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Abstract

Environmental DNA (eDNA) metabarcoding is a common tool for measuring and cataloguing biodiversity, yet standard method-
ological approaches to generate metabarcoding data sets have yet to emerge, in part due to challenges understanding the bio-
logical and technical biases that affect eDNA profiles. Here, we explore how two experimental choices — depth of sequencing
of PCR amplicon libraries and the number of PCR replicates — influence estimates of o and (3 diversity. We extracted DNA
from six soil samples from three ecologically distinct locations, performed 24 PCR replicates from each using two common
metabarcodes, and sequenced each to an average depth of 83,898 reads. We found PCR replicates are consistent in composition
and relative abundance of abundant taxa, allowing differentiation of samples and sites. However, rare taxa were unique to one
or a few replicates, suggesting that even large numbers of experimental replicates may be insufficient to catalogue biodiversity
fully. We recommend that to differentiate sites, separately sequencing only a minimum of two PCR replicates to a depth that
allows 1,000 reads identified to taxa, is sufficient to differentiate sites. We also conclude that metabarcoding is impractical for
exhaustive taxonomic inventory and, because rare taxa are not amplified consistently, taxonomic tallies that rely on consensus
among replicates artificially lower richness estimates. These findings provide new considerations for eDNA experimental design

and data interpretation.

1- Introduction

Environmental DNA (eDNA) refers to DNA shed by organisms into their environments (Taberlet et al.,
2018), such as soil and other sediments (e.g.- Deveautour et al., 2018; Ficetola et al., 2018), water (e.g.-
DiBattista et al., 2017; Bista et al., 2017), and air (Kraaijeveld et al., 2015). Although shotgun sequencing
of sedimentary DNA is becoming increasingly common (e.g. Pederson et al., 2016, Graham et al., 2016), most
eDNA studies to date have targeted either single taxa with species-specific PCR (“barcoding”; e.g.- Baker et
al., 2018; Franklin et al., 2019) or phylogenetically diverse taxa using “universal” PCR primers that bind to
conserved regions flanking barcode loci (“metabarcoding”; e.g.- Taberlet et al., 2012; Valentini et al., 2016).
Metabarcoding has been used, for example, to test hypotheses about biotic and abiotic drivers of changes in
community composition (Erlandson et al., 2018; Deveautour et al., 2018; Yan et al., 2018, Giguet-Covex et
al., 2014, Epp et al., 2010), including over tens of thousands of years (Willerslev et al., 2003, 2014; Parducci
et al., 2012), and to characterize extant eukaryotic diversity (Lallias et al., 2015; Leray and Knowlton, 2016).
Because eDNA can be collected non-invasively, eDNA is also a promising tool for studying rare, cryptic, or
endangered species (Franklin et al., 2019; Laramie et al. 2015; Schnell et al., 2012), and for tracking early
advances of invasive species (Klymus et al., 2017; Xia et al., 2018; Sjogren et al., 2017).

The broad application of eDNA approaches across environmental science, in combination with recent ad-
vances in DNA processing and sequencing technologies, has precipitated rapid growth of eDNA as a research
field (Pederson et al. 2015; Garlapati et al., 2019). Indeed, several interdisciplinary initiatives now use
eDNA to characterize biodiversity across spatial and temporal scales, such as CALeDNA (Meyer et al.,
2019), DNAquanet (https://dnaqua.net/), and Maine-eDNA (https://umaine.edu/edna/). These initiatives



have shown repeatedly that DNA detection in eDNA samples varies in both specificity and replicability
(Garlapati et al., 2019; Cristescu and Hebert, 2018) and the causes of this variation have yet to be fully
characterized.

Technical biases can be introduced into eDNA experiments during field sampling, laboratory processing, and
bioinformatics (Pederson et al., 2015). These biases have the potential to influence resulting biodiversity
profiles, and are difficult to decouple from both true differences among organisms in DNA deposition rates
and taphonomic processes that drive variation in long-term DNA survival (Taberlet et al., 2018). DNA
isolation protocols, for example, are known to influence which organisms are detected in a sample. Deiner
et al. (2018) reported a three-fold change in observed o diversity depending on filter material, pore size,
and chemical extraction, including the absence under some extraction conditions of some taxa known to be
present. Choice of polymerase for PCR can also influence biodiversity estimates. Nichols et al (2017) showed
that the composition and relative abundance of taxa detected in the PCR amplicon pool changed during
PCR amplification as some polymerases biased the amplicon pools toward sequences with a particular GC
content. Differences in amplicon length, templates secondary structures, and base mismatches at the PCR
primer binding site also affect binding and copying efficiency during PCR (Fonesca et al., 2012; Elbrecht
& Leese, 2015; Krehenwinkel et al., 2017) also affect binding and copying efficiency during PCR, skewing
post-PCR taxon composition and relative abundance estimates (Pawluczyk et al., 2015). As the number of
eDNA data sets grows, and along with that the possibility for comparative analysis across data sets, the
need to understand and mitigate these many potential biases grows (Braukmann et al., 2019; Ruppert et
al., 2019).

