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Abstract

Geographical gradients in species diversity have long fascinated biogeographers and ecologists. However, the extent and gen-
erality of the positive/negative effects of the important factors governing functional diversity (FD) patterns are still debated,
especially for the freshwater domain. We examined lake productivity and functional richness (FRic) of waterbirds sampled from
35 lakes and reservoirs in northern China with a geographic coverage of over 5 million km2. We used structural equation mod-
elling (SEM) to explore the causal relationships between geographic position, climate, lake productivity and waterbirds FRic.
We found unambiguous altitudinal and longitudinal gradients in lake productivity and waterbirds FD, which were strongly
mediated by local environmental factors. Specifically, we found 1) lake productivity increased northeast but decreased with
altitude, and the observed gradients were driven by climate and nutrient availability, with 93% of variation explained in the
individual SEM; 2) waterbirds FD showed similar geographic and elevational gradients.; the environmental factors which had
direct and/or indirect effects on these geographic and elevational gradients included climate, lake productivity and morphology,
which collectively explained more than 56% of the variation in waterbirds FD; and 3) a significant (P = 0.029) causality between
lake productivity and waterbirds FD was confirmed. Nevertheless, the causality link was relatively weak in comparison with
climate and lake area (standardized path coefficient was 0.65, 0.21, and 0.17 for climate, area, and productivity, respectively).
Through articulating the dominant causality paths, our results could contribute to the mechanistic explanations underlying the
observed broad–scale biodiversity gradients.

Introduction

One of the oldest and most important macroecology patterns is the spatial variability in biodiversity over
broad geographical extents (Field et al., 2009; Hawkins, 2001; Stein, Gerstner, & Kreft, 2014), an appropriate
knowledge of which is an essential key to guarantee the provision of multiple ecosystem services (Benedetti
et al., 2020). The planet Earth shows striking gradients in the diversity of plants and animals, from high
biodiversity in the tropics to low biodiversity in polar and high-mountain regions (Gaston, 2000; Rosenzweig,
1995; Whittaker, Nogues-Bravo, & Araujo, 2007; Willig, Kaufman, & Stevens, 2003). Due to the alarming
rate of biodiversity loss in the last decades caused by anthropogenic interruption (Prescott et al., 2016; Waide
et al., 1999), a modern resurgence of interests in taxonomic diversity patterns is likely to contribute important
insights for developing a more general theory of species diversity (Castro-Insua, Gómez-Rodriguez, & Baselga,
2016). Studies in the past decades has documented the broad-scale spatial patterns of species diversity, and
explored the mechanisms for such patterns, leading to conceptual insight on the biogeographical variation
of species diversity (Devictor et al., 2010; Field et al., 2009; Gaston, 2000). For example, diversity is often
highest at intermediate levels of ecosystem productivity (Grime, 1973; Mittelbach et al., 2001; Waide et al.,
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1999), and species diversity generally increases with habitat area (MacArthur & Wilson, 1967; Rosenzweig,
1995). In addition, environmental heterogeneity is considered as a universal driver of species diversity across
taxa, biomes and spatial scales (Stein et al., 2014). Importantly, both theoretical considerations and empirical
analyses suggest that patterns are likely scale dependent (Field et al., 2009; Mittelbach et al., 2001; Mouchet
et al., 2015).

Most macroecology researches have been focused on terrestrial ecosystems (Currie & Paquin, 1987; Qian,
Ricklefs, & White, 2005), and relative fewer studies have explored geographic biodiversity gradients and the
underling mechanisms for aquatic ecosystems (Astorga, Heino, Luoto, & Muotka, 2011; Barbour & Brown,
1974; Heino, 2002, 2011; Irz, Argillier, & Thierry, 2004; Jacobsen, 2004), especially the aquatic ecosystems
in the arid and semi-arid region, which provide important habitat for diverse species and water resource
for human living (Williams, 1999). Moreover, the geographical distribution of study sites is strongly biased
towards Europe and North America, with particularly poor coverage in Asia (Field et al., 2009; Fu, Wu,
Wang, Lei, & Chen, 2004). Study of species diversity in aquatic ecosystems is as essential as in their
terrestrial counterparts (Stendera et al., 2012). Declines in biodiversity are far greater in freshwaters than in
most terrestrial ecosystems (Sala et al., 2000), and freshwater ecosystems may well be the most endangered
ecosystems in the world (Dudgeon et al., 2006; Millennium Ecosystem Assessment, 2005). In addition,
the actual rates of freshwater species extinction due to human interruptions are much higher than natural
extinction rates (Naiman & Dudgeon, 2011). Therefore, a better understanding of the global freshwater
diversity gradients and the major environmental drivers remains a major topic (Heino, 2011); and such
studies serve to address some fundamental questions for conserving freshwater taxa (Tisseuil et al., 2013).

In addition, biodiversity assessments are an important component of conservation planning and increasingly
used to identify land-use management practices that maximise both evolutionary value and ecosystem func-
tion (Chapman, Tobias, Edwards, Davies, & Vamosi, 2018). Key requirements are to maintain community
resilience to environmental disturbance and to preserve ecosystem functions and services across time and
space (Socolar, Gilroy, Kunin, & Edwards, 2016). Consequently, it is often proposed that we need to look be-
yond merely conserving species richness towards maintaining the maximum diversity of evolutionary lineages
and associated ecological functions (Bregman et al., 2016). The idea that functional diversity or functional
complementarity performs better than species richness as predictors of ecosystem functions is supported by a
range of empirical studies (Flynn, Mirotchnick, Jain, Palmer, & Naeem, 2011; Frund, Dormann, Holzschuh,
& Tscharntke, 2013; Petchey & Gaston, 2007). Functional diversity (FD) is a biodiversity component that
represents the extent of the functional differences among species based on the distinction of their morpho-
logical, physiological and ecological traits (Petchey & Gaston, 2006). Species loss may lead to a reduction in
FD depending on the intrinsic redundancy of assemblages (Flynn et al., 2009; Petchey, Evans, Fishburn, &
Gaston, 2007). A decrease on the FD of local and regional assemblages could have dramatic consequences
for ecosystem functioning because the traits of species, not just the number of taxonomic units, ultimately
drive biodiversity-ecosystem functioning relationships (Dıaz & Cabido, 2001; Hooper et al., 2005). World-
wide, strong geographic differences exist in the ecological attributes of birds (Kissling, Sekercioglu, & Jetz,
2012). Thus, we ask how these factors combined to affect the diversity of species assemblages under different
environmental conditions.

Waterbirds are ubiquitous components of freshwater systems, and their diversity and abundance have long
been recognized as suitable bioindicators of environmental change in aquatic systems (Caro & O’Doherty,
1999; Wen, Saintilan, Reid, & Colloff, 2016) and serves multiple significant functional roles in ecosystems
(Barbet-Massin & Jetz, 2015) (Figure 1). However, as with other freshwater biota, macroecological studies of
environmental drivers of waterbirds diversity are rare (Shah, Domisch, Pauls, Haase, & Jähnig, 2014; Stende-
ra et al., 2012; Zeng et al., 2019). It is unclear whether similar latitudinal and other broad geographical (e.g.
altitudinal) gradients apply to waterbirds as well. In a recent review, Heino (2011) found no clear latitudi-
nal gradients at regional scale while species richness typically attains highest levels in mountainous regions.
Using river basins as the spatial unit, however, Tisseuil et al. (2013) found that the ‘climate/productivity’
hypothesis (Field et al., 2009) explained large portion of geographic variance in waterbirds richness, which is
consistent to land avian species (Storch et al., 2006). Several factors are known to affect waterbirds diversity

2
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at a local scale, such as lake productivity, lake size, and habitat heterogeneity (Barbour & Brown, 1974;
Cintra, 2015; Xia et al., 2016). Linking these local scale variables with broad-scale geographical variations in
an integrative analysis framework could potentially articulate the leading processes underlying the regional
and global waterbirds richness patterns.

