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Abstract

In this paper, a new adaptive-node refinement algorithm for multiquadric (MQ) method applied to nearly singular PDEs, has

been presented. Besides, for the first time, the concept of the gradient has been employed in the refinement index. Regions with

high gradients are identified based on the average value of the proposed function solution. The solution is approximated using a

first-order derivative of interpolation with MQ. In the framework of the adaptive algorithm, the average of the proposed function

was used as an indicator that determines where the point distribution can be refined and nodes can be added or removed based

on this indicator. Different applications of the proposed adaptive algorithm are investigated through numerical examples. It

has been revealed that the proposed algorithm is able to identify the singularities both in the domain and near boundaries

and the numerical results of the MQ method confirm the accuracy and efficiency of the algorithm. The main advantage of this

algorithm is that in the first steps, the regions with high gradients are identified correctly and the convergence speed of the

algorithm increases continuously.

Introduction

Radial basis functions (RBF) are used as interpolation functions [1]. RBF has been used in various fields
such as neural network, image processing and, partial differential equation approximation (PDEs) [2- 6].
RBFs merely depend on the distance of the entry points from the center xj and the formϕ (|x− xj |). The
effective parameter in the accuracy of the RBF method is the shape parameter. If this parameter is used in
RBF, ϕ (r) is replaced by ϕ(r, c). Some of the most commonly used RBFs are listed in Table 1 [6].

The main feature of the RBFs is that it does not need any mesh. The Euclidian distance between every two
points is the only geometric feature used in the approximation of the RBF. The distances are easily calculated
in any number of spatial dimensions so that complexity does not occur in the higher dimensions of geometry.
The points used for definition of the RBFs are called centers that can be distributed arbitrary based on the
given geometry. The smooth RBF functions have high convergence and the non-smooth functions converge
slowly [7,8]. Therefore, it is necessary to use adaptive methods in these functions. In these methods, the
position of the high gradients in the function is identified [9].

In an adaptive method, the points are distributed based on the gradient. In locations with high gradients,
more nodes are considered and other locations require fewer nodes. The location of the nodes plays a key
role in the stability of the interpolation matrix, which shows its effect on the Gibbs and Runge phenomenon
[10-12].

Considerable research has been done on combining adaptive methods with RBF. Greedy algorithm in adap-
tive method was applied by Schaback and Wendland [13] and Hon et al. [14]. The results showed that
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this method results leads to linear convergence of the interpolation matrix. Han [15] provided an indica-
tor in the adaptive MQ scheme based on the weak formulation of the governing equation. Based on this
indicator, locations with high gradients were identified then nodes were added. Ling and Trummer [16]
Investigated the Hon’s indicator and modified it to solve transformed boundary value problems. Sarra [17]
proposed an adaptation method. In this method, the nodes are modified based on the point redistribution
algorithm located along an arc. The method yields good results for the one-dimensional Burger’s and the
nearly singular time-dependent advection equation. Wu [18,19] has offered an adaptation scheme to solve
the time-dependent problems of the PDE. One-dimensional problems have discussed in this research but
an upgrade to higher dimensions presented. Bozzini et al. [20] presented an adaptive scheme based on the
iterative algorithm. They used the combination of B-spline and scaled MQ. Behrens and Iske [21] Presented
an adaptive algorithm based on RBF. The error indicator was used to identify locations that require higher
accuracy and Behrens et al. [22] applied this algorithm to linear evolutionary PDEs and obtained accurate
results. Gomez et al. [23] presented a RBF dynamic domain decomposition algorithm. This algorithm was
applied in a large PDEs with high gradient. Driscoll and Herudono [9] developed an adaptive method based
on the residual subsampling technique. Based on this technique, domain nodes are modified in locations with
high indicator. This algorithm was applied to boundary value problems and initial boundary value problems
with localized features. Libre et al. [25, 26] presented an adaptive scheme based on wavelet for nearly
singular problems. The proposed method applied in one and two problems with internal and boundary near
singularities and obtained accurate results. Shanazari and Hosami Presented adaptive mesh technique for
irregular domains. Nodes are generated by the co-distribution technique in the rectangular domain, then
mapped to the physical domain. The method was used to solve the PDE problems with the RBF and pro-
vided accurate results [27]. A dynamic algorithm based on this plate spline radial basis function presented
by Esmaeilbeigi and Hosseini. The algorithm identifies locations with high gradient and refinement nodes
perform in these locations. This method was applied for nearly singular problems in large domains and
obtained appropriate results [28]. A direct multi-objective algorithm for optimizing node distribution was
proposed by Roque et al. This algorithm was used to solve composite plate problems by collocation method
[29]. Kamranian et al. developed a new adaptive moving least-squares method. An error indicator specifies
the location of the refinement nodes. This method was used to solve boundary value problems using the
Local Petrov-Galerkin method [30]. Cavoretto and Rossi Presented an adaptation-refinement node algorithm
based on the RB-PUM method. The location of the node refinement is determined by the error indicator
and the algorithm is repeated until the error is lower than the tolerance [31].