As one approach to mitigating these potential biases, many eDNA studies include one or more controls as
part of their experimental design. These controls are intended to quantify some component of potential
technical biases prior to proceeding with biodiversity analyses. For example, samples taken in the field as
replicates can be used to estimate and account for spatial variation in DNA deposition and survival (Andersen
et al., 2012; Ficetola et al., 2015). Incorporating negative controls (experimental replicates that include no
sample) during both DNA extraction and PCR can track potential laboratory-introduced contaminants or
other errors. Incorporation positive controls comprising mixtures of organismal tissue or extracted DNA can
confirm that protocols are working as expected and quantify bias (Port et al., 2016; Olds et al., 2016). After
data are generated, bioinformatic approaches can also be implemented to detect and mitigate the influence
of experimental biases. For example, site occupancy modeling incorporates variation among PCR replicates
to overcome imperfect detection (Ficetola et al., 2015), and species richness curves can be estimated to
assess whether sufficient replicates have been performed to detect all or most of the taxa preset in a sample
(Ficetola et al., 2015; Lundberg et al., 2013; Beentjes et al., 2019).

Variation among PCR replicates is expected in eDNA metabarcoding (Beentjes et al 2019; Ficetola et al.
2008). While much of this variation results from random sampling of low abundance taxa (Leray & Knowlton
2017), variation can also arise due to errors including contamination by exogenous DNA and the accumulation
of replication and sequencing errors. To capture this variation, eDNA experimental designs often include one
or more replicate PCRs for each DNA extract. Replicate PCRs reduce the effect of stochastic amplification
and make it possible to detect potential outlier PCRs (Robasky et al 2014; Leray & Knowlton, 2017), which
we define as a PCR amplicon pool that contains a different richness or composition of taxa than other
replicates. Most eDNA studies perform from one (e.g. Deveautour et al., 2018; Erlandson et al., 2018) to
three PCR replicates (e.g.Yamamoto et al., 2017; Beentjes et al., 2019; Browne et al., 2020), although more
PCR replicates are sometimes performed when working with ancient samples (e.g. 8 replicates: Ficetola et
al, 2018, Clarke et al., 2019; 15 replicates: Stahlschmidt et al., 2019). However, while PCR replication is
common in eDNA research, there is no consensus as to how this mechanism should be applied as a control.
Most studies generate replicate PCRs and then pool them prior to sequencing, rather than sequencing them
separately (e.g. Lanzen et al., 2017; Smith and Peay 2014; Lin et al., submitted ), in part because it is cost
prohibitive (Fonseca 2018). Some studies that sequence PCR replicates separately discard taxa found in
only a single replicate as an approach to ruling out contaminants (De Barba et al., 2014; Giguet-Covex et
al., 2014; Hope et al., 2014), or require a taxon or haplotype to be present in all replicates to be included in



downstream analysis (Taberlet et al., 2018; Tsuji et al., 2019). While variation due to errors can artificially
inflate biodiversity estimates (Zepeda-Mendoza 2016), discarding taxa found in few replicates may also
remove biodiversity that is genuinely present in a sample (Leray & Knowlton, 2017).

Another experimental variable to consider when performing PCR replication is read sampling depth, or how
deeply each PCR amplicon pool is sequenced. In published eDNA studies, read sampling depth per PCR
replicate tends to be between 1,000 reads (Krehenwinkel et al., 2017) and 25,000 reads (e.g. Lanzen et
al 2017, Schnell et al., 2018; Stat et al., 2017), with some exceptions (e.g. >100,000 reads per replicate.
Leempoel et al., 2020). Previous studies investigating the role of PCR replication and read sampling depth
in eDNA have had conflicting results. In exploring metabarcoding data generated using the Ion Torrent
sequencing platform, Murray, Coghlan, and Bunce (2015) found that increasing read sampling depth did not
necessarily increase the likelihood of detection of low abundance taxa. Smith and Peay (2014), alternatively,
found that increasing read sampling depth decreased dissimilarity between PCR replicates PCR replication
but that this had little effect on estimates of either o or 3 diversity.

Several previous studies have explored the influence of PCR replicates on metabarcoding-based biodiversity
estimates, also with conflicting results. Smith and Peay (2014), for example, compared diversity estimates
generated from PCR amplicons pools comprising 1, 2, 4, 8 or 16 PCR replicates and found that sequencing
platform and sequencing depth both affected recovered taxonomic profiles, but that the number of PCR
replicates did not necessarily increase the number of observed taxa. Ficetola et al. (2015), using both
simulated and empirical data, found that the number of PCR replicates necessary to observe all taxa in
an extract depends on the site, and that the probability of detection of a given taxon increases with that
taxon’s relative abundance. More recently, Alberdi et al. (2017) compared biodiversity estimates from
metabarcoding data amplified in triplicate from 54 bat fecal samples. They observed different taxonomic
profiles depending on which subsets of the PCR replicates per sample they analyzed and that increasing
read sampling depth increased dissimilarity between PCR replicates. While these results hint that more
PCR replicates is better than fewer PCR replicates in assessing total diversity, how many PCR replicates
should be performed remains an open question, as does the interaction and potential trade-off between PCR
replication and increasing read sampling depth.

Here, we perform 24 replicate PCRs for two commonly used metabarcodes, the Internal Transcribed Spacer
(ITS ) for fungi (ITS1 ) and for plants and algae (ITS2 ), to explore how PCR replication and read sampling
depth influence metabarcoding-based biodiversity estimates at six ecologically distinct sites. We address
explicitly the detection of rare taxa, inference of community composition, site differentiation based on taxon
composition, and the detection and prevalence of PCR outliers. Our data provide two key insights for eDNA
metabarcoding experimental design. First, we find that abundant taxa are common among PCR replicates
and that these taxa, and therefore few PCR replicates, are sufficient to define site uniqueness. Second, we
observe that rare taxa most often appear in only one or a few replicates, and alter significantly richness
estimates among replicates. These results suggest that metabarcoding may be insufficient to characterize
fully the alpha biodiversity at any site, even with large numbers of replicates, but can be sufficient — even
with low read sampling depth and few replicates — to characterize beta diversity.

