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Abstract

In this study, our aim is to provide a modification of the so-called Ismail-May operators that preserve exponential functions

eAx, A ∈ R. In consonance to this, we begin with estimating the convergence rate of the operators in terms of usual and

exponential modulus of continuity. We also provide a global approximation and a quantitative Voronovskaya result. Moreover,

to validate the modification, we exhibit some graphical representations using Mathematica software to compare the original

operator and its modification. We conclude that the modified operators not only preserve exponential functions but also provide

faster rate of convergence when A > 0.
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Introduction

In extension to the work on exponential operators by May

(Saturation & inverse theorems for combination of a class of exponential–type
operators. Canad. J.Math.1976:28(6):1224–, 1976), Ismail and May cyan(Ismail
M, 1978) showed that for a polynomial p(x) of degree n ∈ N, an approxima-
tion operator can be uniquely obtained by determining its unique kernel. As
a consequence of this, besides recovering some well known operators such as
Szász operators, Classical Bernstein operators, Post-Widder operators etc. for
polynomials of degree at most two, they also constructed some new operators
with cubic polynomials. For instance, if p(x) = 2x3/2, the newly constructed
operators are defined as

where Iλ(y) is a first kind modified Bessel function identified as

These operators were further studied in detail in cyan(of Certain Exponential
Type Operators. In International Conference on Recent Advances in Pure and
Applied Mathematics, Springer, Singapore. 2018:47–55, 2018). Again for p(x) =
x(1 + x2), the corresponding operators obtained are

where and λ > 0. These operators were further studied in detail by (cyan(Km
Lipi, 2020), cyan(Mishra NS, 2020)). Another such operator for p(x) = x3 is

2
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3defined by

Pn(f, x) =

∫ ∞
0

kn(x, t)f(t)dt, x ∈ (0,∞)

(])

whose kernel is defined as

These operators were studied further in detail by Gupta cyan(with certain ex-
ponential operators. Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Math.
RACSAM.2020:114(2):51, 2020). All the three approximation processes cited
above are examples of exponential operators as they satisfy the normalization

condition Wλ (1, x) =
∞∫
−∞

S (λ, x, t)dt = 1 and the partial differential equation

∂

∂x
S (λ, x, t) =

λ(t− x)

p(x)
S (λ, x, t) ,

where, S(λ, x, t) ≥ 0 is the kernel of the operators and λ, x belong to any subset
of R.
In past years, there have been several modifications of operators to enhance their
convergence and error estimation process (see cyan(Dhamija M, 2018),cyan(Nur
Deveci S, 2020),cyan(Deo N, 2019)). In 2003, King cyan(linear operators which
preserve x2. Acta Math. Hungar. 2003:99(3):203–208, 2003) presented a se-
quence of linear positive operators which approximated each continuous function
on [0, 1] while preserving the test function x2. This remarkable approach has
been since applied by many researchers to propose good modifications and fulfil
the need to achieve better approximation. For example, Duman and Özarslan
cyan(Duman O, 2007) gave a modification of classical Szász operators to provide
a better error estimation. Bodur et al. cyan(Bodur M, 2018) introduced a gen-
eral class of Baskakov–Szász–Stancu operators preserving exponential functions.
Readers can refer to the articles [cyan(2017), cyan(Gonska H, 2009),cyan(Tachev
G, 2018),cyan(Gupta V, 2018)] for more such interesting papers related to this
approach.

Instigated by the above-mentioned researches, we propose to construct a modi-
fication of the operators (blue]equation.0.1) which reproduce exponential func-
tions. We begin with the following form of the operators (blue]equation.0.1),
for functions f ∈ C(R+) where R+ = (0,∞), we consider

Bn(f ;x) =

∫ ∞
0

ln(x, t)f(t)dt, x ∈ R+



4(])

where

Using calculation analogous to that given in cyan(with certain exponential op-
erators. Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Math. RAC-
SAM.2020:114(2):51, 2020), we can evaluate Bn (eat;x) as:

Bn
(
eat;x

)
= exp

 n

σn (x)

1−

√
n− 2a(σn (x))