In nearly singular problems, the node spacing must be very fine to detect near-singular region. Increasing
the points in the total domain occurs instability and ill-condition of the interpolation matrix and running
the method will require a lot of memory to store the data. Therefore, regional refinement of points and the
presentation of adaptive-node refinement algorithms in these problems are essential.

In many adaptive methods, RBFs with shape parameters have been used. Determining an optimal shape
parameter is still an important challenge. In this study, the genetic optimization algorithm has been used
to find the optimal value of the shape parameter.

In this research, nearly singular PDE problems will be investigated whose exact solution will have regions
with high gradients. Specially, we introduce a proposed function that has been constructed based on the
MQ solution. The proposed function identifies the regions of the domain to which the node must be added.

The layout of the paper is as follows: In section 2, a review of the collocation method for the boundary value
problems is performed. In section 3 the main steps of the proposed algorithm are presented. Thereafter,
the genetic optimization algorithm will be introduced to find the optimal value of the shape parameter in
section 4. The results of numerical experiments are discussed in section 5. Finally, conclusions are given in
section 6.
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RBF approximation for boundary value problems

In this section, the asymmetric RBF collocation method for the following boundary value problem is pre-
sented.

Hu = f in Ω ⊂ Rd, Bu = s on ∂Ω.(1)

where H is an arbitrary linear differential operator,∂Ω denotes the boundary of the domain Ω, and B is a
boundary operator, which can be Dirichlet, Neumann or a mixed type. The functions f, s : Rd −→ R are
provided.

In Kansa approach [5], the domain is discretized by N collocation nodes {xk}Nk=1 ⊂ Ω, which can be di-

vided into interior {xk}NI

k=1nodes and{xk}Nk=NI+1
∈ ∂Ωboundary nodes. In order to obtain the approximate

solutionũ (x) to the exact solution u(x) of the boundary value problem defined by (1), the radial approxi-
mation ũ (x) is given by

ũ (x) =
∑N

j=1 αjφ (‖x− xj‖) + p (x) , x ∈ Rd(2)

where αj are the unknown coefficients to be determined. Hereφ (‖.‖), in which‖.‖ is the Euclidean norm, is
an arbitrary RBF. The degree of polynomial p(x) is determined by the selected RBF. The polynomial p(x)
is not necessary for positive definite RBF but for guaranteeing singularity in semi-positive RBF is necessary
[35].

If p(x)=0 , one obtains:

ũ (x) =
∑N

j=1 αjφ (‖x− xj‖), x ∈ Rd (3)

Substituting (3) in (1):∑N
j=1 αjΗ (‖xk − xj‖) = f (xk) , k = 1, 2, . . . ., Ni(4)∑N
j=1 αjΒ (‖xk − xj‖) = s (xk) , k = Ni + 1, . . . .., N(5)

which must be solved for the unknowns
{
αN
j=1

}
. The prevalent RBFs are shown in Table 1, with r =

‖xk − xj‖. In this paper, MQ will be studied.

The derivative of Eq. (3) at each center x = xk is given by:

ũ
′

f,x (xk) =
∑N

j=1 αj
(xk−xj)c

2

√
1+c2(xk−xj)

2
(6)

Adaptive-node refinement algorithm

At first, the proposed function for detecting the regions to be refined, will be introduced. then in marked
locations, the refinement scheme will be described.