2- Materials and Methods
2.1- Soil Collection

We collected a total of six soil samples from three environmentally distinct locations: two samples from St
Paul Island, Alaska, USA (StP.1: 57.136074, -170.82537; StP.2: 57.10577, -170.10563), and four samples from
two sites in California, USA. The California samples include two from Fort Ord Natural Reserve in Marina
(FO.1, an open sand dune: 36.68448, -121.77731; FO.2, a chaparral ecosystem: 36.68301, -121.78071), and
two from and two from Younger Lagoon in Santa Cruz (YL.1, the basin of a coastal lagoon: 36.950081,
-122.066756; YL.2, a grassland coastal terrace: 36.949314, -122.063575).

We designed and implemented field sampling protocols to minimize the risk of cross-contamination between
soil samples. At each site, we wore clean gloves and used a clean trowel to collect soil from 2-6” below the



surface, which we deposited into sterile 50mL falcon tubes. We sterilized trowels between sites serially with
bleach and rinsed with ultraPure water and ethanol. Alaskan samples were kept cool during transfer to
California and then frozen. Californian samples were frozen at -20@QC immediately after collection.

2.2- DNA Extraction, Amplification, and Sequencing

We processed each soil sample in the eDNA processing center of the UCSC Paleogenomics Lab following
strict protocols to avoid contamination. Researchers working in the eDNA lab, which is isolated from PCR
amplification products, wear sterile suits, face masks, hair nets, and gloves so as to minimize the possibility
of contamination. Prior to DNA extraction, we homogenized the soil samples in the 50mL falcon tube in
which they were collected so as to break up any larger pieces of sediment. Next, we removed any identifiable
plant matter (leaves and roots) with sterile forceps. We then subsampled 0.25g aliquots of sediment for DNA
extraction. We extracted DNA in duplicate for each of the six soil samples using the Qiagen PowerSoil kit
and protocol (Qiagen, Germantown MD, USA), following the manufacturer’s protocol except for the final
elution step, where we substituted the C6 elution buffer with Tris-EDTA-Tween buffer. We included one
negative extraction control without soil.

We selected the ITS gene in plants (PITS) and fungi (FITS) as universal barcodes for metabarcoding. For
PITS, we used primers described by Yao et al. 2010 (ITS-S2F - ATGCGATACTTGGTGTGAAT and ITS-
S3R - GACGCTTCTCCAGACTACAAT) and for FITS, we used primers from White et al. 1990 (ITS5-
forward - GGAAGTAAAAGTCGTAACAAGG) and Epp et al. 2012 (5.8S_fungi - reverse - CAAGAGATC-
CGTTGTTGAAAGTT). The expected amplicon length was 450 base pairs (bp) for PITS and 300 bp for
FITS.

We used quantitative PCR (qPCR) to assess PCR inhibition in each extract and determine the appropriate
number of PCR cycles for metabarcoding (as recommended in Murray, Coghlan, & Bunce, 2015). We
performed qPCR with the Qiagen Multiplex PCR Master Mix and spiked SYBR Green 1 Dye (12.5ul
Qiagen MM, 2uL: of each 2uM primer, 0.6ul, 1:2000 dilution SYBR Green 1 Dye, 5.9ul. water, and 2uL
extracted DNA). The Qiagen Multiplex PCR Master Mix introduces the least GC amplification bias of tested
polymerases (Nichols et al. 2017). We amplified each extract in triplicate with PITS and FITS primers. For
each replicate, we set up a serial dilution of 1:0, 1:1, and 1:3 extract to water proportions of the 2ul. DNA
extract input, and compared the qPCR Ct values across the dilution series. We observed no inhibition in
any of the eDNA extracts, and decided to proceed with undiluted extracts. To avoid overamplification, we
determined the optimal number of PCR cycles for each extract and PCR primer as the cycle after which the
exponential amplification phase ended. We amplified extracts with PITS for 26-31 cycles and with FITS for
18-21 cycles.

We followed a ‘2-step’ protocol to build amplicon sequencing libraries (Nichols et al. 2017). The same
reagent set up was used for metabarcoding PCR as for qPCR, but with the appropriate number of cycles
and without SYBR Green 1 dye. The amplification primers included 5’ overhang Illumina (Illumina, San
Diego, CA, USA) TruSeq adapter sequences, which allowed us to perform the indexing PCR directly after
metabarcoding. For each of the six extracts we performed 24 replicate PCRs with PITS and 24 PCR
replicates with FITS. We amplified four PITS and four FITS PCR replicates from the extraction negative
control (no sediment) and added two additional PCR negative controls (no extract) for each primer.

Following metabarcoding PCR, we purified amplicon pools with SPRI beads (Beckman, Indianapolis, IN,
USA). Next, we indexed all PCR products individually using Kapa Hifi (Roche, Pleasanton, CA, USA) to
add eight base-pair dual indices and Illumina sequencing adapters to our amplicon pools (12.5ul. Kapa Hifi,
5.5ul. water, 1uL of each 10uM forward and reverse index, and 5ul. purified PCR, product), followed by
a second SPRI bead clean. We used unique combinations of dual indices for each PCR replicate, though
each individual index was used multiple times across different amplicon pools. We then quantified the
concentration of DNA in the purified amplicon pools with a Nanodrop (Thermo Scientific, Waltham, MA,
USA). We used these estimates of DNA concentration to pool the PCR amplification products into equimolar
ratios in two pools, one for PITS and one for FITS. We then quantified the two pools with a Qubit fluorometer



(Thermo Fisher, Waltham, MA, USA) and estimated average fragment sizes with a fragment analyzer.