Lakes are ideal systems for studying the relationship between species richness and productivity (Dodson,
Arnott, & Cottingham, 2000). It provides a unique system to examine macro-ecological pattern involving
geographic and elevational gradients in inland aquatic systems. In this study, we apply multiple regression
analysis and structural equation models (SEM) to lake productivity and waterbirds FD data collected from
35 lakes and reservoirs across the temperate zone of arid and semi-arid China to examine macro-ecological
pattern involving geographic and elevational gradients in inland aquatic systems. Our primary goal is to test
the causal path of geographic location climate lake productivity waterbirds FD. In particular, we first develop
separate models for lake productivity and waterbirds FD to compare the dominant factors controlling the
gradients of the two indicators. We then build an integrative SEM with explicit causality from productivity to
waterbirds diversity to quantify the effect of lake productivity on waterbirds FD. Lake productivity is often a
strong predictor of freshwater biodiversity (Dodson et al., 2000), including aquatic animals (and zooplankton
as well) (Chase & Leibold, 2002) and phytoplankton (Stomp, Huisman, Mittelbach, Litchman, & Klausmeier,
2011). But its effect on waterbirds has rarely been tested. The productivity-richness hypothesis suggests a
positive effect of primary productivity on species richness by allowing larger populations to persist, thereby
reducing extinction risk and supporting a higher diversity of niche specialists (Tittensor et al., 2010; Willig
et al., 2003). In this context, a significantly positive path coefficient from lake productivity to waterbirds
could provide strong support to the productivity-richness hypothesis. However, a weak or no causal link
between the two might suggest that waterbirds, not like other aquatic biota like fish (Dodson, 2008) that is
constrained by water, have access to other energy sources; and their distribution is governed by other broad
scale factors. In this study, we applied FD metrics to waterbird communities sampled in 35 lakes across the
whole temperate arid and semi-arid northern China to test the productivity-richness hypothesis, and more
importantly, to fill in the gaps in our understanding of ecological patterns in aquatic ecosystems across a
large geographical scale.

Materials and methods

Study sites

We sampled a total of 35 lakes and reservoirs across the temperate zone of China (latitude 34.60° to 46.06°,
longitude 85.69° to 124.29°, Figure 2). The study area covers more than 5 million km2, including a range
of landforms such as mountains, hills, plateaus, and plains with altitude ranging from 22.61 m to 4818.10
m, which have large precipitation and temperature gradients. The total area of all the lakes is 508,288.1 ha,
ranges from about 70 to 98,800 ha. Mean depth of the lakes ranges from 0.05 to 30.00 m. Most of the lakes
are located in the arid and semi-arid region of China, which are relatively independent wetland ecosystems
(Wang & Dou, 1998). They provide critical habitats for diverse species (e.g. important breeding and staging
sites for waterbirds, some are also used as wintering ground, like Hengshui Lake). The environment in the
semi-arid area is sensitive to climate variation (Gong, Shi, & Wang, 2004). Human uses of the lakes mainly
include fishery, tourism, water source for irrigation, and reed harvest.

Data collection

Data were collected from 35 lakes and reservoirs during the summers of 2011-2016. The lakes were sampled
one to three times, with most of them sampled once in summer. In each lake, water samples were taken on
the same day as waterbirds survey during daylight hours.

3
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Waterbirds surveys

Waterbirds were surveyed using transect line method to cover the lakes. Fixed transects with variable lengths
were established in each lake and reservoir. Based on the size of each lake and reservoir, the transect length
varied from 1 to 5 km and the perpendicular searching distance varied from 0.1 to 0.6 km. We surveyed the
transects on foot with constant speed by using binoculars (8×42) and telescopes (Swarovski ATS 80 HD
20-60 × 80). To increase detectability, the surveys were carried out on clear days during daytime and there
were at least two fully trained observers for each transect. Visual and/or verbal communication enabled us
to avoid duplicate recordings of the same flock of waterbirds by the observers. Waterbirds were all identified
to species level. Lists of waterbirds species recorded by the nature reserves and published papers were also
collected and incorporated.

Functional trait data

To estimate functional diversity, we collected biometric trait data that describe key ecological attributes of
species from published literature for all 148 species. We collected 16 traits for each bird species, including
generation length (the average age of breeding individuals), clutch size (number of eggs), incubation times,
body size, body mass, wingspan, migratory types (full migration, altitudinal migration, and not migration),
breeding habitat range, diet (percentage of scavenger, and invertebrate, fish, seed, fruit and other plant
materials), habitat mode (percentage usage of water, riparian, and ground), and pelagic species (0/1) (Table
1). These selected traits measure many aspects of resource used by birds, such as the quantity and the quality
of resource consumed (Petchey & Gaston, 2007), as well as the fitness of the species such as reproduction
strategies and generation length (Luck, Andrew, Lisa, & Davies, 2013). For example, body mass is highly
related to birds’ energy requirements (Blendinger & Villegas, 2011). Diet is related to ecosystem functions
such as seed dispersal and food-web structure (Sekercioglu, 2006). The main sources of the trait measurements
are Planet of Birds, BirdLife International, and a database compiled by Wilman et al. (2014) (Table 1). Any
missing data were filled based on information in the ornithological literature, such as the Handbook of the
Birds of the World (http://www.hbw.com/). A brief summary is available in the Appendix S1.

We used functional richness (FRic) as the measure of functional diversity. FRic represents the amount of
functional space filled by the community (Villéger, Mason, & Mouillot, 2008). A community with high FRic
would be one with many traits (and potentially high utilization of resources), whereas one with lower FRic
might have some traits missing, suggesting that some niches are completely empty (Prescott et al., 2016).

Lake chemical characteristics and morphology

Indicators for lake chemical characteristics include total nitrogen (TN), total phosphorus (TP) and chloro-
phylla (Chl-a). Water samples for TN and TP in each lake were collected and preserved using 100-ml jars
on the same day with waterbirds surveys. All the water samples were sent to and processed in lab by using
Ultrospec 6300 pro spectrophotometer (GE Healthcare, America). Water samples for chlorophylla (Chl-a)
concentration were collected synchronously on site. We used 2-litre bottles to collect water samples in each
lake and reservoir and then filtered the water by using GF/C filter membrane, each filter membrane was
filtered with 500 mL water and three filter membranes (3*500 mL) were requested for every sampling point.
All water samples and filter membranes were preserved in <5 refrigerator and sent to lab for further test
by using Ultrospec 6300 pro spectrophotometer (GE Healthcare, America). Sample size ranges from 3 to 18
based on the area of lake. We set three, six, nine, 12 and 18 sampling points for lakes with area < 10,000
ha, 10,000-20,000 ha, 20,001-30,000 ha, 30,001-50,000 ha and >50,000 ha, respectively. Surface area of each
lake and reservoir was calculated from remote sensing interpretation by using Google Earth images from
year 2013 to 2016.

Climatic and geographical variables

To define the climate of the lakes, we used the 30 seconds WorldClim bioclimatic variables, which were down-
loaded fromWorldClim website, publicly available athttps://www.worldclim.org/data/worldclim21.html. The
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following bioclimatic variables were included in the study based on collinearity test (see below): mean diurnal
range (T1, mean of monthly (max temp-min temp)), mean temperature of the wettest quarter (T2), mean
temperature of the warmest quarter (T3), annual total precipitation (P1), precipitation of the driest month
(P2), precipitation of the warmest quarter (P3), and precipitation of the coldest quarter (P4). The variables
of climate are spatial means of each lake.

Altitudes of the sampled lakes were retrieved from GPS Visualizer on site. Mean geographical coordinates
of each site were calculated from remote sensing interpretation by using Google Earth images of each lake
and reservoir between years 2013 to 2016. The data of the 35 lakes and reservoirs used in this paper are
provided in the Appendix S2.

Data analyses

Our working hypothesis is that large-scale pattern of high trophic level species (waterbirds in this study)
diversity can be interpreted as a multilevel biogeographical pattern. That is, we envision that the species
diversity of a lake is to a large extent determined by local environmental factors (e.g. nutrients, lake surface
area), and that these local environmental factors in turn vary along biogeographical gradients. This nested
structure is reflected in our data analysis.

We combined our own survey data and historical records to compile a waterbirds community dataset for
each lake. FD was then calculated based on the compiled community data set. It is necessary to have several
years of observation because the species observed in a lake could vary from year to year. In addition, we used
the total chlorophylla proxy of primary productivity (Eppley, Stewart, Abbott, & Heyman, 1985; Falkowski
& Raven, 2013).