2

n

 ,

(])

which is the moment generating function of our proposed operators (blue]equation.0.2).
This is used to find the moments and central moments throughout this paper.
Now based on the above form of the operators, we divide our paper into three
major sections. The first section defines the form of operators (blue]equation.0.2)
that preserves constants and exponential function e−x. We prove our main re-
sults that involve global approximation, Voronovskaya type asymptotic result
and its quantitative version in this section. The second section deals with the
form of proposed operators that preserve the exponential function eAx, A ∈ R
and prove an improved Voronovskaya theorem for functions with exponential
growth. Finally in the last section, we provide some graphical representations
in support of our results using mathematica software and conclude that our
modified operators along with preserving exponential functions, provide faster
rate of convergence.

e−x = exp

 n

σn (x)

1−

√
1 +

2(σn (x))
2

n

 .

σn (x) =
2nx

2n− x2
.

Preservation for e−x

We begin with our proposed operators (blue]equation.0.2). Assuming that
they preserve the exponential function e−x, we can write Bn(e−t;x) = e−x and
therefore making use of Eqn. (blue]equation.0.3), we get



5Comparing exponents on either sides of the above equation and with easy ma-
nipulations, we obtain

Thus our proposed operators can be rewritten in the following form:

Bn(f ;x) =

∫ ∞
0

ln(x, t)f(t)dt, x ∈ R+

(])

where

Bn(eγt;x) = exp

(
2n− x2

2x

(
1−

√
1− 8nx2γ

(2n− x2)
2

))
.

Lemma 0.1 For all x ∈ R+ and n ∈ N, we have

which is also the moment generating function of the operators (blue]equation.0.4).

Lemma 0.2 For the operators (blue]equation.0.4), if ev (t) = tv, v = 0, 1, 2, ..,
then the moments are as follows:

In view of moment generating function given in Lemma blue0.1lem.0.1, the rth−
moment of operators (blue]equation.0.4) is given by-

B[r]n (x) =

[
∂r

∂γr

{
exp

(
2n− x2

2x

(
1−

√
1− 8nx2γ

(2n− x2)
2

))}]
γ=0

.

(])

The expansion of Eqn. (blue]equation.0.5) in terms of γ calculated using Math-
ematica Software is as follows:



68n7x4 − 12n6x6 + 48n6x5 + 6n5x8 − 48n5x7

+120n5x6 − n4x10 + 12n4x9 − 60n4x8 + 120n4x7
γ43
(
2n− x2

)7
+O

(
γ5
)

Thus the rth-moment of the operators (blue]equation.0.4) can be obtained by
evaluating rth-partial differentiation with respect to γ of the above expansion
at γ = 0.

ηn,1 (x) = σn (x)− x,

ηn,2 (x) = (σn (x)− x)
2

+
σ3
n (x)

n
.

Lemma 0.3 Let ηn,m (x) = Bn ((t− x)
m

;x) ,m = 1, 2, denote the central mo-
ments of operators (blue]equation.0.4), then

e−γx exp

(
2n− x2

2x

(
1−

√
1− 8nx2γ

(2n− x2)
2

))
,

Using the property of change of origin of moment generating functions

Expanding this in terms of γ, we get

384n5x6 + 192n4x9 + 576n4x8 + 1920n4x7 + 8n3x12

−192n3x11 − 384n3x10 − 12n2x14 + 48n2x13 + 6nx16 − x18
γ424

(
2n− x2

)7
+O

(
γ5
)
.

The coefficient of γm/m! in the above expansion is the mth−order central mo-
ment of operators (blue]equation.0.4) .

Remark 0.1 With simple calculations from Mathematica software, for ade-
quately large n we have:

$ (f, δ) = sup
|e−x−e−t|≤δ

|f (x)− f (t)| , x, t ≥ 0.

1. lim
n→∞

nηn,1 (x) = x3

2 ,

2. lim
n→∞

nηn,2 (x) = x3,

3. lim
n→∞

n2ηn,4 (x) = 3x6,

4. lim
n→∞

n2Bn
(

(e−x − e−t)4;x
)

= 3e−4xx6.



7In cyan(rate of approximation of functions in an infinite interval by positive
linear operator. Stud. Univ. Babes–Bolyai, Math.2010:55(2):133–142, 2010),
Holhoş defined modulus of continuity for exponential operators as:

and provided a quantitative result for sequence of linear positive operators on
a class of real-valued continuous functions Ç(R+). These functions f(x) have
finite limit at infinity and are endowed with Chebyshev norm.
The defined modulus of continuity $ possess the following property:

|f (t)− f (x)| ≤

(
1 +

(e−x − e−t)2

δ2

)
$ (f, δ) .