To detect potential index swapping (the incorrect assignment of sequences to an index as a result of blurring
of index signals between adjacent clusters, van der Valk et al., 2019) during sequencing, we amplified the
PITS metabarcode from an extract of spiral ginger( Costus pulverulentus ), provided to us by Kathleen
Kay’s lab at UCSC. The Kay lab collected samples from La Selva, Costa Rica under permit R-056-2019-
OT-CONAGEBIO and extracted floral C. pulverulentus tissue with the Qiagen plant mini kit. Spiral ginger
is native to the neotropics and not found in either California or Alaska. We generated three replicate PCR
amplicon libraries from the spiral ginger extract following the 2-step protocol described above. Following
sequencing and demultiplexing, we estimated the rate of index hopping based on the number of non-ginger
sequences assigned to the ginger dual indices.

We pooled and sequenced 308 sediment and three spiral ginger libraries (a total of 311 libraries) on an
Tllumina Miseq using v3 chemistry and a 2x300 approach. We targeted 100,000 reads per FITS library and
50,000 reads per PITS library, based on the anticipated higher taxonomic diversity amplified by FITS and
the anticipated higher discard rate of FITS-amplified sequences due to the incompleteness of the fungal
taxonomy databases.

2.3- Data Processing

We used the Anacapa Toolkit (Curd et al, 2019) to process the resulting data. Anacapa is a metabarcoding
data processing pipeline that enables simultaneous data processing of multiplexed barcodes and libraries.
Within Anacapa , we trimmed the TruSeq adapters using cutadapt (Martin, 2011), removed bases with
Q-scores below 35 with the FastX-Toolkit (Gordon and Hannon, 2010), and then trimmed, again using
cutadapt. We trimmed the first 5 bases on the 5’ end of the forward read and the first 10 bases of the 5’ end
of the reverse read for the PITS data set. We trimmed 40 bases off the 5" end of the forward read and the
first 50 bases of the 5’ end of the reverse read for the FITS data set. We used dada2 (Callahan et al. 2016)
to merge the forward and reverse reads, remove chimeric sequences, and identify amplicon sequence variants
(ASVs). We performed ASV assignment to taxa via global and local alignment usingBowtie2 (Langmead
and Salzberg, 2012) to PITS and FITSCRUX reference databases released with Curd et al. 2019. The top
100 hits of the Bowtie2 alignment to reference were bootstrapped with BLCA (Gao et al, 2017) to assign
each ASV to a taxon and provide uncertainty estimates. We used a 60% bootstrap confidence threshold of
taxonomic assignment, as suggested in the Anacapadocumentation (Curd et al, 2019). Anacapa output two
taxonomy tables (one per amplicon) formatted as matrices of the number of reads from each PCR replicate
assigned to a given taxa.

We used the negative PCR and DNA extraction controls to detect bioinformatically and remove contaminants
and the positive ginger control to infer the rate of barcode swapping. We converted taxonomy tables and
the PCR replicate-associated metadata to phyloseq (v. 1.22.3; McMurdie and Holmes 2013) objects using
Ranacapa(Kandlikar et al., 2018). We then used the R package decontam(v1.1.0; Davis et al., 2018) with
default settings to compare extraction and PCR negative controls to PCR replicates amplified from sediment,
and looked bioinformatically for any index hopping between spiral ginger and soil-derived libraries.

To generate data sets for hypothesis testing, we next rarefied our two decontaminated taxonomy tables
to generate PCR replicate sets of equal read sampling depth, and then applied a minimum read cutoff to
account for low level contamination, PCR error, sequencing error, and undetected index hopping. We used
the rarefy_even_depth() function ofphyloseq to rarefy our data at depths of every thousand between 1,000
to 20,000 (ex. 1k, 2k, 3k...). As we increased rarefaction depth, some libraries that were sequenced less
deeply dropped out of the analysis. Following rarefaction, we generated three data sets for each rarified
library in which we applied minimum read cutoffs of 2, 5, and 10 reads using a custom R script that
turns any value below these values to 0. Increasing the minimum read cutoff is more conservative, though
may remove the ability to track low abundance taxa. Rarefaction results at different read depths were
plotted as taxon accumulation curves at minimum read cutoff of 5 reads, and to account for stochasticity in
rarefaction, the average of 25 rarefactions per PCR replicate were plotted. All raw and rarefied taxonomy



tables (at rarefaction depths 1,000 to 20,000, with minimum read cutoffs of 2, 5, and 10) are available
athttps://github.com/sashirazi/e DNA-PCR-Project/.

We rarefied datasets prior to estimating various Alpha diversity metrics. We used the R package iNEXT for
richness extrapolation. We implemented iNEXT with q=0, datatype="abundance”, knots=40, se=TRUE,
conf=0.95, nboot=50. With iNext, we extrapolated replicates to twice their true read sampling depth
and recorded the extrapolated diversity statistic. We performed outlier tests on extrapolated observed
richness by identifying points that fall outside values of 1.5 times the interquantile range. We calculated
observed richness, the Shannon diversity index (Shannon 1948), and Simpson index (Simpson 1949) with the
vegan package in R. While observed o diversity considers only taxon presence, the Shannon and Simpson’s
estimators consider both the relative abundance (RA) of taxa within a sample in addition to taxon presence.
We then performed two-sided t-tests and chi-square tests in Rstat .