Multiple linear regression –relationships between geography, lake productivity and waterbirds
functional diversity

We used stepwise multiple regression with forward selection of variables to identify the most important local
environmental variables explaining waterbirds FD in the 35 lakes and reservoirs. Environmental variables
were log10-transformed if this resulted in a more uniform spread of data points. In addition, collinearity
between variables was also checked based on variance inflation factor by using the VIF function with package
“car ” (Fox et al., 2012) in R software (R Development Core Team, 2019). Environmental variables tested in
the multiple regression analysis were surface area of the lake (ha), total nitrogen (mg.L-1), total phosphorus
(mg.L-1) and lake productivity (mg.m-3), mean diurnal range (), mean temperature of the wettest quarter
(), mean temperature of the warmest quarter (), annual total precipitation (mm), precipitation of driest
month (mm), and precipitation of the warmest quarter (mm). We used the same stepwise multiple regres-
sion approach to investigate how each of these local environmental variables varied with the geographical
coordinates of latitude, longitude and altitude (m). The analysis was performed using R version 3.6.1 (R
Development Core Team, 2019).

Structural equation modeling – exploring the drivers of lake productivity and waterbirds
richness

To gain further understanding of the linkages between waterbirds FD, productivity and environmental vari-
ables, we modeled lake productivity and waterbirds functional richness (FRic) in an integrated manner
within the structural equation modeling (SEM) framework. SEM is a collection of procedures whereby com-
plex hypotheses, particularly those involving networks of path relations, are evaluated against multivariate
data (Grace, 2006). The resulting estimates for path coefficients in structural equation models represent
the implied sensitivities of response variables to variations in individual predictors (Grace et al., 2012). We
started with an initial SEM that included all plausible pathways between waterbirds functional diversity, the
selected set of local environmental variables, and the geographical coordinates of the lakes. Our first attempt
with the initial model revealed that it was under-identified, meaning that there was some redundancy such
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that it was not possible to estimate all of the model’s parameters. We therefore investigated the statistical
relationships among the variables included in the model to identify possible redundancies. Subsequently,
we fitted two separate SEMs for lake productivity and waterbirds functional diversity, and an integrated
SEM revealing the correlation between the two factors. The significance of each path-coefficient was tested
1000 bootstrapped resamples. We reported the standardized coefficients that can be directly compared to
make inferences about the relative strength of relationships (Grace & Bollen, 2005). The structural equation
analyses were performed using R version 3.6.1 (R Development Core Team, 2019) with package “Lavaan ”
version 3.1-3 (Rosseel et al., 2015).

Results

A total of 148 species, belonging to six orders and 19 families were recorded in this study (Appendix S1). The
highest number of species was from the family Scolopacidae (37 species), followed by Anatidae (34 species).
Some families such as Phalacrocoracidae, Threskiornithidae and Rostratulidae only had one species each. In
addition, among the 35 lakes and reservoirs surveyed, number of species ranged from four to 113 species, with
the highest species richness recorded in lakes and reservoirs located in Hubei Province and Beijing (eastern
China), and lowest species richness recorded in lakes and reservoirs located in Inner Mongolia and Qinghai
Province (western China) (Appendix S2).

Geographical patterns of waterbirds species richness and functional diversity

Waterbirds species richness showed remarkable geographical distribution gradients (Figure 3a). Generally,
higher waterbirds species richness was found in lakes of the northern and eastern part of China. Lower
species richness was found at higher altitude in the west. Similar pattern was found in waterbirds FRic
(Figure 3b). Linear regression showed that FRic increased with latitude and longitude (Figure 4a, 3b), but
decreased with altitude (Figure 4c). Furthermore, multiple regression analysis showed that lake area, mean
temperature of the wettest quarter, annual total precipitation, and precipitation of the warmest quarter
had significant effects on waterbirds FRic, explaining greater than 71% of the total variation in the dataset
(Table 1). More specifically, FRic increased with lake area, mean temperature of the wettest quarter, and
annual total precipitation, but decreased with precipitation of the warmest quarter.

Site-specific environmental variables including lake productivity, mean diurnal range, mean temperature of
the wettest quarter, mean temperature of the warmest quarter, annual total precipitation, precipitation
of the driest month, precipitation of the warmest quarter and precipitation of the coldest quarter showed
large-scale variation across the landscape of north China. For example, lake productivity decreased with
altitude; mean diurnal range, mean temperature of the wettest quarter, and mean temperature of the warmest
quarter decreased with latitude, longitude and altitude; while annual total precipitation of the driest month,
precipitation of the warmest quarter and precipitation of the coldest quarter increased with longitude (Table
2).

Final structural equation models

Three SEMs were fitted: one for lake productivity, one for waterbirds FD, and an integrated one that
included both lake productivity and waterbirds FD to explicitly test the causal link between them. All three
models converged successfully (Figure 5-7), and achieved adequate fit with CFI (Comparative fit index) of
0.90, 0.98 and 0.90 for the productivity SEM, waterbird FD SEM and integrated SEM, respectively (Hu
& Bentler, 1999). These models had similar hierarchical structure, in which the responsible variable (lake
productivity or waterbirds FD) was modelled by a few latent factors. These latent factors were in term
defined by the observed variables. In all models, two latent factors were common: geographic position and
climate. The geographic position was measured by the latitude and longitude of the central point of the lake
and its average elevation. The climate was defined by using spatial mean of seven bioclimatic variables with
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low correlation (checked using VIF). In addition, a causality from geographic position to climate condition
was specified in all SEMs.

Determinates of Lake Productivity

The three latent factors (i.e. geographic position, climate, and nutrient in the lake) were all included in the
SEM. The three factors collectively explained 93% of the variation in lake productivity (Figure 5). Lake
nutrient level, which was defined by water TP and TN concentration, had the largest effects on productivity,
followed by climate (standardized path coefficient = 0.93 and 0.77 for nutrient and climate, respectively,
Figure 5). The effects of geographic position on lake productivity was indirect and realized through its
influence on climatic condition; and had a standardized path coefficient of 0.16 (0.77×0.21).

Lake productivity decreased with elevation (path coefficient = -0.93×0.77×0.07 =-019) and increased with
both latitude and longitude with comparable path coefficient (0.12 and 0.13 for latitude and longitude,
respectively, Figure 5). For the measured bioclimatic variables, while all variables related to precipitation
as well as T2 and T3 had positive effect on lake productivity, the impact of temperature diurnal range was
negative with a path coefficient of -0.22 (-0.83×0.27). Lake productivity was positively related with nutrient;
and the effect of TP level was slightly larger than that of TN (standardized path coefficient 0.52 and 0.40
for TP and TN, respectively, Figure 5).

Determinates of waterbirds functional diversity

Similar to the lake productivity model, the three latent factors (geographic position, climate, and lake mor-
phology in the lake) were all included in the SEM, collectively explaining 52% of the variation in waterbirds
FD (Figure 6). In comparison with lake morphology, climate had higher effects on waterbirds FD (path
coefficient = 0.69 and 0.21 for climate and morphology, respectively, Figure 6). The effects of geographic
position on waterbirds distribution was indirect through climate with an effect of 0.57 (0.82×0.69 =0.56).
Based on the standardized model coefficients, climate condition had the strongest effects on waterbirds FD,
followed by geographic position and lake morphology (the coefficients are 0.69, 0.57, and 0.21 for climate,
geographic position and lake morphology, respectively, Figure 6).

Waterbirds FD decreased with elevation (path coefficient = -0.59×0.82×0.69 =-0.33), and increased with
both latitude and longitude, with longitude showing much stronger effect than latitude (path coefficients
were 0.61 and 0.23 respectively, Figure 6). For the measured bioclimatic variables, similar to the productivity
model, while all precipitation variables ad well as T2 and T3 had positive effect on waterbirds FD, the impact
of temperature diurnal range was negative. In addition, the four precipitation variables had comparable effects
on FD (Figure 6). The model also indicated a positive effect of lake area (standardized path coefficient is
0.21, Figure 6).