3.1. The proposed function

The proposed function that is constructed based on the first-order derivative of interpolation using MQ is
defined by:

f (x, y) = abs
(
ũ

′

x (x, y)
)

+ abs
(
ũ

′

y(x, y)
)

(7)

or

f (x, y) =
√
ũ′
x
2 (x, y) + ũ′

y
2(x, y) (8)

3
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An interpolation ũ(x, y) based on(xk, yk) , k = 1, 2, . . . N , will be constructed. Then the derivative of ũ(x, y)
is computed in each direction x and y and substituted in equation (8). Based on the value of f(x, y), the
average indicator η is defined as:

η =
∑N

k=1 f(x(k),y(k))

N (9)

If the value of f(x, y) is smaller than η thenũ(x, y) can be represented by a linear function. On the other
hand, a high η commonly indicates that the numerical approximation around ũ(x, y) has a sharp variation,
which generally corresponds to regions with a high gradient. Based on the average indicator η , the regions
that should be refined will be determined and in each algorithm loop, the nodes that are less of the indicator
will be removed. The advantage of the proposed function is that it simply and quickly identifies regions with
high gradients and makes the adaptive-refinement algorithm more efficient.

3.2. The structure of adding node

Based on the average indicator η , the regions to be refined will be marked. Nodes are added to the marked
regions. This procedure increases the density of points in regions with high gradients. For nodes located in
high gradient regions, three nodes are added at each step to their neighborhood: (up, right and up-right) or
(down, left and down-left). It should be noted that the location of neighboring points with other patterns
such as: adding points to the top and bottom of the marked point, adding the point to the left and right of
the marked point, adding six points in each step or random selection of points around the marked point Tests
have been performed, but these patterns have in inaccurate results or ill-conditioned interpolation matrix.

The distance between the points and their neighbor points is calculated based on the Median of Euclidean
distance between them. In addition to the median distance, the mean distance also was examined. In the
algorithm, the median one behaves better than the average one.

The following relationships are used to build neighbor nodes. The coordinates of the marked points is
supposed to be(xh, yh). The Median of Euclidean distance of these points is determined by (MD):

D =

√
(xh (kh + 1)− xh (kh))

2
+ (yh (kh + 1)− yh (kh))

2
, MD = median (D) , kh = 1, 2, . . . , Nh (10)

The neighbor points are defined as:

xtoph = xh , ytoph = yh + 1
2MD(11)

xrighth = xh + 1
2MD , yrighth = yh(12)

xtop−righth = xh + 1
2MD , ytop−righth = yh + 1

2MD(13)

xdown
h = xh , ydown

h = yh − 1
2MD(14)

xlefth = xh − 1
2MD , ylefth = yh(15)

xdown−left
h = xh − 1

2MD , ydown−left
h = yh − 1

2MD(16)

3.3. General algorithm

In this section, the general algorithm is constructed from the combination of the proposed function and the
refinement scheme then the initial boundary values problems will be solved using the MQ solution.

A short description of the algorithm is given by:

• Identifying the high gradient regions
• Refining nodes

4
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• Creating the approximation function using MQ
• Calculating error in test points

Iterating the above steps until convergence

In this algorithm, convergence occurs when the root mean square error (E) is less than a given value δ.

E =
√

1
Nt

∑Nt

j=1

(
ũS+1
j − ũSj

)2
, S = 1, 2, 3, . . .(17)

Where S and Nt represent step number and number of evaluation points, respectively. ũS+1
j andũSj represent

the numerical solution in stepS+1 and S, respectively.