We performed statistical tests for beta diversity usingMicrobiomeSeq in R that draws on the wvegan
andphyloseq packages. We plotted taxon relative abundance barplots and calculated local contribution
to beta diversity (LCBD) using the Canberra 8 diversity measure (a measure within the Bray-Curtis § di-
versity family of estimators). The LCBD test calculates the contribution to total 3 diversity estimated for a
particular site from each PCR replicate. We considered replicates as outliers when p<0.05.

3- Results
3.1- Data summary

We generated an average of 78,809 PITS (range: 9,352-282,57; Table S1) and 88,987 FITS (range: 15,409-
382,888; Table S2) sequences for each of our 288 amplicon libraries (24 PCR replicates for each of six extracts,
two primer sets). Following adapter removal and quality trimming, we retained an average of 37,640 PITS
reads (range: 6,148- 166,279; Table S1) and 63,436 FITS reads (range: 12,360-323,310; Table S2 ) per PCR
replicate. We were unable to assign to taxa an average of 2.3% of PITS and 76.1% of FITS quality trimmed
reads. The large number of unassignable reads in the FITS data are probably the result of reference database
incompleteness, which is a known problem for this taxonomic group and one that we attempted to mitigate
by increasing the target depth of sequencing for our FITS libraries.

We found little evidence of contamination introduced during sample processing, and no evidence of index
hopping between libraries during sequencing. Of the eight extraction negative control libraries and four
PCR negative control libraries per primer that each had between 2,684 and 169,767 reads (Table S1 and S2),
species were not shared between control and true samples. We found no evidence of contamination in our
PITS data set. The FITS extraction negative control libraries contained a maximum of 11 reads that matched
an “unidentified environmental” fungus. We removed all reads from the PCR amplicon libraries that were
assigned to this “unidentified environmental” fungus. The PCR negative control libraries generated using
both the PITS and FITS primers included only primer dimer chimeras. The three spiral ginger libraries
used to track index hopping generated 52,675-299,400 sequences. All ginger sample sequences assigned to
plant taxa aligned to Costus pulverulentus , and no sequences assigned to barcodes for libraries other than
the ginger sample libraries were assigned to Costus , indicating there was no index hopping.

3.2- Tne welvevge op pead oaundvy dentn ov tabov agguuulatiov avd a dieporty

Read sampling depth strongly influences the number of taxa counted in an individual PCR replicate (observed
alpha diversity). Taxon accumulation curves (Figure 1) show that for all PCR replicates, observed o diversity
increases with read sampling depth across the range of depths used. On average across PCR replicates and
sites, a read depth of 1,000 included 51% (PITS) and 33% (FITS) of the observed o diversity compared
to that detected with 20,000 reads. A read depth of 5,000 retained 77% (PITS) and 64% (FITS) of taxa
detected at 20,000 reads, and a read depth of 10,000 retained 89% (PITS) and 82% (FITS) of taxa detected
with 20,000 reads. In all sites, the PITS curves surpass the inflection point where slope begins to decrease
(asymptote) at a sampling depth under 5000 reads. In FITS, the inflection point is less visually observable
and more taxa continue to accumulate at high read depth (Figure 1). Nonetheless, we observed that in both



PITS and FITS datasets, the maximum observed richness values vary considerably across PCR replicates.

Because the maximum observed richness could be influenced by read sampling depth, we explored PCR
replicate richness variation using asymptote values extrapolated to twice the original depth withiNEXT .
We found Observed diversity estimates were rarely normally distributed and variance was high, with up to five
replicates per group being outliers from the mean (Table S3). After outlier removal, PCR replicate richness
at the extrapolated asymptote still exhibited multiple fold differences in PITS and standard deviations
equivalent to up to 30% of the maximum richness of the group (Table 1). We found the highest fold
differences in observed richness in the PITS data set from YL.1 (Figure le), a site situated within a marine
lagoon at a location that is regularly inundated with both marine water and stream runoff. We expect these
physical processes increase true taxon richness and possibly heterogeneity within the environmental samples.
We observed fewer outliers in extrapolated richness for FITS, with only up to two outliers per group, but
that variation was high, with standard deviations up to 21% of the maximum richness of the group. We
observed the highest fold differences in observed richness in FITS at YL.1 and FO.2.

Increasing the read sampling depth from 1,000 to 10,000 reads resulted in an average 1.8-fold increase
in observed o diversity for PITS and 2.4-fold increase for FITS (Table S4). This increase in observed o
diversity with depth was significant for all six sites and both markers (Table S4). Shannon diversity did
not significantly increase with read sampling depth for five of the six sites in the PITS data set, but did
significantly increase with all FITS data set (Table S4). Simpson diversity did not significantly increase with
read sampling depth for any PITS data set, but did for five of the six sites in the FITS data set (Table S4).

3.3 Within-site variation composition and relative abundance (RA)

We next explored similarity between PCR replicates by comparing the RA of taxa detected in them. Qual-
itatively, for both PITS and FITS, within-site PCR replicates appear similar to each other and each site
is readily distinguishable from other sites (Figure 3). Only one replicate appeared to have a different com-
munity profile, and this was in PITS results from the YL.1 site (Figure 3). Analysis of ‘local contribution
to beta diversity’ (LCBD) provides a quantitative examination of differences in composition and RA. At a
read sampling depth of 5,000 and with a five read minimum cutoff, LCBD statistics identified several PCR
outliers in the PITS data set (11 PCR replicates from the YL.1 site and 2 PCR replicates from the FO.2
site; Table S5) and one outlier in the FITS data set (1 outlier replicate from the FO.2 data set; Table S5).