Relationship between waterbirds functional diversity and lake productivity

The final integrated SEM combined lake productivity and waterbirds FD together and included an explicit
pathway from productivity to waterbirds FD (Figure 7). The model had reasonably adequate explanation
power for the three key latent variables (R2 for climate, waterbirds FD and lake productivity was 0.73,
0.56 and 0.96, respectively. Figure 7). From the fitted path coefficients, climate had the greatest effect
on waterbirds FD (0.65), which were similar to that of the waterbirds FD model (Figure 6). The effects of
geographic position (0.60) was relatively strong, while the effects of other variables, including lake morphology
(0.21), lake productivity (0.17) and nutrient (0.16, indirectly via its effect on lake productivity) were relatively
weak.
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Discussion

In this study, we applied integrated modelling procedures (SEM) to productivity and waterbirds functional
diversity data collected from lakes and reservoirs in the arid and semi-arid northern China covering over 5
million km2 with the aim to explore macroecological pattern involving geographic gradients in inland aquatic
systems. Both lake productivity and waterbirds FD displayed strong geographical variations across northern
China (Figure 3). We found that the geographic position exerted effects on lake productivity and waterbirds
FD in a similar way, i.e. through its influences on climatic conditions, which was defined by seven bioclimatic
variables in this study. This causality from geographic position to climatic conditions was significant and
consistent in all three SEMs. Specifically, our analyses showed an unambiguous decreasing elevational gradient
for both lake productivity and waterbirds FD (Herzog, Kessler, & Bach, 2005; Rahbek, 1995). An increasing
gradient with location coordinates was also obvious; and the effects of latitude (through its effects on climate)
on both lake productivity and waterbirds FD were relatively weaker than those of longitude. Moreover, the
“latitudinal gradient”, which predicts species diversity decreases when moving away from the equator towards
northern latitudes (Jetz, Thomas, Joy, Hartmann, & Mooers, 2012), was not supported. Instead, we found
evidence of a reverse trend in our analyses (Figure 4a). The opposite latitudinal gradient in this study should
be treated with cautions as the study focused on the temperate zone that have a rather narrow latitudinal
range and strong negative effects of elevation might obscure the real latitudinal pattern. Nevertheless, our
analysis results supported a number of hypotheses underlying the geographic gradients by Field et al. (2009):
1) Climate; 2) Productivity; and 3) Size of ecosystem. More importantly, our results revealed a hierarchical
structure of drivers that regulate the observed biodiversity and productivity patterns (Macneil et al., 2009).

Drivers of geographic and elevational patterns of lake productivity

The lake productivity model had relatively high performance in explaining the observed geographic and
elevational gradients (R2 for separated and integrated models was 0.93 and 0.96, respectively, Figure 5 and
7). Both linear regression analysis (Figure 4d, 4e) and structural equation modeling (Figure 5 and 7) showed
that lake productivity was positively related with water TN and TP concentration. Moreover, the results from
the integrated SEM indicated that the effect of nutrient, which was defined by TN and TP concentrations
in water, was much stronger than that of climate. The close relationship between nutrient, lake chlorophyll
a concentration, and lake productivity (Jeppesen et al., 2005; Smith, 1979) was expected because nitrogen
and phosphorus are important limiting nutrients in freshwater ecosystems (Elser et al., 2007; Schindler,
1974). Lake ecosystem productivity depends on the supply of nutrients, especially phosphorus (Wetzel,
2001). According to previous studies, phosphorus loading alone could explain 79-95% of the variances in lake
chlorophyll a concentration (Schindler, 1978).

Climatic conditions, measured mainly by temperature and precipitation variables including mean tempera-
ture of the wettest quarter, mean temperature of the warmest quarter, annual total precipitation, precipita-
tion of driest month, and precipitation of the warmest quarter also had positive effects on lake productivity,
except for mean diurnal range which showed the opposite trend (Figure 5 and 7). Climatic variation has been
found to influence the magnitude of chlorophylla concentration (O’Reilly, Alin, Plisnier, Cohen, & Mckee,
2003). Lake productivity increased with air temperature, which is the function of solar energy input. (War-
ner & Lesht, 2015) reported that air temperature and precipitation were identified as important predictors,
which had positive effects on chlorophyll a . Our results are consistent with those studies, although the
mechanisms are not clear. One possibility is that higher air temperature reduces ice cover, which facilitates
wind-induced mixing and nutrient resuspension (Nicholls, 1998; Schwab, Eadie, Assel, & Roebber, 2009).
And increases in the form of rain would cause increased run-off, which could bring more nutrients to the
lakes from non-monitored or diffuse non-point sources. However, these hypotheses were not fully explored in
our study, and further researches are needed to understand the mechanisms on how climate influences lake
productivity. In addition, in our study, it was mean diurnal range, mean temperature of the wettest quarter,
mean temperature of the warmest quarter showed significant effects on lake productivity. For which, it may
due to the sampling time (i.e. we monitored lake chl-α in summer).
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Drivers of geographic and elevational patterns of waterbirds functional diversity

The waterbirds FD SEMs achieved sufficient performance in explaining the spatial variations in waterbirds
FD (R2 for both separated and integrated models were 0.52 and 0.56 respectively, Figure 6 and 7). Geo-
graphic position, defined by latitude, longitude and altitude, had dominating effect on waterbirds FD through
its influence on climate. Climate is typically a strong descriptor of broad-scale richness patterns (Hawkins
et al., 2003), and the theory that climate’s control of energy drives the global richness gradient has gen-
erated an extensive literature quantifying the relationship between species richness and climatic variables
(Whittaker et al., 2007). Our results demonstrated that waterbirds FD increased with temperature, giving
empirical affirmation to the species-energy hypothesis in that species diversity increases with environmental
temperature (Allen, Brown, & Gillooly, 2002). Temperature is one of major determinants of latitudinal and
altitudinal gradients in animal diversity (Allen et al., 2002; Rohde, 1992), which may be explained by energy
hypothesis, although the underlying mechanism remains unknown (Hawkins et al., 2003). The model results
also showed that waterbirds FD increased significantly with precipitation. Furthermore, the modelled path
coefficients indicated that precipitation was more important than that of temperature in our system. Precip-
itation is one of the resource-based estimates of available energy, especially in arid and semi-arid ecosystems
(Brown & Davidson, 1977), where biodiversity patterns are strongly related to precipitation amount (Waide
et al., 1999). This is particularly true for waterbirds, whose distribution is generally determined by rainfall
(Wen et al., 2016) through changing habitat availability, like water depth, habitat area and habitat diversity
(Canepuccia, Isacch, Gagliardini, Escalante, & Iribarne, 2007). As most of the lakes included in our study
are located in the arid and semi-arid region of China, precipitation is critical to maintain enough habitat
area for waterbirds.

Lake morphology, which was defined solely by lake area in this study, had positive effect on waterbirds FD.
This pattern resembles the common species-area relationship observed in many ecosystems (Arrhenius, 1921;
Guadagnin, Maltchik, & Fonseca, 2009; Keil, Storch, & Jetz, 2015; MacArthur & Wilson, 1967; Nogues-Bravo
& Araujo, 2006; Rosenzweig, 1995). According to the theory of island biogeography (MacArthur & Wilson,
1967), large and more diverse ecosystems are likely to harbor more species due to higher immigration rates
and lower extinction rates. Indeed, lakes in arid and semi-arid zones can be regarded as aquatic islands in a
terrestrial world, offering an explanation for the positive species-area relation in our analysis. This finding
is consistent with Suter (Suter, 1994), who reported species-area relationship for waterfowl assemblages on
the 20 major Swiss lakes north of the Alps. Likewise, Froneman et al. (2001) described a positive species-
area relationship in waterbirds communities in farm ponds, South Africa, and Guadagnin et al. (2009) also
described that the number of waterbirds species in wetlands from the Atlantic coastal zone of Brazil showed
a positive relationship with their size.