Algorithm 1. General Algorithm Steps

Definition of variables: the computational domain (Ω), the number of points in each direction (x, y) of the
computational domain (d), coordinates of points with high gradient (xh, yh), the distance between points
with high gradient (MD) and δ to be a given real number. Then the steps of the algorithm are as follows:

1. N: Selecting d× d grid of equally spaced points in the computational domain Ω;
2. c : Determining the optimal shape parameter;
3. usj : Creating MQ solution with N center points andc ;
4. Solving PDE using usj in evaluation points (Nt) ;
5. d=d+1;
6. N = d× d;
7. us+1

j : Creating MQ solution for N center points and the optimal shape parameter;

8. f (x(k), y(k)) =

√(
u′s+1

xj (x(k), y(k))
)2

+
(
u′s+1

yj (x(k), y(k))
)2
, k = 1, 2, . . . , N

9. η =
∑N

k=1 f(x(k),y(k))

N ;
10. If f (x(k), y(k)) > η then (x, y) to be substituted in (xh, yh);
11. Solving PDE using FMQ2 in evaluation points(Nt);

12. CalculatingE =
√

1
Nt

∑Nt

j=1

(
us+1
j (x(j), y(j))− usj (x(j), y(j))

)2
;While E > δ do

• d=d+1 ;
• N = d× d;

• Dk =

√
(xh (kh + 1)− xh (kh))

2
+ (yh (kh + 1)− yh (kh))

2
, MD = median (Dk) , \nkh =

1, 2, . . . , Nh ;
• xrighth = xh + 1

2MD , yrighth = yh;

• xtoph = xh , ytoph = yh + 1
2MD;

• xup−righth = xh + 1
2MD , yup−righth = yh + 1

2MD

• N = N ∪ (xh, yh) ∪
(
xrighth , yrighth

)
∪
(
xtoph , ytoph

)
∪
(
xup−righth , yup−righth

)
;

• ũsj (x, y) : Creating MQ solution usingN center points and the optimal shape parameter;

• f (x(k), y(k)) =

√(
ũ

′s
jx (x(k), y(k))

)2
+
(
ũ

′s
jy (x(k), y(k))

)2
, k = 1, 2, . . . , N ;

• If f (x(k), y(k)) > η then (x, y) to be substituted in (xh, yh);
• ũSj : Solution of PDE using ũ(x, y) in evaluation points (Nt);
• d=d+1;
• N = d× d;

• Dk =

√
(xh (Nh + 1)− xh (Nh))

2
+ (yh (Nh + 1)− yh (Nh))

2
, MD = median (Dk) , \nkh =

1, 2, . . . , Nh;
• xlefth = xh − 1

2MD , ylefth = yh;
• xdown

h = xh , ydown
h = yh − 1

2MD;

• xdown−left
h = xh − 1

2MD , ydown−left
h = yh − 1

2MD;

5
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• N = N ∪ (xh, yh) ∪
(
xlefth , ylefth

)
∪
(
xdown
h , ydown

h

)
∪
(
xdown−left
h , ydown−left

h

)
;

• ũs+1
j (x, y) : Creating MQ solution with N center points and the optimal shape parameter;

• f (x(k), y(k)) =

√(
ũ

′s+1
xj (x(k), y(k))

)2
+
(
ũ

′s+1
yj (x(k), y(k))

)2
, k = 1, 2, . . . , N ;

• If f (x(k), y(k)) > η then (x, y) to be substituted in (xh, yh);
• ũS+1

j = Solution of PDE with ũ(x, y)in evaluation points (Nt);

• E =
√

1
Nt

∑Nt

j=1

(
ũS+1
j − ũSj

)2
, S = 1, 2, 3, . . .

• End while

Finally, the algorithm provides a non-uniform distribution of points. In this distribution, the density of
points in regions with high gradients is higher and in other regions less (Fig.1). It should be noted that at
any step, a unit is added to d . This addition has led to a more accurate performance of the algorithm.

Finding the optimal shape parameter using the genetic algorithm

The shape parameter is one of the most important variables in the accuracy and stability of the MQ method.
Researchers have presented several experimental formulas for this parameter [32-38]. So far, no general theory
has been developed for this parameter. Researchers have optimized this parameter over the past decades
with a variety of classical and modern optimization methods [39-46]. One of these new optimization methods
is the genetic algorithm which researchers have used to optimize this parameter and achieve accurate results
[47-50]. The main advantage of the genetic algorithm over classical algorithms is that no information from
the variable can optimize the optimization variable. This feature is very useful for a shape parameter that
lacks an acceptable theory. Another feature of this algorithm is that it can find the absolute optimal and
avoid being trapped in a local optimal solution. The pseudo code of the general GA is as follows:

Algorithm 1 . The pseudo code of the general GA [50]

1. Generating an initial population;
2. Evaluating fitness of individuals in the population;

While population has converged do

• Selecting parents from the population;
• Recombining (mate (crossover and mutation operators)) parents to produce children;
• Evaluating fitness of the children;
• Replacing some or all of the population by the children;

end while

In this research, root mean square error (RMS) is selected as the fitness function of the GA, Eq. (19). The
detailed characteristics of GA in the present research are shown in Table 2 [50].