To explore how read sampling depth and minimum read cutoff influence LCBD, we repeated these analyses
at all three read sampling depths (1,000, 5,000, and 10,000 reads) with minimum read cutoffs of two, five, or
ten reads (Table S5), and performed Chi-squared tests for significant differences among groups. The number
of LCBD-based outliers increased significantly with higher read sampling depth in the FITS data set (p=
3.861E-15), but not in the PITS data set (p=0.25). We found no significant effect of minimum read cutoff
for either the PITS (p=0.71) or FITS (p=0. 79) data set, suggesting that low abundance taxa, which are
most likely to be impacted by changing the minimum read cutoff, are not causing outliers. For both the
PITS and FITS data set, we found that site itself has a significant effect on the number of observed PCR
outliers (both p <2.2e-16).

3.4 Beta diversity between sites and replicates

We evaluated inter and intra site-based estimates of 8 diversity using the Jaccard metric, which weighs all
observed taxa equally. At both 1,000 and 10,000 read sampling depths, we found that PCR replicates in both
PITS and FITS results cluster by site and that sites from the same geographic area cluster near each other
(Figure 4). None of the identified PCR replicate outliers reduced the ability to differentiate sites based on the
PCoA. While read sampling depth did not affect dispersion in the PCoA between PCR replicates for either
PITS or FITS, increasing read sampling depth changed the position of some sites relative to each other in
the ordination (Figure 4). For example, the two Fort Ord sites all had similar PITS taxon composition and
could not be distinguished from each other at either read sampling depth. However, the two St.P sites could
be differentiated at both read sampling depths for PITS but only at the lower sequencing read depth in FITS.
We next calculated 8 diversity using the Bray-Curtis estimator (Bray and Curtis, 1957), which considers RA,



and compared the resulting PCoA plots to those generated using the Jaccard estimator (Figure S1; Figure
4). The plots were similar overall, with slightly closer clustering among replicates at the two St.P sites in
the PITS data set. The similarity between results using Jaccard and Bray-Curtis estimates suggests that
low abundance taxa may not influence strongly estimates of B diversity.

3.5- PCR replication and taxon accumulation.

To assess the extent of low abundance and possibly unique taxa in PCR replicates, we calculated increases
in o diversity as PCR replicates are added to a combined data set. Although the order in which PCR
replicates are added will not influence cumulative o diversity, the trend to this endpoint will vary. We
therefore bootstrapped the analysis 100 times and plotted the mean. Notably, after the addition of all 24
PCR replicates, we did not observe a plateau in species richness, indicating that even this large number of
PCR replicates was insufficient to fully sample the diversity of taxa within the DNA extract (Figure 5).

We next calculated the number of PCR replicates per sample needed to reach the point at which the taxon
accumulation curve is saturated, or at which it increases by fewer than one taxon on average (based on
our bootstrapped analysis) when another PCR replicate is added (Table 2). We performed this analysis
at different sequencing read depths and read cutoffs. The number of added PCR replicates necessary to
achieve saturation of the taxon accumulation curve varied between sites, sampling read depth, and minimum
read cutoff, although fewer replicates were necessary to reach saturation at higher read cutoff (Table 2).
Increasing the rarefaction read depth surprisingly increases the number of replicates required (Table 2).

We then plotted histograms of the frequency of taxa detected across PCR replicates (Figure 6). Most taxa
are either singletons (present in only one PCR replicate) or occur in all PCR replicates. Based on PITS data,
singletons did not appear to be sequencing artefacts because out of the 70 singleton species found, only eleven
occurred within the same genus as another species found at high frequency (found in at least 20 replicates)
(see Chlamydomonas ; Table S1). To evaluate if singleton taxa were also low relative abundance taxa, we
plotted the relationship between a taxon’s within-replicate sequence abundance and its frequency across
replicates (Figure 7). For all read depths and minimum read cutoffs, we find a significant positive correlation
(Figure 7), as indicated with a fitted linear model (PITS: p<2e-16, T=24.73, adjusted r?= 0.7324; FITS:
p<2e-16, T=39.91, adjusted r2=0.8219). This indicates that taxa that occur at low sequence abundance
within PCR replicates also occur less frequently across replicates, and that taxa that are abundant within
PCR replicates are more likely to occur in all PCR replicates. In PITS results, only when a taxon’s relative
abundance is over roughly 10% does it occur in most replicates (Figure 7). In FITS results, only when a
taxon is over 1% does it occur in most replicates. Most taxa in soil and sediments were at below 1% relative
abundance (Figure 7).

4. Discussion

We explored the impact of the number of PCR replicates and read sampling depth, two common
parameters in eDNA experimental design, on estimates of taxonomic diversity. Using eDNA extracts from
six sites at three ecologically and geographically distinct locations, we performed 24 PCR replicates for
each of metabarcodes: plant ITS (PITS) and fungal ITS (FITS). We then analyzed these replicates by
compiling data sets that included different read sampling depths and minimum read cutoffs. We find that
PCR replicates are consistent in the composition (Figure 7) and relative abundance (RA) (Figures 3 and S1)
of high abundance taxa, but inconsistent in recovery of low abundance taxa, and that even large numbers
of PCR replicates are insufficient to fully characterize diversity at any site.