Relationship between waterbirds species richness and lake productivity

Many studies revealed that productivity affects diversity (Carpenter et al., 1987; Dodson et al., 2000; Mit-
telbach et al., 2001), especially for plants (Chase & Leibold, 2002). Nonetheless, no general consensus
concerning the form of the pattern has emerged based on theoretical considerations or empirical findings
(Waide et al., 1999). And positive, negative, and hump-shaped patterns were common at most spatial scales
and no one pattern predominated (Mittelbach et al., 2001). For avian species, particularly waterbirds, there
are only a few studies presented the relationship between diversity and productivity (Hawkins et al., 2003;
Hurlbert & Allen, 2004). Results of our integrated SEM gave evidence to support the causality from lake pro-
ductivity to waterbirds FD albeit the relationship was weak in comparison to other factors. As the majority
of waterbirds forage on the riparian zone of lakes (mean trait value of foraging at ground was greater than
55% for all lakes, Appendix A1) and have plants as their major diets (Appendix A2), this weak causality is
expected.
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Conclusions and caveats

A major contribution of this study is that our findings reveal the key environmental drivers of large-scale
patterns in lake productivity and functional diversity using advanced statistical techniques (i.e. SEM).
This approach showed that the observed geographical and altitudinal gradients in lake productivity and
waterbirds FD (Figure 3) can be partly explicated by the gradients in climatic conditions, which is in
term significantly related to the geographic position of the lakes on the earth surface. As the relationship
between productivity and species diversity in arid and semi-arid ecosystems has not been addressed, our
study could contribute to the mechanistic explanations underlying the observed broad – scale biodiversity
gradients in arid and semi-arid region. However, site-specific factors, such as lake morphology (for waterbirds)
and nutrients (for productivity) impose their effects independently (Figure 5-7), and their effects could be
more important than climatic variables (e.g. for lake productivity). These results, although supporting
some primary macroecological biodiversity theories such as species–energy and species–resource hypothesis,
could not lead to a mechanism that unifies these theories (Mcgill, 2010), exemplifying one key limitation of
statistical analyses: statistical relationships do not necessarily reveal the underlying mechanisms regulating
waterbirds biodiversity (Stomp et al., 2011). For example, the SEM indicates that altitude has a strong
negative effect (indirectly through climate and lake productivity, Figure 7) on waterbirds FD. However,
these causal paths could be driven by other environmental variables that co-vary with altitude but were
not measured in our study. For instance, seasonal variation in environmental conditions increases at higher
elevation, which could reduce species diversity by excluding sensitive species with a narrow tolerance range
(Currie et al., 2004). Nevertheless, through articulating the dominant processes, our results could contribute
to future studies seeking mechanistic explanations underlying the observed macroecological phenomena.
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Type Trait Mean SD Sources

Resource Quantity Size (cm) 48.48 31.65 a and b
Mass (g) 1078.07 1912.80 a and b
Wingspan (cm) 89.86 52.22 a
Migration - - b
Pelagic - - b
Breeding range
(km2, log
transformed)

7.24 0.71 b

Life history Generation (year) 8.07 2.85 a
Reproduction Clutch size (no. of

eggs)
4.55 2.17 a and b

Incubation (day) 24.89 4.63 c
Diet Diet-Inv (% of

invertebrate)
49.53 31.84 c

Diet-V (% of
vertebrate)

22.84 28.17 c

Diet-Scav (% of
scavenger)

0.88 3.84 c

Diet-Plant (% of
plant materials)

26.76 31.97 c

Habitat Hab-W (% of time
on water surface)

15.20 30.87 c

Hab-Rip (% of time
on riparian area)

40.34 28.88 c

Hab-G (% of time
on ground)

41.91 32.51 c

1. Planet of Birds, website visited 23 Jun 2016:http://www.planetofbirds.com/
2. BirddLife International, website visited 28 Jun 2016:http://datazone.birdlife.org/
3. Wilman et al., 2014

Table 2 Multiple regression analysis of waterbirds functional diversity (dependent variable) as a function of
environmental variables. Only significant variables were reported (P <0.05).

Regression variables Partial regression coefficients Standard error Standardized coefficients p

Constant -1.246 0.246 <0.001
Lake area 0.425 0.073 0.561 <0.001
Mean temperature of wettest quarter 0.050 0.035 1.128 <0.001
Annual total precipitation 0.065 0.019 1.739 <0.01
Precipitation of the warmest quarter -0.062 0.026 -1.237 <0.05
Model summary R2=0.710, P<0.001 R2=0.710, P<0.001 R2=0.710, P<0.001 R2=0.710, P<0.001

Table 3 Multiple regression analysis of each environmental variables as function of geographical location.
Only significant variables were reported (P <0.05).

Variables Partial regression coefficients Standard error Standardized coefficients P

Lake productivity (model R2=0.527, P<0.001) Lake productivity (model R2=0.527, P<0.001) Lake productivity (model R2=0.527, P<0.001) Lake productivity (model R2=0.527, P<0.001) Lake productivity (model R2=0.527, P<0.001)
Constant 3.335 0.263 <0.001
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Variables Partial regression coefficients Standard error Standardized coefficients P

Altitude -0.001 0.000 -0.736 <0.001
Mean diurnal range (model R2=0.983, P<0.001) Mean diurnal range (model R2=0.983, P<0.001) Mean diurnal range (model R2=0.983, P<0.001) Mean diurnal range (model R2=0.983, P<0.001) Mean diurnal range (model R2=0.983, P<0.001)
Constant 679.672 25.328 <0.001
Latitude -8.563 0.547 -0.448 <0.001
Longitude -1.886 0.123 -0.413 <0.001
Altitude -0.054 0.001 -1.359 <0.001
Mean temperature of the wettest quarter (model R2=0.985, P<0.001) Mean temperature of the wettest quarter (model R2=0.985, P<0.001) Mean temperature of the wettest quarter (model R2=0.985, P<0.001) Mean temperature of the wettest quarter (model R2=0.985, P<0.001) Mean temperature of the wettest quarter (model R2=0.985, P<0.001)
Constant 555.232 27.216 <0.001
Latitude -2.335 0.588 -0.107 <0.001
Longitude -1.811 0.132 -0.346 <0.001
Altitude -0.055 0.001 -1.204 <0.001
Mean temperature of the warmest quarter (model R2=0.989, P<0.001) Mean temperature of the warmest quarter (model R2=0.989, P<0.001) Mean temperature of the warmest quarter (model R2=0.989, P<0.001) Mean temperature of the warmest quarter (model R2=0.989, P<0.001) Mean temperature of the warmest quarter (model R2=0.989, P<0.001)
Constant 614.684 24.354 <0.001
Latitude -4.048 0.526 -0.181 <0.001
Longitude -1.628 0.118 -0.304 <0.001
Altitude -0.058 0.001 -1.231 <0.001
Annual total precipitation (model R2=0.655, P<0.001) Annual total precipitation (model R2=0.655, P<0.001) Annual total precipitation (model R2=0.655, P<0.001) Annual total precipitation (model R2=0.655, P<0.001) Annual total precipitation (model R2=0.655, P<0.001)
Latitude -13.296 6.291 -0.235 <0.05
Longitude 12.088 1.506 0.894 <0.001
Precipitation of the driest month (model R2=0.508, P<0.001) Precipitation of the driest month (model R2=0.508, P<0.001) Precipitation of the driest month (model R2=0.508, P<0.001) Precipitation of the driest month (model R2=0.508, P<0.001) Precipitation of the driest month (model R2=0.508, P<0.001)
Constant -6.546 1.345 <0.001
Longitude 0.077 0.013 0.723 <0.001
Precipitation of the warmest quarter (model R2=0.508, P<0.001) Precipitation of the warmest quarter (model R2=0.508, P<0.001) Precipitation of the warmest quarter (model R2=0.508, P<0.001) Precipitation of the warmest quarter (model R2=0.508, P<0.001) Precipitation of the warmest quarter (model R2=0.508, P<0.001)
Constant -398.625 189.878 <0.05
Longitude 8.540 1.226 0.845 <0.001
Precipitation of the coldest quarter (model R2=0.502, P<0.001) Precipitation of the coldest quarter (model R2=0.502, P<0.001) Precipitation of the coldest quarter (model R2=0.502, P<0.001) Precipitation of the coldest quarter (model R2=0.502, P<0.001) Precipitation of the coldest quarter (model R2=0.502, P<0.001)
Constant -18.736 4.179 <0.001
Longitude 0.236 0.040 0.719 <0.001

