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Abstract

In this work two-phase Stefan problem for the cylindrical heat equation is considered. One of the phase turns to zero at
initial time. In this case, it is difficult to solve by radial heat polynomials because the equations are singular. The solution
is represented in linear combination series of special functions Laguerre polynomial and confluent hyper-geometric function.
The free boundary is given and heat flux is found. The numerical and approximate test problem is compared graphically. The

undetermined coefficients are founded. The convergence of series proved.
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Introduction

The cylindrical heat equation is an important in mathematical modeling of heat transfer in bodies which
cylindrical domain. The solution, with another words temperature distribution, in such model can take
form of series for special function (Laguerre polynomials). In the developement heat processes models the
partial differential equations play necessary role (2014; Zvyagin V, 2015; Slota D. Homotopy perturbation
method for solving the two-phase inverse Stefan problem. Numer. Heat Transfer. Part A: Appl, 2011).
The free boundaries theory takes the big process in the last half century. We refer to Chen et al.(Chen
G-Q & future developments. Phil. Trans R. Soc. 2015; A373:20140285-1-20140285-8, 2015) and Friedman
(boundary problems in biology. Phil. Trans. R. Soc. 2015; A373:20140368-1-20140368-16, 2015; boundary
problems for parabolic equations I. Melting of solids. J. Math. Mec. 1959; 8:499-517, 1959) literatures to
realize some models which can be expressed as free boundary problems. In process of heat arcing the phase
transformation takes place, therefore we consider Stefan-type problems (Bermidez A, 2006; Rubinstein L. 1.
The Stefan problem. Trans. Math. Monogr. Vol. 27, 1971). Present study is devoted to such Stefan problem
in which temperature functions considered in form of special functions with unknown coefficients which have
close link introduced by P.C. Rosenbloom and D.V. Widder (Rosenbloom et al., 1959). To represent solution
form of the problem we consider the following equation
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It is well known that this equation has two linearly independent solutions
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where ®(a, b; z) is the confluent (degenerate) hypergeometric function. Setting 7'(z) = ¢(z), where z = —22,
one can find that 7'(z) satisfies the equation
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Using this equation one can check up that the function
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satisfies the equation
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Hence the functions
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satisfy the equation (3). If § is an even integer, 5 = 2n, the function Sg . (z,t) can be expressed in terms of
the generalized Laguerre polynomials
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where p = % It should be noted that this formula is valid for x> 0 only.

Using the integral representation for the degenerate hypergeometric function
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For v = 1 both functions (1) coincide:
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In this case, the second linearly independent solution of the equation (3) is (G. Szego. Orthogonal polyno-
mials. American Mathematical Society, 1939)
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where

Problem definition

We consider the following problem of heat transfer in solid phase 0 < r < «(t) and in liquid phase «a(t) <
r < oo which can be modelled with cylindrical heat equation
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with initial conditions
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and boundary conditions
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Stefan’s condition at free boundary is

. 00i(a(t),t) | 982(alt).?) do
A1 or = or I dt

(4)

and condition at infinity is
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Problem solution

For 8 = 2n we can represent solution of (4)-(4) as form of linear combinations of special functions
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(n) il mzzo (m—&—n er—&—l) and 01 (r,t), O2(r,t) are temperatures in solid and liquid zones, 8,, is melting
temperature and A,,, B, C,, are unknown which have to be determined. The equations (4) and (4) satisfy
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given. From (4) we have
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and comparing degree of r we obtain definition for coefficient C,, as follows
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The algorithm to find coefficients A,, and B,, is that from condition (4) we express coefficients A,, and by
making substitution to (4) we can get coefficients B,,. At first, we take m-th derivative from (4) and (4)
when 7 = 0, where 7 = /.
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We use the Leibniz rule for (4) and (4), then we have
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formula for taking derivative from composite function and we get the following results
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In particular, when m = 0 and 7 = 0 we have the following initial coefficients
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By using formulas (4)-(4) we have the next recurrent expressions for conditions (4) and (4)
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where (1) = 26@( 2_:1 a,7""1) . From recurrent expression (4) we express coefficient A, and making

substitution to (4) we can determine B,, as free boundary is given and coefficient C,, can be founded from
(4). Then from condition (4) we can describe the recurrent formula for heat flux
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Another way, by making substitution the condition (4) to Stefan condition (4) and using temperature 6 (r, t)
we can find heat flux coefficients.

Numerical test problem

In this section, collocation methods which practical for engineers are shown by taking initial five points

2
t; = 2 where i = 0,1,2,3,4,5. Solution is found exactly and approximately. Effectiveness of these methods

considered by taking the following problem
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We represent solution in the form of series for special functions
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where L, (x) are associated Laguerre polynomials.

Exact and approximate solution

If we take free boundary a(t) = agv/t and function f(r) = r, where oy = L = v = A = 1, then we have
the coefficients of (r,t) as follows By = 1,B; = 0.2, By = 0.02, B3 = 1.41 x 1073, By = 7.405 x 10~° an
By = 3.143 x 1076, For heat flux we have P, = —0.4, P3 = —0.367, P; = —0.171 and Py = P, = P, = 0.

For approximate solution by using Mathcad 15 calculation, we have for temperature By = 1, B; = 0.2, By =
0.02, By = 1.442x 1073, By = 6.196x 10~ and Bs = 5.225x10~¢ and heat flux P, = —0.4, Ps = —0.367, P =
—0.174 and Py = P, = Py = 0. The Figure 2 shows the exact flux (P_exact(t) ) and approximate heat flux

(P_app(t) ).
'l:l'\

-02

P exact(t) g4 -

Papp(t_ AN

— 0.5 \\

102 02 05 os

Figure 1: Exact and approximate heat flux functions.

By using formula of relative error we can get Figure ?? which depicts that error estimate is 0.339% near to
t=1.
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Figure 2: Relative error function between 0 < t < 1.

Convergence of series

Convergence of series (4)-(4) can be proved as following. Let a(tg) = 1o for any ¢t = to. Then series (4) can
be written as
3l
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The series (4) and (4) must be convergence because 01 (a(t),t) = 02(a(t),t) = ,,. Then there exists some
constant D; independent of n and for the first term of (4) we have
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Since A,, bounded, then multiply both sides of (4) by (4a%t)"Ln< - M) we obtain
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For second term of (4) we consider that there exists some constant Dy and we obtain
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These geometric series and 6; convergence for all < pp and the same 6 convergence for all » > pg and
t < to. Convergence for equation (4) and «a(t) can be determined analogously.
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