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Abstract

Perfusion processes have gained interest as mammalian cell culture mode. Due to the high complex issues and variability

regarding such culture mode, a Principal Component Analysis (PCA) to the data was used to characterize such variable process

patterns and to achieve a better understanding. The transfected NS0/1B8 cell line was fermented in a 500 L bioreactor in

perfusion culture mode to obtain a desired monoclonal antibody against CD20 molecule. Given the high variability of the

process, an exploratory data analysis based on a multivariate analysis technique such as PCA was applied. The variables were

selected by a risk model analysis based on the cause-effect matrix, the experience accumulated in the process, over the critical

quality attributes, and parameters focus on the fermentation process. As a result, it was obtained that two main components

were able to explain more than 95% of the total variance, and it was possible to select between the critical parameters those

that have the greatest contribution to the variability of the fermentation process. Furthermore, the practical experiences of

the specialists matched with the results and new process recommendations were projected to improve the control strategy for

a further Continuous Process Verification. Keywords: Monoclonal antibody, Principal Component Analysis, Fermentation,

Critical parameters.

INTRODUCTION

Mammalian cell line culture have emerged as one of the most applied platforms for several biopharmaceutical
products, mainly due to their ability to generate species with complex posttranslational modifications such
as monoclonal antibodies (mAb) (Kantardjieff et al., 2014 ). Different culture modes have been developed
to produce them across time, in order to increase the product titer and cell density as well as to reduce
the process complexity and costs, and the most commonly used are fed-batch and perfusion mode (Farid
et al., 2006; Fike, 2009; Xu et al, 2017 ). Hence, companies such as Amgen, Merck and Pfizer that were
established on Fed-batch mode, also have been exploring perfusion mode as a wise alternative mostly leading
to increase volumetric productivity on their processes (Lin et al., 2017 ).

Moreover, for a long time, process validation has been object of greater scrutiny in Good Manufacturing
Practice (GMP), and more recently, the Quality by Design (QbD) concept have gained an important role
by approaching to an efficient, agile and flexible biopharmaceutical manufacturing sector. While traditional
product development and manufacture often involve the use of heuristic approach methods, QbD points out
to better process understanding and control by defining the process design space. The use of statistical
approaches and Process Analytical Technology (PAT) are some of the stages to take into consideration in
product lifecycle, mainly focused on the efficacy and safety as principal target to achieve (Rathore, 2009;
Stosch et al., 2016; FDA, 2011 ). On the other hand, the quality risk management (QRM) and the evaluation
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and ranking of process parameters (PP) over the quality attributes (QA) and critical quality attributes (CQA)
have been other approaches applied to lead the process to a more controlled environment in order to achieve
higher product quality. Many companies have been developing the concept of Criticality over PP and QA
as well. The main focuses of those approaches are related to define monitoring and operations control, and
the continued process verification strategies as the process validation last stage and therefore, assuring a
continuum for more consistent and robust processes (Witcher, 2017; Mitchell, 2013; Mitchell, 2014 ).

Data analysis, is carried out after experimental tasks and is mainly addressed to a deeper knowledge of
processes for diagnosis on different development steps. In contrast, the processes optimization and pre-
diction models might be reached by data analysis techniques. There are tools concerning this topic most
commonly named as Multivariate Data Analysis (MVDA). The application of MVDA techniques have been
currently used, focused to a wide number of targets, and Biotechnology is one of those. Partial Least Square
Regression (PLSR) and Principal Component Analysis (PCA) are some of the methods associated toward
such applications. For instance, the matrix building with missing values and its interpretation could be
carried out successfully by the PCA model. On the other hand, the scale-up, process comparability, process
characterization and fault diagnosis are some of the possible activities facilitated by the MVDA techniques
as an advanced data processing tool. Furthermore, some authors have been combining different MVDA
techniques to explain the impact on the Critical Quality Attributes (CQA) of the evaluated mAb depending
on culture media. They have showed its effectiveness to analyze multiple correlated objectives and factors
for early process development by applying for instance PCA as one of the main MVDA techniques (Kirdar
et al., 2007; Sokolov et al., 2017; Folch-Fortuny et al., 2015; Abdi et al., 2010; Sokolov et al., 2015 ). Thus,
really useful tools can be found to lead the process to a highly controlled environment in order to reach
deeper process parameters knowledge and more safety products (Thomassen et al. , 2010;Suarez-Zuluaga et
al. , 2019).