Figure 1. A pair of Mute Swans (Cygnus olor ) inhabits at Wuliangsuhai Lake, Inner Mongolia

Figure 2. Locations of the 35 surveyed lakes and reservoirs in North China. Elevation gradient is used as
background

Figure 3. Map of the 35 surveyed lakes and reservoirs in North China showing (a) waterbirds species
richness, (b) functional richness, and (c) lake productivity (mg.m-3)

Figure 4. Patterns of species richness and lake productivity with environmental variables. Species richness
of waterbirds as a function of (a) latitude, (b) longitude, and (c) altitude. Lake productivity (measured as
chlorophyll a ) as a function of (d) total nitrogen, (e) total phosphorus Data points correspond to individual
lakes. Regression lines show best liner fits. All regression lines are significant (P <0.05)

Figure 5. SEM for lake productivity. Latent variables are in ovals and measured variables in rectangles.
The strength of the causality (standardized path coefficient) is indicted by the width of the line. Black lines
indicate positive effects while red lines mean negative impacts. T1: mean diurnal range, T2: mean temper-
ature of the wettest quarter, T3: mean temperature of the warmest quarter, P1: annual total precipitation,
P2: precipitation of the driest month, P3: precipitation of the warmest quarter, and P4: precipitation of
the coldest quarter

Figure 6. SEM model for waterbirds functional diversity. Latent variables in ovals and measured variables
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in rectangles. The strength of the causality (standardized path coefficient for direct comparison) was indicted
by the width of the link. Black lines indicate positive effects while red lines mean negative impacts. T1:
mean diurnal range, T2: mean temperature of the wettest quarter, T3: mean temperature of the warmest
quarter, P1: annual total precipitation, P2: precipitation of the driest month, P3: precipitation of the
warmest quarter, and P4: precipitation of the coldest quarter

Figure 7. Integrated SEM model in which waterbirds functional diversity is linked with lake productivity.
Latent variables are in ovals and measured variables in rectangles. The strength of the causality (standardized
path coefficient) was indicted by the width of the link. Black lines indicate positive effects while red lines
mean negative impacts. T1: mean diurnal range, T2: mean temperature of the wettest quarter, T3: mean
temperature of the warmest quarter, P1: annual total precipitation, P2: precipitation of the driest month,
P3: precipitation of the warmest quarter, and P4: precipitation of the coldest quarter

Appendices

Appendix S1 Biometric trait data of for all 148 waterbird species recorded in this study.

Waterbirds Generation Clutch Incubation Migratory Size Mass DietV DietInv DietScav DietP Water Riparian Ground Pelagic Wingspan Range

Actitis hypoleucos 6.8 4 21.5 A 20 48 40 50 0 10 0 50 50 0 39.5 7.67
Aix galericulata 7.4 10.4 30.5 A 46 567.04 10 20 0 70 0 100 0 0 71 6.76
Amaurornis phoenicurus 3.7 6 20 A 30.5 180 20 40 0 40 0 20 60 0 49 7.59
Anas acuta 6.8 7.9 23 A 58 944.62 10 20 0 70 0 70 30 0 87.5 7.62
Anas clypeata 6.5 9.9 22 A 49.5 612.56 0 60 0 40 20 80 0 0 77.5 7.60
Anas crecca 6.3 9.4 22 A 36 341.89 0 30 0 70 0 100 0 0 61 7.68
Anas falcata 6.6 7.3 25 A 46 645.83 0 10 0 90 0 70 30 0 80 6.93
Anas formosa 6.6 7.3 24.5 A 41 433.98 0 10 0 90 0 70 30 0 70 6.69
Anas penelope 6.4 8.5 24.5 A 48 770.03 0 0 0 100 0 50 50 0 7.54
Anas platyrhynchos 6.6 10.8 27 A 58.75 843.42 20 40 0 40 20 60 20 0 7.82
Anas poecilorhyncha 6.6 7.9 26 A 60.5 999.96 0 10 0 90 0 50 50 0 7.00
Anas querquedula 6.5 8.5 22 A 39 325.6 20 40 0 40 100 0 0 0 63.5 7.51
Anas strepera 6.6 9.8 24 A 46 915.58 0 0 0 100 0 80 20 0 89.5 7.86
Anser albifrons 11.3 5.5 25 A 75.5 2506.39 0 0 0 100 0 20 80 0 147.5 7.28
Anser anser 11.6 4.9 27.5 A 82.5 3302.41 0 0 0 100 0 20 80 0 163.5 7.49
Anser cygnoides 11.4 5.5 28 A 87 3511.94 0 0 0 100 0 20 80 0 175 6.58
Anser erythropus 11.4 4.9 26.5 A 59.5 1755.5 0 0 0 100 0 20 80 0 125 6.85
Anser fabalis 11.4 4.9 27 A 77.5 2754.73 0 0 0 100 0 20 80 0 158.5 7.31
Anser indicus 11.4 4.9 28.5 A 73.5 2212.55 0 0 0 100 0 20 80 0 150 6.75
Ardea cinerea 10.3 3.9 25.5 A 94 1443 80 20 0 0 0 70 30 0 185 8.13
Ardea purpurea 10.5 4 27.5 A 84 1064.48 70 30 0 0 0 70 30 0 135 8.12
Ardeola bacchus 6.7 4 20 A 47 304.89 30 70 0 0 20 70 10 0 84.5 6.96
Arenaria interpres 7.3 4 23 A 23.5 135.98 0 80 0 20 0 0 100 0 53.5 5.25
Aythya baeri 7.6 7.7 27 A 44 681.23 20 20 0 60 100 0 0 0 70 6.36
Aythya ferina 7.6 8.9 52.5 A 45.5 822.99 20 10 0 70 50 50 0 0 77 5.74
Aythya fuligula 7.3 9.4 25.5 A 43.5 701.17 0 50 10 40 60 40 0 0 68.5 7.54
Aythya marila 8.2 9.4 27 A 45.5 1005.37 0 80 0 20 80 20 0 0 78 7.67
Aythya nyroca 7.6 8.9 26.5 A 40 574 20 10 0 70 50 50 0 0 65 7.40
Botaurus stellaris 5.5 4.6 25.5 A 72 1319.45 90 10 0 0 0 50 50 0 130 7.94
Bubulcus ibis 8.1 3.9 23.5 A 51 365.95 30 60 10 0 0 30 70 0 92 8.60
Bucephala clangula 8 9.4 30 A 46 918.56 10 70 0 20 80 20 0 0 72.5 7.67
Butorides virescens 5.1 3.9 19 A 41.5 201.5 70 30 0 0 0 80 20 0 52 8.48
Calidris acuminata 7.4 4 A 19.5 66.08 0 80 0 20 0 20 80 0 39.5 5.82
Calidris alpina 8.1 4 22 A 19 51.89 0 80 0 20 0 20 80 0 36.5 6.60
Calidris canutus 6.8 3.5 21.5 A 24 141.87 10 80 0 10 0 0 100 0 49.5 7.25
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Waterbirds Generation Clutch Incubation Migratory Size Mass DietV DietInv DietScav DietP Water Riparian Ground Pelagic Wingspan Range