When considering only high abundance taxa, our PCR replicates produced community profiles that dis-
tinguished sites from each other, even sites that are geographically proximate and presumably similar in
community composition (Figure 4). The majority of high abundance taxa were detected in all 24 PCR
replicates, excluding outlier PCRs. This result provides empirical support for the modeling-based prediction
by Ficetola et al (2015) that PCR replicates will consistently detect taxa that have high “detection probabil-
ity”, which they define as taxa present in high abundance relative to other taxa at a site. We also observed
that the number of reads assigned to a taxon within a PCR was positively correlated to the frequency with



which that taxon was observed across PCR replicates (Figures 3, 7), which was also reported by Smith and
Peay (2014). Together, these results confirm that community profiles based on high abundance taxa are
replicable among PCRs and capable of distinguishing sites. Minimal PCR replication is therefore necessary
to characterize sites using 3 diversity statistics that derive from high abundance taxa.

While high abundance taxa were recovered consistently among our PCR replicates, low abundance taxa
were not (Figures 1, 2, 6). Low abundance taxa rarely occurred in PCR replicates; we observed some
low abundance taxa in several PCR replicates but most in only a single replicate. Unsurprisingly, this
stochasticity in recovery of low abundance affected biodiversity statistics that rely on raw taxon counts, such
as o diversity. While this observation has been reported previously (e.g. Beentjes et al., 2019; Ficetola et al.,
2008) our results highlight how the problem can be exacerbated by shallow sequencing read depths and low
minimum read cutoffs. Specifically, we find several fold differences in maximum richness and rarefied richness
among replicates depending on what values we selected for read depth and minimum read cutoff. While
the stochasticity in recovery of low abundance taxa poses challenges in interpretation of some biodiversity
statistics, it tends not to influence [ diversity between sites measured as either presence-absence (Figure 4)
or RA (Figure S1), or on position with a PCoA.

At our six sites, 24 PCR replicates were not sufficient to detect all rare taxa and therefore stabilize the
species accumulation curves (Figure 5). This result supports previous observations that using different
numbers of PCR replicates will alter taxonomic profiles (Alberdi et al. 2017; Murray, Coghlan, and Bunce
2015). Intriguingly, Smith and Peay (2014) reported the opposite conclusion: that increasing the number of
PCR replicates does not influence o diversity. As is common in eDNA studies, Smith and Peay amplify each
of their PCRs over 30 cycles, whereas we estimated the optimal number of cycles for each reaction separately
using qPCR, following Murray, Coghlan, and Bunce (2015). Overamplification of PCR amplicon pools can
reduce the complexity of the amplicon pool as read “species” that replicate more efficiently outcompete others
that replicate less efficiently (Nichols et al., 2017). Consequently, taxa that are least efficiently amplified will
become increasingly rare and may not be observed, in particular at low read sampling depths.

We observed most singleton taxa in only one PCR replicate (Figure 6). This finding supports the conclusion
by Leray and Knowlton (2017) that random sampling of rare taxa across PCR replicates accounts for most
of the variation between PCR replicates. Increasing read sampling depth did not reduce the number of
replicates that were required to stabilize the taxon accumulation curve (Table 2). However, increasing
the minimum read cutoff did reduce the number of PCR replicates necessary to stabilize the curve (Table
2), presumably by removing many of the low abundance taxa from each data set such that only the high
abundance taxa, most of which were common to each PCR, remained.

We found that increasing the read sampling depth significantly increased the number of taxa detected at
each of our sites (Figures 1, 2; Table S4). As many eDNA studies and consortia sequence amplicon pools to
the shallowest of our depths (1,000 reads), this result has implications for how biodiversity estimates based
on these published data sets can be interpreted and compared. The impact of this parameter choice depends
on how the data are analyzed. For example, we estimated significantly higher observed o diversity at a depth
of 10,000 reads than at a depth of 1,000 reads across all sites, but found no difference between read depths
when o diversity was calculated using the Shannon or Simpson metrics, which underweight low abundance
taxa compared to common taxa (Hsieh et al., 2016). The significant increase in o diversity that we observed
is in contrast to Murray, Coghlan, and Bunce (2015), who found that sampling depth per PCR replicate did
not necessarily increase detection of low abundance taxa. This difference may be due to the use by Murray,
Coghlan, and Bunce of Ion Torrent rather than Illumina sequencing technology, as the higher error profiles
generated by the Ton Torrent platform require more stringent removal of rare taxa (Salipante et al., 2014).
Because sites will vary in the amount of total diversity present, taxon accumulation curves such as those in
Figure 1 may be useful in determining the appropriate read sampling depth for a given site.

Our results also reiterate the need to consider the physical and ecological setting during eDNA experimental
design (Anderson et al., 2012; Ficetola et al. 2015). We observed the most variation in observed a diversity
among PCR replicates in the PITS dataset at YL.1 (Figure le and 2), a lagoon basin into which water



and wind carries and deposits DNA-containing materials from the surrounding environment. The constant
influx of DNA from the surrounding habitats may explain why amplicon pools from this site include many
low abundance taxa. Although these low abundance taxa have little effect on B diversity estimates, they are
contributing members of local communities. Metabarcoding may therefore be particularly inefficient tool for
estimating and comparing o diversity at sites with high biological turnover or input.

Because we sequenced each PCR replicate individually, we were also able to explore the rate of occurrence
and potential impact of PCR outliers, which we define as PCR amplicon pools that differ significantly in
either composition or relative abundance of taxa compared to other replicates from the same eDNA extract.
We found PCR outliers to be more common at sites with high diversity, like YL.1. Increasing read sampling
depth also increased the frequency of PCR outliers, but only for the FITS data sets (Figure 4), possibly
because of the higher taxonomic diversity among low abundance taxa recovered by this metabarcode. While
we are unable to determine the precise cause of outlier PCRs, we note that they are only observable as
outliers if more than one PCR replicate is performed. This rationale is often used by groups that perform
three PCR replicates per sample (Taberlet et al., 2018), which allows disambiguation between an outlier and
a “‘normal” PCR without additional laboratory work.