A high process variability has been observed across the time in the NS0/1B8 cell line fermentation stage, a
myeloma cell line that produces a chimeric mAb against the CD20 surface lymphocyte marker. The current
work combines the approaches presented above to estimate the influence of PP over CQA by implementing
a cause-effect matrix risk model, and afterward, MVDA was applied, specifically PCA to find out the main
causes (process parameter or key process parameters) that can trigger process variability. The perfusion
mode has been used in the fermentation process, for that reason, novel and interesting results are expected
in this case study.

MATERIALS AND METHODS

Cell culture and fermentation process

NSO/1B8 transfected cells were cultivated in stainless steel bioreactor (Bioengineering Biotechnology Com-
pany, Switzerland) of 500 L working volume. Inoculum for fermentations were grown in rotatory roller flask
which was used to seed the bioreactor. The medium used was a homemade property animal free component
medium. Process set points were: temperature 37°C, pH 6.95 ± 0.1, agitation rate 60 rpm, pH control
method by CO2 sparging, and DO set point of 30%. The volumetric gas rate was kept in 0.003 - 0.008 vvm
of total mix (CO2, O2 and Air).

Offline measurement

Viable cell density was obtained by optical microscopy technique using trypan blue dye exclusion method.
The specific growth and production rate were calculated by mass balance equations showed below (Doran,
1995 ).

Continuous culture biomass balance with and without cell retention device

dxv

dt = µapxv − αΔξv Eq. 1

µap = µ− kd Eq. 2

α = XH

XF
Eq. 3

2
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Continuous culture extracellular product balance

dP
dt = qPxv −DP Eq. 4

Where:

μ: Σπεςιφις γροωτη ρατε (η
-1
) .

μαπ: Σπεςιφις γροωτη ρατε αππαρεντ (η
-1
) .

Xv: Viable cell density in bioreactor (cell/mL).

kd: Specific death rate (h-1).

α: ἓλλ λεακαγε φαςτορ

D: Dilution rate (d-1)

XH: Total cell density in the harvest stream (cell/mL)

XF: Total cell density in the bioreactor (cell/mL)

Π: Αντιβοδψ ςονςεντρατιον (μγ/μΛ)

χΠ: Σπεςιφις προδυςτιον ρατε (μγ/ςελλ/η)

Numerical Assessment of process parameters and cause-effect matrix

The determination of critical parameters was carried out by working together with the specialists and su-
pervisors with most experience in the process, and a Cause-Effect matrix risk model was used.

A first determination of those unit operations and stages of the process that most impact on each of the QA,
was carried out. For each of the operations/stages of the process, defined with the biggest impact, the input
parameters, operation parameters and output attributes that characterize their status, were established.

First, the effect of QA variability over the next process step and the final product quality was numerically
evaluated considering different criticality levels. Then, the numerical assessment is performed for each process
parameter, taking into account the effect of its variability on each critical quality attribute (Table 1), and a
cause-effect matrix was used as indicated in Table 2

Data preprocessing and Principal Component Analysis (PCA) by The UNSCRAMBLER soft-
ware

The data preprocessing was carried out by using The UNSCRAMBLER software, version 8.0. THE UN-
SCRAMBLER is a comprehensive data analysis tool for exploratory statistics, multivariate analysis, clas-
sification, prediction and experiment design. It is easy to use and stands out for its excellent ability to
graphically represent data and results. This program is widely used by many industries; especially it has
been applied in pharmaceutical and biotechnology successfully (The Unscrambler , 2006). The multivariate
tool applied for the current work was the PCA, commonly used for dimensionality reduction into a small
number of uncorrelated variables called principal components (PC’s) (Maadooliat et al., 2014 ). The data
were transformed by centering and auto-scaling prior to processing.

RESULTS AND DISCUSSION

Critical parameters to assess in the fermentation process

The QA’s used in this study were selected by the available information related to the process from the expert
criteria, regarding the influences on the next step of the process. Only the fermentation process was taken
into consideration for the current work.