Numerical results

In this section, the efficiency of the described algorithm will be investigated to solve the nearly singular
problems. The examples have internal and boundary singular points. To measure the accuracy of the
results, two types of norm error were used. the L∞ and RMSE defined as

L∞ = max |u (xi)− ũ(xi)|, (18)

RMSE =
√

1
Nt

∑Nt

i=1 (u (xi)− ũ(xi))
2
(19)

6
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where u(x) is the exact solution, ũ(x) is the approximate solution and Nt is the total number of evaluation
points. In the singular regions, the node density is controlled by δ. The delta is determined based on the
value of demanded accuracy. In all tables, N and c are the center points and shape parameter, respectively.

Example 1. The following Poisson equation with Dirichlet boundary conditions has been considered in the
rectangle domainΩ = [0,1]

∂2u
∂x2 + ∂2u

∂y2 = f(x, y), (x, y) ∈ Ω(20)

u (x, y) = s (x, y) , (x, y) ∈ ∂Ω(21)

where f and s are determined based on the exact solution [25]:

u (x, y) = exp
(
−200x2

)
+ exp

(
−200y2

)
(22)

The adaptive-refinement node algorithm was implemented using the MQ solution. The variable δ is assumed
1e-3. Nodes distribution in different steps of the algorithm are shown in Fig. 2.

The exact solution shows that there are high gradients around the axes x=0 and y=0. Outside the region,
the gradient is very low and the function is smooth. Because of this high gradient, an exact numerical
approximation is not easy therefore the density of points in these regions must be increased by the adaptive-
node correction algorithm.

The initial and adaptive distributions are shown in Fig. 2. The number of center points starts with
19×19=361 and gradually grows to N=742 nodes then the algorithm results in N=1281 nodes. As the
figure shows, the points can track high gradients quite efficiently.

The points distribution was used to solve Eq. (20) using the MQ solution. The number of center points, the
optimal shape parameter, RMS error and L∞ at each function are given in Table 3. A uniform distribution
containingNt=2500(= 50× 50) points evenly spaced in the domain is used to evaluate the L∞ and RMSE
error norms in the test function. Applying the proposed adaptive algorithm resulted in N=1281 nodes and
RMS=6.936e-5 after three steps of adaptation, while Libre et al. [25] Achieved lower accuracy using a
wavelet scheme with N=1823 nodes and after four steps of adaptation. Munoz-Gomez et al. [23] Achieved
this accuracy after 12 iterations and with 2646 points The numerical results with uniform and adaptive
distributions are shown in Fig. 3.

Example 2. The Poisson equation with an internal pointwise near singularity in a rectangle
domainΩ = [0, 1]

2
is

∂2u
∂x2 + ∂2u

∂y2 = f(x, y), (x, y) ∈ Ω (23)

u (x, y) = s (x, y) , (x, y) ∈ ∂Ω (24)

where f and s are determined based on the exact solution [25]:

u (x, y) =
(x3+y3)

2 + exp
(
−(x−0.5)2

0.052 − (y−0.5)2
0.052

)
(25)

The exact solution and the node distributions at each step of the algorithm are shown in Fig. 4. The steps
of the algorithm show that the density of the nodes around the center of the domain and the axes x=0 and
axes y=0 increases and the figure of the exact solution confirms that these regions have higher gradients
than other regions. As may be seen the number of points has been increased to 853 in the first refinement
and again has been decreased to 743 in the second refinement procedure which means that the number of
points may have some oscillations to reach a stable condition for a specific error value.