Given our results, we present the following conclusions, which can serve as recommendations for experimental
design in eDNA metabarcoding experiments:

1. PCR Replication: A single PCR often captures the diversity of common taxa at a site and allows
sites to be differentiated based on these common taxa. However, because outlier PCRs are a possibility,
a minimum of two PCR replicates is recommended. When multiple PCR replicates are performed, the
LCBD statistic can be used to identify PCR outliers by quantifying replicate uniqueness.

2. Read sampling depth: Increasing sequencing read depth increases the chance that low abundance
taxa are recovered from within the amplicon pool. However, because PCR replicates vary in taxonomic
composition, exhausting the sequence complexity of an amplicon pool through deep sequencing is not
the same as exhausting the sequence complexity of a DNA extract. Variation between PCR replicates
in taxonomic composition or relative abundance does not diminish with increased sequencing read
depth.

3. Minimum read cutoff: Higher minimum read cutoffs remove low abundance taxa from a PCR
amplicon pool. Removed taxa will include both low abundance contaminants and low abundance
authentic taxa. As such, the minimum read threshold may influence o diversity but is less likely to
influence {3 diversity.

5- Conclusion

Here, we provide a thorough examination of the influence of PCR replication and read sampling depth
on two common measures of diversity in environmental DNA metabarcoding research: o diversity and (3
diversity. We find that metabarcoding PCR robustly estimates measures of diversity that rely on high
abundance taxa, and that low numbers of PCR replicates are sufficient to distinguish sites from each other.
However, we also find that low abundance taxa tend to occur in only one or a few replicate PCRs, and often
require deeper sequencing of PCR amplicon pools to be counted, in particular when read cutoff thresholds
are high. Importantly, the challenges of counting rare taxa are so great, in particular in environmentally
diverse sites, that even large numbers of PCR replicates and relatively deep sequencing are insufficient to
guarantee that they will be recorded. Experiments aiming to catalogue diversity should consider using
replicate PCRs, replicate extracts, and even replicate field sampling. While this problem necessarily limits
the utility of environmental DNA as a mechanisms to catalogue the full diversity of taxa present at a given
site, it also shows the potential power of eDNA to recover even the rarest of taxa, although the authenticity
of exceptional taxa may need to be explored using a different enrichment approach, such as hybridization
capture or targeted amplification.
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Figure 1: Taxon accumulation curve tracking observed number of taxa identified among PCR replicates
as a function of read sampling depth for the PITS (a-k) and FITS (j-i) data sets. Plots are created from
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RAR.5k = 22 PITS, 23 FITS
RAR.10k = 22 PITS, 16 FITS



the average of 25 rarefactions at each round thousand read sampling depth between 1000 and 20,000 reads.
After each round of rarefaction, we removed taxa present as fewer than five reads. Each line represents
one PCR replicate. Termination of a line prior to the 20,000 read sampling depth denotes missing data.
RAR = Retained after rarefaction, referring to the number of PCR replicates retained in analysis following
rarefaction to read sampling depths of 5,000 and 10,000 reads. All 24 replicates for each of the six sites and
both primers had sufficient data at 1,000 reads to be included in analysis (RAR.1k = 24 for all sites and
amplicons).
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Figure 2. A comparison of observed (a & d), Shannon (b & e), and Simpson (¢ & f) a diversity measured
with read sampling depths of 1,000 (squares) and 10,000 (circles). Taxa present as fewer than five reads were
removed prior to analysis. Bars are colored by site and each dot represents a single PCR replicate.
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minimum cutoff. Each bar represents one PCR replicate. PCR replicates are grouped by site. Only the 20
most abundant families are included here.
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SITE ~ MIN MAX | STDEV
Plant ITS2 (PITS)
Fo1 | 212 48.3 5.8
Fo2 | 2.0 683  18.6
yir | 20| 1228 314
vi2 | 3.0 498 105
stP15 | 1.0 51.4  15.2
stP20 | 5.0 56.2  12.9
Fungal ITS1 (FITS)
Fo1 | 464 1112 149
Fo2 | 245 1067 @ 222
ye1 | 486 1561 279
vz | 970/ 1998 244
stb1s | 307 78.4 116
stb20 | 342 752 12.0
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Table 1. Variation in extrapolated richness among PCR replicates after outlier removal.




Read
Sampling | Minimum
Depth | read cutoff |FO.1 FO.2 YL.1 YL.2 StP.1 StP.2
Plant ITS2 (PITS)
2 5 20 17 4 8 10
5k 5 3 17 15 1 8 9
10 2 10 12 1 3 8
2 9 17 >23 5 15 19
10k 5 4 13 19 3 10 18
10 3 9 16 1 9 9
Fungal ITS1 (FITS)
2 >23 >23 >23 >24 >20 19
5k 5 11 7 15 12 12 6
10 9 2 6 9 4 2
2 >13 >18 >17 >21 >10 >16
10k 5 >13 >18 >17 >21 >10 >16
10 >13 4 12 9 7 3

Table 2: Number of PCR replicates required to reach the point at which taxon accumulation curve (shown in
Figure 5) increases by less than one taxon with the addition of another PCR replicate. We observe variation
by site and marker, and a common trend of decreasing replicates required with an increase in read cutoff.
‘>X’ denotes that greater than the maximum number of replicates X retained after rarefaction is needed to

suffice this point.

22