The numerical valuation was performed taking into consideration the criticality level of each QA according
to Table 3. Afterward, a cause-effect risk matrix was built by combining both, the valuation criteria of

3
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parameters and the criticality levels of QA, and thus, new hypothesis can be generated to find out those
parameters with higher impact over QA (Suarez-Zuluaga et al., 2019 ). Then, the index assigned to each
parameter was evaluated as a percent value referred to the total amount of parameters index, and hence,
the values provide a measure of the greater or lesser impact of each process parameter on CQA’s variability.

The cumulative percentage was determined following a Pareto analysis. Subsequently, a bar graph was made
with the impact index of each parameter in descending form and the ascending line of the cumulative % was
also represented, in the style of a Pareto graph. The results are shown in Table 4 and Figure 1.

Applying the 80/20% Pareto criterion, 26 process parameters have been found as Figure 1 shows. Those
parameters need to be taken into account for supervision and control.

In order to confirm the deduction of critical PP through knowledge and experience, PCA was applied
to data obtained from routine monitoring, facilitating process variability analysis. This investigation was
focused on the bioreactor, for that reason only the parameters highlighted in red in Table 4 were considered.
Nevertheless, some of those parameters related to the bioreactor are not currently measured and some other
have only one value at the beginning of the run. Hence, eleven variables were taken into account for this
analysis, which constitute the Bioreactor critical parameters to be analyzed (Table 5).

Data understanding

The production process of the monoclonal antibody of interest, has shown a low yield and especially the
protein concentration exhibits a high variability. PCA modelling was applied to five fermentation runs
already available. The process was carried out in continuous operation with perfusion, taking into account
that it is the technological production platform in question, and each sample correspond to a fermentation
day.

Data pre-processing

For the data pre-processing, the characteristics of each data file were analyzed using the descriptive statistics,
determining indicators for each variable, such as: minimum (Min.), maximum (Max), mean, standard devi-
ation (SDev), the coefficient of variation (CV), skewness (S) and kurtosis (K). These indicators were found
through histograms and statistical reports provided by THE UNSCRAMBLER, and were corroborated from
the Microsoft Excel calculation tool.

Due to the heterogeneity of the data, motivated by the presence of variables of different nature and mag-
nitudes, centering and auto-scaling were applied to provide standardization as part of preprocessing, which
facilitated the analysis (Coffey et al., 2018 ).

Principal Component Analysis

As the Figure 2 shows, two principal components (PC) are sufficient to explain more than 80% of data
variability at least. The PC1 allows to explain 74,61% of the explained variance, on the other hand, the PC2
allows to explain 23,39%.

In order to classify the samples regarding their leverage and residual X-variance, the influence graphic was
elaborated taking into consideration two PC’s. After making a look to the graphic (represented in Figure
3), few samples were found as outliers. Those points were not removed from data as they could represent
useful information regarding the process, besides, those are not considered as dangerous outliers according
to their leverage and residual X-variance.

The Figure 4 shows the Hotelling´s ellipse by considering 95% confidence. As the results show up, multiple
samples were found inside the ellipse, which proves they belong to the same process. Nevertheless, some of
them were placed outside the Hotelling´s ellipse, such us: m1, m73, m84, m93, m94, m101 and m102. This
is usually related to specific changes on the process or to measuring errors and noise [17]. Actually, one of
the aims of PCA is to detect deviations from the desired process behavior and state transitions (Le et al.,
2012; Nucci et al., 2010 ).

4
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For instance, samples m1, m73, m84, m93 and m94 match the change from discontinuous to continuous
mode, which is characterized by low values of cell density and Feeding flow rate; and specifically, sample
m93 correspond to the highest CSPR of the campaign.

On the other hand, samples m101 y m102 were related to mechanical issues due to the cell retention device,
causing disturbances on both, Xv and Viability.

Also, the correlation loadings graph (see Figure 5) facilitate the determination of each variable influence on
each component, depending on how far they are from the origin of coordinates, and furthermore, to identify
the correlated variables depending on how close they are to each other.