(])

The result by Holhoş cyan(rate of approximation of functions in an infinite inter-
val by positive linear operator. Stud. Univ. Babes–Bolyai, Math.2010:55(2):133–
142, 2010) is given as:

∥∥Qn (e−vt)− e−vx∥∥∞ = ρv (n) ,

‖Qnf − f‖∞ ≤ ρ0 (n) ‖f‖∞ + (2 + ρ0 (n))$
(
f,
√
ρ0 (n) + 2ρ1 (n) + ρ2 (n)

)
.

cyan(rate of approximation of functions in an infinite interval by positive linear
operator. Stud. Univ. Babes–Bolyai, Math.2010:55(2):133–142, 2010) If Qn :
Ç(R+)→ Ç(R+) satisfy the following inequality for v = 0, 1, 2

then for f ∈ Ç(R+), we have

‖Bn (f ;x)− f(x)‖∞ 6 2$
(
f,
√
ρ2 (n)

)
,

The sequence of modified exponential operators Bn : Ç(R+) → Ç(R+) satisfy
the following inequality for f ∈ Ç(R+)

where ρ2 (n) tends to zero for adequately large n.

Bn
(
e−2t;x

)
= exp

(
2n− x2

2x

(
1−

√
1 +

16nx2

(2n− x2)
2

))
.

fn (x) = exp

(
2n− x2

2x

(
1−

√
1 +

16nx2

(2n− x2)
2

))
− e−2x.

‖fn‖∞ = fn (ϑn) .
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2n+ ϑ2n
2ϑ2n

 −1√
1 +

16nϑ2
n

(2n−ϑ2
n)

2

+ 1

 exp

(
2n− ϑ2n

2ϑn

(
1−

√
1 +

16nϑ2n

(2n− ϑ2n)
2

))
= 2e−2ϑn .

Since the operators preserve the constant as well as exponential function e−x,
so by Theorem blueequation.0.6, ρ0 (n) = 0 and ρ1 (n) = 0. We only need to
evaluate ρ2 (n). Next from Lemma blue0.1lem.0.1, we have

Consider a sequence of functions

As fn (x) vanishes at end points of R+, therefore there exists a point ϑn ∈ R+

such that

Also the derivative of the sequence of functions vanishes at ϑn i.e. f ′n (ϑn) = 0.
Making use of Mathematica software, this gives

Therefore, we have

as n → ∞. Thus in view of Theorem blueequation.0.6, we get the required
result.

K2 (f, δ) = inf
g∈C2

κ(R+)
{‖f − g‖+ δ ‖g′′‖ , δ > 0} ,

Let Ck(R+) denote the space of all real valued continuous and bounded func-
tions equipped with the Chebyshev norm and let us consider the following K-
functional:

where C2
κ (R+) = {g ∈ Cκ (R+) : g′, g′′ ∈ Cκ (R+)} .

Let f ∈ Cκ(R+). We define auxiliary operators

|Bn(f ;x)− f(x)| 6 Rω2(f,
√
δ) + ω(f, σn (x)− x),

δ = ηn,2 (x) + (σn (x)− x)
2
.

then, there exists a constant R > 0 such that where

g(t) = g(x) + (t− x)g′(x) +

t∫
x

(t− u)g′′(u)du.



9Let g ∈ C2
κ(R+) and x, t ∈ R+, then by application of Taylor’s expansion, we

have

Using Eqn. ?? and the fact that T̂n ((t− x);x) = 0 , we have

Also, we have

|Bn (f ;x)| 6 ‖f‖ .

(])

Combining equations (??), (??) and (blue]equation.0.7), we get

Taking infimum over all g ∈ C2
κ(R+) and using the relation given in cyan(DeVore

RA, 1993), K2 (f, δ) 6 Cω2

(
f,
√
δ
)
, δ > 0, we get the desired result.

Let f ∈ Ck(R+) with continuous first and second derivative exist. Then for
x ∈ R+, the following inequality holds:

where un (x) = nηn,1 (x)− x3

2 and vn (x) = 1
2

(
nηn,2 (x)− x3

)
nηn,2 (x)− x3.

