion Matrix of actual vs predicted species from our model, deeper color represents data
distribution amongst the species.

Refer to #CODE BLOCKS 14,15,16,17 # on Jupyter Notebook
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.

Figure 4: Example image where the model misidentified Pisaster ochreaus as Solaster dawsoni. Here the
loss is 1.75 and the probability is 0.17.

IV. INFERENCE & MODEL DEPLOYMENT PHASE

Model Inference

As a test of model, we use images not used previously seen by the model. We use the built-in prediction
tools in fast.ai as illustrated in the model inference section code of the development phase on the Jupyter
Notebook. We were able to corretly classify an additional single image of Pycnopodia helianthiodes as an
example.

Refer to #CODE BLOCKS 18,19, 20 # on Jupyter Notebook

Refer to #CODE BLOCKS 19,20 # on Jupyter Notebook

8
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. Model Deployment

In some cases, the user might want to develop an online application such as a website or application where
users in the field, such as citizen scientists, can use a previously-developed model for real-time classification.
We illustrate how to build this workflow in the supplementary material.

Conclusion

Although there have been many papers prototyping interesting applications of artificial intelligence in life
science particularly biology and ecology, very few outline beginner-friendly approaches to classifying species.
To address this issue, we have illustrated the tools, steps, and resources required to build a image classifier.
Despite the existence and use of these tools, it is when citizens and scientists alike have access to readily
available cost-effective and intuitive tools that domain ecologists can start utilizing the potential of these
powerful algorithms to solve and discover otherwise challenging problems. We hope this paper can help
spur a new approaches to species classification. As a next step, we will use this methodology to build a more
comprehensive sea star image classifier for the Western Coast of the United States. The classifier will be
integrated into a phone application to allow citizen scientists to monitor both population counts and also
sea star wasting disease.
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