Figure 5 shows that all variables are in between the two rings, therefore they have a considerable contribution
to process variability. In addition, a group of variables can be observed as very close to each other such as:
temperature (T), culture time (t), pH, stirring speed (rpm), dissolved oxygen (%DO) and cellular viability
(Viab), which might indicate the existence of correlation between these parameters; while the specific rates
are further separated from the Feeding flow rates and CSPR, therefore not showing a mathematical correla-
tion each other. Some of parameters found as relevant and the possible existence of correlation were obtained
by other authors, and some others not(Thomassen et al., 2010 Suarez-Zuluaga et al., 2019) . For instance,
Thomassen et al. found DO and pH as relevant variables for inactivated polio vaccine (IPV) production pro-
cess but they were not related each other (Thomassen et al., 2010) . On the other hand, Suares-Zuluaga et al.
found specific growth rate as one of the most important parameters (indirectly controlled and linked to DO),
nevertheless, DO, pH and other PP did not change, for that reason they were discarded from their further
analysis (Suarez-Zuluaga et al., 2019) . Furthermore, Konstantinov et al. found a clear relationship between
the physiological state variables (Ex: specific rates) and those linked to nutritional state such as CSPR and
F, where limitation or inhibition conditions might lead the perfusion process to break (Konstantinov et al.,
2006) .

PCA analysis was employed by Nucci et al. to analyze some of the parameters mentioned before, applying in
that case an online verification to lead the process through optimal trajectories (Nucci et al., 2010) . From
the present work it is determined that all of them should be considered to include in the process control
strategy.

CONCLUSION

The approach applied in the present work, based on the proper combination of risk analysis and data
advanced processing using MVDA tools, showed its potential facing the complexities of a mammalian cell
culture process. Cause-Effect risk matrix model facilitated critical process parameters deduction using process
knowledge and experience, subsequently confirmed through PCA modelling on data obtained from process
routine monitoring. Likewise, PCA proved to be a useful tool for characterizing process variability patterns
and identifying abnormal operational conditions related to different eventualities. Relevant results also found
in this case study leads to update parameters in order to elaborate a more solid continued process verification
plan, and thus, consolidating the cell culture control strategy.
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Table 1. Valuation criteria according to the effect of parameters variability on each supernatant quality
attribute.

Valuation elements Impact Level Index

Variability directly affects the critical quality attribute, even overcoming intermediate stages of the process where there are no transformations associated with the parameter and / or variable in question. There is evidence and/or experience that there is a high correlation. High 7
Variability indirectly affects the critical quality attribute, and/or intermediate stages of the process, whose performance has significant influence over the attribute. There is evidence and/or experience that there is still a significant correlation. Middle 5
Variability affect the process stages performance, although with little or none influence over the critical quality attribute. There is evidence and/or experience that there is a low correlation. Low 3
Variability has little influence on the process stages performance without affecting any of critical quality attributes. There is evidence and/or experience that there is no correlation each other. None 1

Table 2. Cause-effect matrix

Quality Attribute QA1 QA2 . . . QAn Total % TT

Criticality level N1 N2 . . . Nn

Operation/stage 1
Parameter 1 M1 M2 . . . Mm T1 PC1

Parameter 2 : : : : : :
: : : : : : :
Operation/Stage 2
Parameter 3 : : : : : :
: : : : : : :
Overall total: Overall total: Overall total: Overall total: Overall total: TT 100

Where:

Nn: Criticality level of critical quality attributes.

Mn: Criticality level of each parameter over critical quality attributes.

Table 3. Valuation criteria according to the variability effect of quality attributes of supernatant over the
next process steps and product quality.