By the Taylor’s expansion, we have

Θ (t, x) =
f ′′ (=)− f ′′ (x)

2
, = ∈ (x, t).

f (t) =

2∑
i=0

(t− x)
i f

(i) (x)

i!
+ Θ (t, x) (t− x)

2
,

(])

where Θ (t, x) is a continuous function given by:



10Applying the operator Bn to the inequality (blue]equation.0.8), we can write

Therefore using Remark blue0.1rem.0.1, we get

|Θ (t, x)| ≤ 1

2

(
1 +

(e−x − e−t)2

δ2

)
$ (f ′′, δ) .

where un (x) = nηn,1 (x)− x3

2 → 0 and vn (x) = 1
2

(
nηn,2 (x)− x3

)
nηn,2 (x) −

x3 → 0 in accordance with Lemma blue0.2lem.0.2, for adequately large n.
Using the Property blue]equation.0.6 of modulus of continuity defined by Holhoş
cyan(rate of approximation of functions in an infinite interval by positive linear
operator. Stud. Univ. Babes–Bolyai, Math.2010:55(2):133–142, 2010), we get

Hence, after applying Cauchy-Schwarz inequality to the last part of Eqn. (??),
we get

Choosing δ = n−1/2,

In view of Eqn. (??) and Remark blue0.1rem.0.1, we obtain the desired result.

lim
n→∞

n [Bn (f ;x)− f (x)] =
x3

2
[f ′ (x) + f ′′ (x)]

Corollary 0.1 Let f, f ′, f ′′ ∈ Ç(R+), then for x ∈ R+ we have



11The case of eAx, A ∈ R

In this section, we present a more general form of the operators (blue]equation.0.2)
that reproduces both constants and exponential functions of the form eAx, A ∈
R. We observe that the modified operators possess faster and better rate of con-
vergence as compared to the original operators (blue]equation.0.2) for A > 0.
To endorse the assertion made, we exhibit some graphical representations with
the aid of numerical examples and compare the rate of convergence of both
original and the modified operators.

σn (x) =
2nx

2n+Ax2
.

Taking into consideration operators (blue]equation.0.2) again and assuming they
reproduce functions of the form eAx, i.e Bn(eAt;x) = eAx , we obtain

Operators (blue]equation.0.2) therefore now take the following form:

Bn(f ;x) =

∫ ∞
0

ln(x, t)f(t)dt, x ∈ R+

(])

where

Lemma 0.4 For all x ∈ R+ and n ∈ N, we have

The quantities BAn
(
teAt;x

)
and BAn

(
t2eAt;x

)
are obtained simply by succes-

sively partially differentiating BAn
(
eAt;x

)
with respect to A on both sides.

Lemma 0.5 For br (x) = xr, r ∈ N∪{0}, the operators (blue]equation.0.9) hold
the following moments:

i) BAn (b0;x) = 1;

ii) BAn (b1;x) = 2nx
2n+Ax2 ;

iii) BAn (b2;x) =
4n2(Ax4+2nx2+2x3)

(Ax2+2n)3
;

iv) BAn (b3;x) =
8n3(A2x7+4Anx5+6Ax6+4n2x3+12nx4+12x5)

(2n+Ax2)5
;



12v) BAn (b4;x) = 16n4 (

A3x10 + 6A2nx8 + 12A2x9 + 12An2x6 + 48Anx7

+60Ax8 + 8n3x4 + 48n2x5 + 120nx6 + 120x7 (2n+Ax2)7.

Lemma 0.6 Let ηAn,m (x) = BAn ((t− x)
m

;x) ,m = 1, 2, denote the central mo-
ments of operators (blue]equation.0.9), then it can be verified:

1. ηAn,1 (x) = − Ax3

2n+Ax2 ,

2. ηAn,2 (x) =
(8n2x3+2A2nx6+A3x8)

(2n+Ax2)3
.

‖f‖A = sup
x∈R+

∣∣f (x) e−Ax
∣∣ <∞.

ω∗ (f, δ, A) ≤ sup
h<δ,x∈R+

|f (x)− f (x+ h)| e−Ax.