Applying the proposed adaptive algorithm with δ=1e-4 is resulted in N=743 points and RMS error less
than 4.7E-5. This accuracy was achieved by Libre et al. (2009) with 1823 center points using the wavelet
adaptive algorithm. The RMS error and L∞ error norm are summarized in Table 4. A uniform distribution
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containingNt=2500(= 50× 50) points evenly spaced in the domain is used to evaluate the L∞ and RMSE
error norms in the test function.

The results of this example show that the proposed algorithm is able to detect singularities in different regions
of the domain and it also does the node refinement correctly while some adaptation algorithms [15,16] are
only able to detect singularities in boundary regions.

Example 3. A 2D modified Helmholtz equation defined in Ω = [−1,1]as

uxx + uyy − u(x, y) = f(x, y), (x, y) ∈ Ω(26)

u (x, y) = s (x, y) , (x, y) ∈ ∂Ω(27)

where f and s are determined based on the exact solution [49].

u (x, y) = exp(−100x2−100y2) (28)

The function of this example has a steep point in the center of the domain and is perfectly smooth in other
regions. These changes of function cause the singularity of the interpolation matrix and it is necessary to
modify the node distribution with adaptive algorithms. The exact solution and the adaptive distribution at
each step are displayed in Fig. 5. The algorithm starts with a uniform distribution 19×19=361 nodes, and in
the next steps of the algorithm, the number of nodes will gradually increase and finally with δ=1e-3 reaches
573 nodes after 3 iterations with RMS error less than 5× 10−4, while Esmaeilbeigi et al. [49] Achieved lower
accuracy using a dynamic node adaptive with N=1241 nodes and after four steps of adaptation.

The number of nodes, optimal shape parameter, RMS error andL∞ at each step of the algorithm is given in
Table 5. The numerical results of a uniform and an adaptive distribution are compared in Fig. 6.

Conclusion

In this paper, a new adaptive node refinement algorithm to solve the MQ approximations of nearly singular
PDEs has been proposed. For the first time, the concept of gradient of the estimation function has been used
in refining the node arrangement. In the framework of the adaptive algorithm, the proposed formulation was
used as the parameter that determine where the node distribution should be refined. Therefore, the number
of center points is optimized and the approximation matrix of MQ method goes out of the ill-condition. The
performance of the algorithm was investigated through various examples. Numerical results reveal that this
algorithm is able to identify the interior and boundary singular regions correctly and achieves very good
performance in terms of accuracy, convergence speed and CPU time-saving. One of the most advantages of
the adaptive node refinement algorithm is that it is simple to be implemented and has less computational cost
in comparison with other adaptive schemes. Although the present research considers the MQ approximation
and the solution of PDEs with domain or boundary approximate singularities, the advantages of this adaptive
algorithm may also be extended to other approximation methods and any other types of linear or non-linear
boundary value problems in even higher dimensions.
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Tables

Table1. Common RBFs

RBF Definition

Multiquadric (MQ) φ (r, c) =
√

1 + c2r2

Inverse Multiquadric (IMQ) φ (r, c) = 1√
1+c2r2

Gaussian (GA) φ (r, c) = e−(cr2)

This plate spline (TPS) φ (r) = r2logr
Cubic RBF φ (r) = r3

Table 2. Characteristics of GA in the present research.
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Population size Elite count Crossover function Mutation Crossover Migration Generation

20 1 0.8 Uniform Two points Forward 100

Table 3. Comparison of accuracies of MQ solutions in Example 1.

L∞ RMS C N

4.46e-2 8.21e-1 2.540 361
2.763e-3 3.5e-2 8.297 742
3.610e-3 6.936e-5 11.337 1281

Table 4. Comparison of accuracies of MQ solutions in Example 2.

L∞ RMS C N

5.722e-1 9.09e0 2.541 361
1.504e-2 8.301e-2 9.351 853
1.164e-3 4.612e-5 13.351 743

Table 5. Comparison of accuracies of MQ solutions in Example 3.

L∞ RMS C N

4.477e-1 9.335e-1 2.115 361
7.561e-3 3.273e-2 2.569 544
1.015e-4 3.008e-4 3.219 573
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