Calidris ferruginea 7.6 3.8 19.5 A 20.5 58.08 0 80 0 20 0 50 50 0 42 6.48
Calidris melanotos 7.4 4 22 A 21 79.73 0 80 0 20 0 20 80 0 41 7.16
Calidris minuta 6.8 4 20.5 A 13 21.1 0 70 0 30 0 50 50 0 29.5 6.68
Calidris ruficollis 7.5 4 22 A 14.5 26.79 0 60 0 40 0 50 50 0 31 6.53
Calidris subminuta 7.4 4 A 14.5 30.2 0 70 0 30 0 50 50 0 30.5 7.04
Calidris temminckii 6.5 4 21.5 A 14 23 0 90 0 10 0 20 80 0 35.5 6.99
Calidris tenuirostris 7.4 4 21 A 27 192 0 50 0 50 0 0 80 0 61 5.52
Casmerodius albus 9.1 3.9 26 A 92 871.33 60 40 0 0 0 50 50 0 155 8.57
Charadrius alexandrinus 5 3 26 A 15 42.3 0 100 0 0 0 40 60 0 43.5 7.85
Charadrius asiaticus 5.8 3 A 19 77.09 0 80 0 20 0 0 100 0 58 6.49
Charadrius dubius 5 4 25 A 15.5 38.7 0 100 0 0 0 20 80 0 45 7.75
Charadrius hiaticula 5.1 3.5 24 A 19 64.04 0 100 0 0 0 0 100 0 52.5 7.61
Charadrius leschenaultii 5.8 3 24 A 22.5 74.8 10 90 0 0 0 0 100 0 52 6.98
Charadrius mongolus 5.2 3 23 A 19.5 64 0 100 0 0 0 40 60 0 51.5 7.67
Charadrius veredus 5.2 3 A 22 95 0 80 0 20 0 0 100 0 49.5 6.26
Chlidonias hybrida 9.9 2.5 19 A 26 83.67 60 40 0 0 20 50 0 0 67 8.14
Chlidonias leucopterus 9.9 2.5 20 A 25 54.2 20 80 0 0 0 30 30 0 62.5 7.43
Chlidonias niger 8.8 2.5 21.5 A 25.5 65.3 60 40 0 0 10 90 0 0 61 7.56
Ciconia boyciana 16.1 3.5 33 A 112.5 4847.74 90 10 0 0 0 80 20 0 197.5 5.97
Ciconia nigra 15.9 3.5 35 A 97.5 2926 90 10 0 0 0 100 0 0 149.5 7.40
Clangula hyemalis 9 6.3 26.5 A 48.75 871 0 80 0 20 100 0 0 0 76 7.78
Cygnus columbianus 12.7 3.9 31.5 A 135 6377.96 0 0 0 100 0 50 50 0 196 7.37
Cygnus cygnus 12.3 4.5 35 A 152.5 9349.99 0 0 0 100 0 80 20 0 224 7.47
Cygnus olor 12.2 5.9 38 A 142.5 10682.04 10 10 0 80 0 100 0 0 220 7.35
Egretta eulophotes 6.6 3.2 23.5 A 66.5 461.83 40 60 0 0 0 100 0 0 99 6.09
Egretta garzetta 6.6 3.5 23 A 60 312 40 60 0 0 0 70 30 0 95 8.18
Eudromias morinellus 6.9 3 25 A 21 108.16 0 70 0 30 0 0 80 0 60.5 7.68
Fulica atra 7 7.7 23.5 A 37.5 717.12 30 10 0 60 50 50 0 0 75 8.18
Gallicrex cinerea 4.4 4.2 24 A 39.25 390.39 0 30 0 70 0 20 60 0 77 7.50
Gallinago gallinago 4.8 4 19 A 26 112.94 0 80 0 20 0 20 80 0 45.5 7.33
Gallinago megala 4.8 4 A 28 121 0 80 0 20 0 0 100 0 44 6.72
Gallinago solitaria 4.8 4 A 30 140.11 0 100 0 0 0 0 100 0 53.5 7.01
Gallinago stenura 4.8 4 20 A 26 113 0 80 0 20 0 0 100 0 45.5 7.11
Gallinula chloropus 5.9 5.8 19.5 A 34 339.63 20 20 0 60 0 20 60 0 52.5 8.16
Gelochelidon nilotica 11.7 2.5 A 38 218.25 50 50 0 0 0 30 30 1 94 8.21
Glareola maldivarum 7.3 2.4 A 24 75.2 0 100 0 0 0 0 33 0 61 7.40
Grus grus 13.4 2 29.5 A 107.5 5499.99 20 10 0 70 0 50 50 0 190 7.41
Grus japonensis 12.3 2 31.5 A 145 8785.99 40 20 0 40 0 50 50 0 235 6.32
Grus leucogeranus 13 2 28 A 140 5913.44 30 10 0 60 0 50 50 0 220 6.36
Grus monacha 12 2 28.5 A 95.5 3729.9 20 10 0 70 0 50 50 0 170 6.42
Grus nigricollis 13 2 32 B 115 5999.99 40 20 0 40 0 50 50 0 190 6.25
Grus vipio 13 2 30 A 125 4662.99 10 20 0 70 0 50 50 0 205 6.15
Grus virgo 11.2 2 25 A 95 1500 10 20 0 70 0 50 50 0 160 7.09
Haematopus ostralegus 13.7 3 30 A 40 526 10 90 0 0 0 40 60 0 81 7.56
Heteroscelus incanus 5.7 4 24 A 27.5 108.24 20 80 0 0 0 50 50 0 60 6.39
Himantopus himantopus 7.3 3.2 25.5 A 37.5 176.82 0 100 0 0 0 100 0 0 75 8.56
Hydrophasianus chirurgus 4.8 4 A 48.5 160.03 0 60 0 40 0 60 40 0 7.29
Hydroprogne caspia 12.2 2 26.5 A 50.5 655 90 0 10 0 80 20 0 1 133.5 8.43
Ibidorhyncha struthersii 9.6 4 B 40 294 10 90 0 0 0 100 0 0 74 6.87
Ixobrychus cinnamomeus 4.1 3.9 A 40.5 126.49 70 30 0 0 0 80 20 0 7.42
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Waterbirds Generation Clutch Incubation Migratory Size Mass DietV DietInv DietScav DietP Water Riparian Ground Pelagic Wingspan Range

