Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances

Antoine Vernay¹, Xianglin Tian², Jinshu Chi¹, Sune Linder³, Annikki Makela², Ram Oren⁴, Matthias Peichl¹, Zsofia Stangl¹, Pantana Tor-Ngern⁵, and John Marshall¹

May 29, 2020

Abstract

Gross primary production (GPP) is a key component of the forest carbon cycle. However, our knowledge of GPP at the stand scale remains uncertain because estimates derived from eddy covariance (EC) rely on semi-empirical modeling and the assumptions of the EC technique are sometimes not fully met. We propose using the sap flux/isotope method as an alternative way to estimate canopy GPP, termed GPPiso/SF, at the stand scale and at daily resolution. It is based on canopy conductance inferred from sap flux and intrinsic water-use efficiency estimated from the stable carbon isotope composition of phloem contents. The GPPiso/SF estimate was further corrected for seasonal variations in photosynthetic capacity and mesophyll conductance. We compared our estimate of GPPiso/SF to the GPP derived from PRELES, a model parameterised with EC data. The comparisons were performed in a highly instrumented, boreal Scots pine forest in northern Sweden, including a nitrogen fertilised and a reference plot. The resulting annual and daily GPPiso/SF estimates agreed well with PRELES, in the fertilised plot and the reference plot. We discuss the GPPiso/SF method as an alternative which can be widely applied without terrain restrictions, where the assumptions of EC are not met.

Hosted file

AVernay_PCE_MainDocument_V6.docx available at https://authorea.com/users/308637/articles/455269-estimating-canopy-gross-primary-production-by-combining-phloem-stable-isotopes-with-canopy-and-mesophyll-conductances

¹Swedish University of Agricultural Sciences - Umea Campus

²University of Helsinki

³Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), PO Box 49, SE-23053

⁴Duke University

⁵Chulalongkorn University

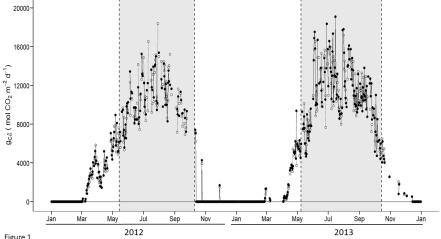


Figure 1

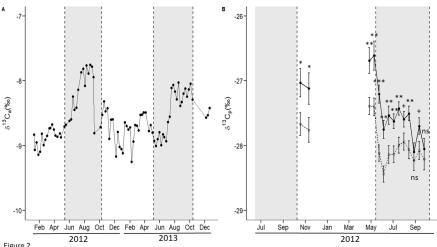
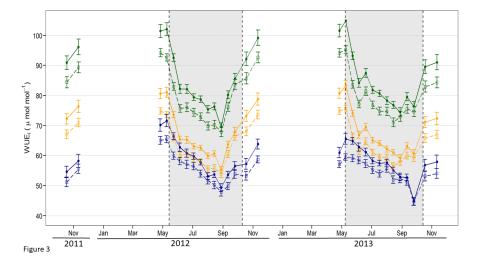
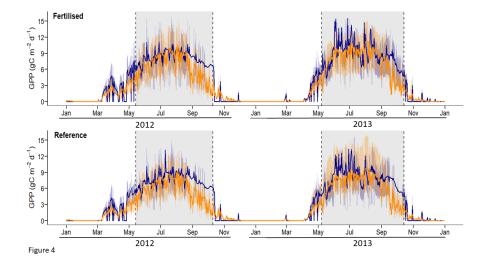
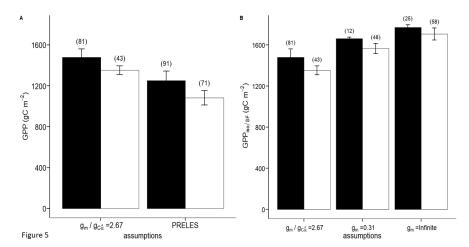





Figure 2

2