In order to prove our next theorem, let us define a space S of all functions
having exponential growth of order A endowed with norm:

Let for some 0 ≤ α < 1, Lip(α,A) be the space containing all those functions
f which satisfy ω∗ (f, δ, A) ≤ Mδα, where ω∗ is the first order modulus of
continuity defined in cyan(global inverse theorems of Szász & operators. Canad.
J. Math. 1979:31(2):255–263, 1979) as:

and for every positive number h > 0 and k ∈ N has the following property:

ω∗ (f, kh,A) ≤ k.eA(k−1)h.ω1 (f, h,A)

(])

Let BAn : S → Ç(R+). If f ∈ C2
κ (R+) ∩ S and f ′′ ∈ Lip(α,A), then for fixed

x ∈ R+ and n > 2Ax, we have

where M (A, x) =
(2+Ax2)

2

(2−Ax2)3
e2Ax is a constant independent of n but dependent

on A and x.

By Taylor’s Expansion, we have

Θ2(t, x) =
f ′′ (τ)− f ′′ (x)

2
(t− x)

2
.

f (t) = f (x) + (t− x) f ′ (x) +
(t− x)

2

2!
f ′′ (x) + Θ2(t, x),

(])
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where

such that τ lies between x and t and Θ2(t, x) is a continuous function which
vanishes as t approaches x.
Applying the operator BAn on Eqn. (

∣∣BAn (f ;x)− f (x)− ηAn,1 (x) f ′ (x)− ηAn,2 (x) f ′′ (x)
∣∣ ≤ BAn (|Θ2(t, x)| ;x) .

(])

Using the Property

BAn (|Θ2(t, x)| ;x) ≤ ω∗ (f ′′, h, A)

2

[
BAn

((
e2Ax + eAt

)
.

(
|t− x|2 +

|t− x|3

h

)
;x

)]
.

(])

Taking x fixed and n > 2Ax, we have

M (A, x) =

(
2 +Ax2

)2
(2−Ax2)

3 e
2Ax.

where

Moreover using Cauchy-Schwarz inequality, we get

Combining Eqns.(

and hence the theorem.



14Remark 0.2 One can easily observe in the above theorem,

- Second central moment ηAn,4 (x) of the proposed operators (blue]equation.0.9)

is smaller for A > 0 and x > 1
2A as compared to that of original operators

(blue]equation.0.1),

- For A > 0, the ratio h =

√
ηAn,4(x)

ηAn,2(x)
is higher of original operators as

compared to that for our modified operators.

- In addition, the constant M(A, x) which is independent of n is also sig-
nificantly reduced for our modified exponential operators if we take A > 0.

Thus judging on the basis of above mentioned rationales, we can say that The-
orem

lim
n→∞

n
[
BAn (f ;x)− f (x)

]
=
x3

2
[−Af ′ (x) + f ′′ (x)] .

Corollary 0.2 Let f, f ′′ ∈ S and A > 0, then for any x ∈ R+, we have

Remark 0.3 The advantage of Corollary

Conclusion

We now conclude that our proposed operators (blue]equation.0.9) is an improved
approximation operator which not only preserves constant and exponential func-
tions eAx and but in fact also provides faster convergence and better approxi-
mation for some functions in comparison to the original exponential operators
for A > 0. Here we have shown properties which are superior to that of original
operators and work for a much wider function spaces. To highlight our state-
ments, we exhibit some figures based on numerical examples to show a faster
rate of convergence for our modified operators and also its comparison with
the original operators (blue]equation.0.1) for arbitrarily chosen values of n and
A > 0.

Graphical Comparisons

Example 0.1 Let f(x) = 5x[sinh(x)]. Then we have the following graphical
representations where our function f(x) is represented in purple color through-
out.

a) Figure

After analyzing Figure
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Figure 1: Comparison between operators BA10 (Green), P10 (Red) towards
function f(x) (Purple) for n = 10 and A = 1.

Figure 2: Comparison between convergence of operators BA50 (Cyan), P50

(Brown) towards function f(x) (Purple) for n = 50 and A = 1.
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Figure 3: Convergence of BAn (f ;x) for the function f(x) = 5x[Sinh(x)] (Purple)
is illustrated for n = 10 (Green), n = 25 (Orange), n = 50 (Cyan) for A = 1.
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