Valuation elements Criticality level Index

The attribute has a potential impact on the performance of downstream processes and can even be negatively reflected in the quality of the final product without being able to be detected. There is a risk to patient safety. Very high 7
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Valuation elements Criticality level Index

The attribute has a potential impact on the performance of downstream processes, and can even be negatively reflected in the quality of the final product, although able to be detected. There is minor risk to patient safety. High 5
The attribute has a potential impact on the performance of downstream processes, although without negative effect on the final product. There is no risk to patient safety. Middle 3
The attribute has no impact on the performance of downstream processes. Low 1

Table 4. Pareto criteria applied to process parameters

Id. Parameter Process step Valuation Index % total % cumulative

24 Viability 500 L bioreactor 193 4.89 4.89
25 Temperature 500 L bioreactor 191 4.84 9.74
26 Acid-Base equilibrium 500 L bioreactor 185 4.69 14.43
31 Specific growth rate 500 L bioreactor 173 4.39 18.81
33 Metabolic content in culture media 500 L bioreactor 159 4.03 22.84
20 Culture time 500 L bioreactor 157 3.98 26.83
34 Efficiency of the perfusion system device 500 L bioreactor 151 3.83 30.65
36 Viable cell density 500 L bioreactor 151 3.83 34.48
37 CSPR 500 L bioreactor 151 3.83 38.31
32 Specific production rate 500 L bioreactor 131 3.32 41.63
39 Supernatant’s holding time Harvest 131 3.32 44.95
35 Osmolality 500 L bioreactor 128 3.25 48.2
23 Stirrer speed 500 L bioreactor 105 2.66 50.86
3 Biological activity Thawing 101 2.56 53.42
22 Inoculum Viability 500 L bioreactor 99 2.51 55.93
27 Disolved oxigen 500 L bioreactor 97 2.46 58.39
38 Supernatant’s holding temperature Harvest 97 2.46 60.85
28 Feeding flow rate 500 L bioreactor 89 2.26 63.11
10 Viability Stationary flasks expansion 85 2.16 65.26
12 Viable cell density Stationary flasks expansion 85 2.16 67.42
18 Viability Shaken flasks expansion 85 2.16 69.57
19 Viable cell density Shaken flasks expansion 85 2.16 71.73
21 Inoculum cell density 500 L bioreactor 85 2.16 73.88
6 IgG concentration Thawing 77 1.95 75.84
11 Osmolality Stationary flasks expansion 73 1.85 77.69
30 Pressure 500 L bioreactor 71 1.8 79.49
5 Viable cell density Thawing 65 1.65 81.14
7 Temperature Stationary flasks expansion 65 1.65 82.78
8 Inoculum cell density Stationary flasks expansion 65 1.65 84.43
9 Metabolic content in culture media Stationary flasks expansion 65 1.65 86.08
13 Temperature Shaken flasks expansion 65 1.65 87.73
16 Metabolic content in culture media Shaken flasks expansion 65 1.65 89.38
29 Gas flow 500 L bioreactor 65 1.65 91.02
1 Centrifugation time Thawing 59 1.5 92.52
2 Centrifugation speed Thawing 59 1.5 94.02
4 Viability Thawing 59 1.5 95.51
14 Inoculum cell density Shaken flasks expansion 59 1.5 97.01
15 Shaker speed Shaken flasks expansion 59 1.5 98.5
17 Osmolality Shaken flasks expansion 59 1.5 100

Table 5. Critical parameters of the bioreactor
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No. Critical parameter Notation Measurement units

1 Viable cell density Xv cel/mL
2 Viability Viab %
3 Temperature T ºC
4 Acid-base equilibrium (pH) pH -
5 Feeding flow rate F L/d
6 Stirrer speed rpm min-1

7 Dissolved oxygen %DO %
8 Specific production rate qP μg/cel*h
9 Specific growth rate Vc h-1

10 Culture time t d
11 Cell specific perfusion rate CSPR nL/cel*d

Figure Legends

Figure 1. Process parameters assessment by applying Pareto criteria. On the left axis: Valuation Index
represented by the blue bars. On the right axis: % cumulative represented by red line.

Figure 2. Explained variance. Two PC’s are sufficient to explain more than 80% of data variability.

Figure 3. Influence graph applied to five fermentation runs for the assayed year. On X-axis: leverage. On
Y-axis: Residual X-variance

Figure 4. Scores graph and Hotelling´s ellipse represented for a 95% of confidence. (Applied to five fermen-
tation runs for the assayed year). On X-axis: PC1. On Y-axis: PC2.

Figure 5. Correlation loading applied to five fermentation runs for the assayed year. On X-axis: PC1. On
Y-axis: PC2

9
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