Ixobrychus eurhythmus 4.1 4.2 17 A 37.5 139 70 30 0 0 0 30 70 0 53.5 6.94
Ixobrychus minutus 4.1 4.2 18.5 A 32.5 99.49 30 70 0 0 0 50 50 0 49 7.85
Ixobrychus sinensis 4.1 4.6 18.5 A 35 94.29 20 80 0 0 0 50 50 0 49 7.71
Larus argentatus 13 2.5 29 A 61 1090.99 50 30 20 0 20 40 40 1 125 6.86
Larus brunnicephalus 11.5 3 24 A 43 569.29 50 30 10 10 0 50 50 0 5.93
Larus canus 9.8 3 25 A 43 412.53 40 40 10 10 20 40 40 1 108.25 6.42
Larus crassirostris 11.5 2.5 24.5 A 47 561 40 30 30 0 0 100 0 1 127 6.69
Larus ichthyaetus 12.4 2 25 A 66 1378.84 70 20 0 10 10 50 40 0 162.5 6.65
Larus minutus 10.5 2.4 24 A 27.5 118 20 80 0 0 10 60 30 0 74 7.53
Larus relictus 6 2.4 25 A 44 490.2 60 40 0 0 0 50 50 0 6.43
Larus ridibundus 9.6 1.7 24 A 40 284 20 70 0 10 0 50 50 0 102 7.65
Larus saundersi 11.5 3 A 30.5 198 40 60 0 0 0 50 50 0 89 5.73
Larus schistisagus 11.5 3 29 A 61 1323 40 30 20 10 30 40 30 1 140 6.71
Limicola falcinellus 4.8 4 21.5 A 17 37.1 0 80 0 20 0 20 80 0 35.5 5.30
Limnodromus semipalmatus 5.8 2 22 A 34.5 212 40 60 0 0 0 50 50 0 58 6.76
Limosa lapponica 8.9 4 20.5 A 39 291.65 0 80 0 20 0 50 50 0 75 6.96
Limosa limosa 8.6 4 23 A 40 288.37 20 60 0 20 0 50 50 0 76 7.48
Lymnocryptes minimus 5.4 4 22.5 A 18 50.07 0 80 0 20 0 20 80 0 38 7.03
Melanitta fusca 7.5 7.9 27.5 A 54.5 1800.17 10 80 0 10 80 20 0 0 92.5 7.17
Mergellus albellus 5.7 7.9 27 A 39.5 608.55 20 70 0 10 100 0 0 0 62 7.24
Mergus merganser 7.3 9.8 31 A 65 1451.02 90 10 0 0 80 20 0 0 89.5 7.91
Mergus serrator 7.3 8.9 31.5 A 55 1015.17 70 20 0 10 80 20 0 0 78 7.81
Mesophoyx intermedia 5.6 3.5 21 A 64 458.83 80 20 0 0 0 80 20 0 110 7.48
Netta rufina 7 8.9 27 A 55.5 1118 0 0 0 100 50 50 0 0 87 7.29
Numenius arquata 5 4 28 A 55 802.99 0 40 0 60 0 20 80 0 90 7.32
Numenius madagascariensis 10.1 4 16 A 59.5 792 0 90 0 10 0 20 80 0 103.5 6.75
Numenius minutus 10.1 4 22.5 A 31 173 0 80 0 20 0 0 80 0 69.5 6.24
Numenius phaeopus 9.1 4 25 A 43 364.57 0 60 0 40 0 20 60 0 82.5 7.49
Nycticorax nycticorax 8.8 3.9 22.5 A 60.5 810 70 30 0 0 0 50 50 0 108.5 8.47
Pelecanus crispus 11 2 32 A 170 9512.09 100 0 0 0 100 0 0 0 7.10
Pelecanus philippensis 15.4 3.5 30 A 139.5 5010.98 100 0 0 0 100 0 0 0 6.95
Phalacrocorax carbo 11.3 3.5 29 A 90 2528.97 90 10 0 0 100 0 0 0 145 8.58
Phalaropus fulicarius 9.9 4 A 38.5 308 0 100 0 0 0 0 80 0 38.5 7.32
Phalaropus lobatus 4.9 4 21.5 A 21 36.68 0 80 0 20 0 50 50 0 36.5 6.70
Philomachus pugnax 4.9 4 19 A 18.5 35.5 0 80 0 20 0 50 50 0 50 7.59
Platalea leucorodia 7.2 3.5 24.5 A 82.5 1228 20 70 0 10 0 100 0 0 125 7.78
Pluvialis fulva 5.6 4 23.5 A 24.5 250 0 70 0 30 0 0 80 0 66 5.85
Pluvialis squatarola 6 4 26.5 A 29 84.11 0 70 0 30 0 0 100 0 77 6.46
Podiceps auritus 7.1 4.5 23.5 A 34.5 730.96 60 40 0 0 70 30 0 0 327.5 7.72
Podiceps cristatus 7.1 3.9 28 A 53.5 575 70 30 0 0 70 30 0 0 8.26
Podiceps grisegena 7.1 4.5 22.5 A 45 1646 50 50 0 0 70 30 0 0 7.70
Podiceps nigricollis 7.1 3.5 22 A 31 320.69 20 80 0 0 60 40 0 0 8.16
Porzana fusca 2.7 5.2 20 A 22 49.7 0 40 0 60 0 20 80 0 7.50
Porzana pusilla 2.7 6.6 18 A 18 61.06 10 70 0 20 0 50 50 0 29.5 7.87
Rallus aquaticus 4.6 8.1 22 A 26.5 162.11 40 20 0 40 10 40 40 0 41.5 7.52
Recurvirostra avosetta 8.7 3.5 24 A 43.5 325 10 80 0 10 0 50 50 0 78.5 7.88
Rissa tridactyla 12.9 2 26 A 39 706 50 30 0 20 100 0 0 1 94 5.75
Rostratula benghalensis 8.6 3.2 18 C 25.5 76.6 0 60 0 40 0 50 50 0 52.5 7.96
Scolopax rusticola 6.3 4 17.5 A 34 205 0 70 0 30 0 20 80 0 58 7.61
Sterna albifrons 10.9 2.5 22.5 A 25 94.69 60 40 0 0 100 0 0 1 47 8.45
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Waterbirds Generation Clutch Incubation Migratory Size Mass DietV DietInv DietScav DietP Water Riparian Ground Pelagic Wingspan Range

Sterna hirundo 11.5 2 25 A 35.5 53.8 80 10 10 0 80 20 0 0 77.5 7.93
Tachybaptus ruficollis 5.4 3.7 22.5 A 27 3450 20 80 0 0 70 30 0 0 8.23
Tadorna ferruginea 10.9 8.5 28.5 A 66 885.22 10 10 0 80 0 100 0 0 133 7.63
Tadorna tadorna 10.9 8.9 29.5 A 62.5 1418.68 20 70 0 10 0 90 10 0 121.5 7.50
Tringa erythropus 5.6 4 A 30.5 77.5 20 80 0 0 0 80 20 0 64 6.87
Tringa glareola 5.2 4 22.5 A 21 158 0 100 0 0 0 50 50 0 55.5 7.36
Tringa nebularia 6.3 4 24 A 32.5 71.4 20 80 0 0 0 60 40 0 69 7.27
Tringa ochropus 5.6 4 21.5 A 22.5 48.4 20 70 0 10 0 50 40 0 59 7.39
Tringa stagnatilis 5.6 4 A 24 129 20 60 0 20 0 60 40 0 57 7.16
Tringa totanus 6.2 4 25.5 A 28 62.1 20 80 0 0 0 80 20 0 62.5 7.61
Vanellus cinereus 8.9 4 28.5 A 35.5 165 0 100 0 0 0 0 100 0 75.5 6.50
Vanellus vanellus 9 4 25.5 A 29.5 198 0 100 0 0 0 0 100 0 84.5 7.50
Xenus cinereus 6.4 4 23.5 A 23.5 123 0 60 0 40 0 50 50 0 58 7.12

Appendix S2 Data of the 35 lakes and reservoirs used in this study.

lake name No. of waterbirds species Productivity (mg.m-3) FRic Latitude Longitude Lake area (ha) Altitude (m) TN (mg.L-1) TP (mg.L-1) Mean diurnal range () Mean temperature of wettest quarter () Mean temperature of warmest quareter () Annual precipitation (mm) Precipitation of driest month (mm) Precipitation of warmest quarter (mm) Precipitation of coldest quarter (mm)

Wuliangsuhai 96 11.36 0.096254 40.93 108.83 29300.00 1017.42 3.65 0.18 13.17 19.95 21.91 230.14 1.00 153.65 5.00
Hasuhai 51 8.36 0.055521 40.6 110.98 4161.54 1052.99 3.12 0.05 13.29 19.11 21.11 354.30 4.00 228.30 13.46
Dalinuoer 99 3.30 0.104735 43.25 116.42 38536.07 1317.72 0.89 0.08 13.22 17.30 17.30 342.36 2.03 231.94 8.31
Erdos 72 10.13 0.092827 36.71 109.31 1717.43 1192.04 15.28 0.24 12.50 19.30 20.70 502.00 3.00 279.00 11.00
Chagannaoer 72 72.92 0.089553 43.43 114.92 3300.00 1048.06 3.19 0.14 13.60 19.75 19.75 253.00 2.00 174.00 6.00
Wulagai 103 4.62 0.097590 46.06 119.57 22600.00 1003.27 3.73 0.13 13.76 16.69 16.69 409.25 3.72 282.08 11.72
Juyanhai 40 2.62 0.064184 42.33 101.25 4000.00 917.29 0.48 0.21 14.90 24.50 24.50 35.00 0.00 26.00 0.00
Daihai 43 25.35 0.063914 40.55 112.66 2420.00 1297.61 13.16 0.12 13.21 19.37 19.37 385.48 2.00 259.50 8.23
Khorchin 66 69.42 0.082376 45.08 122.18 18047.04 169.37 15 0.27 12.20 22.11 22.11 404.55 1.00 299.35 5.00
Hangjinnaoer 55 18.32 0.072142 40.5 108.96 1600.00 1059.96 0.88 0.25 12.95 19.97 21.92 259.87 1.00 170.02 5.72
Naihai Wetland 55 96.95 0.073630 40.53 110.01 1308.25 1034.10 1.32 0.38 12.80 19.50 21.60 308.00 2.00 193.00 8.00
Honggou reservoir 4 14.60 0.000051 38.84 105.67 160.00 55.32 4.73 0.2 13.38 19.76 21.49 202.97 1.84 118.40 5.84
Sand Lake 74 11.43 0.079616 38.62 106.33 8602.23 1117.78 0.67 0.22 13.16 20.59 22.30 192.33 1.00 112.93 4.00
Habahu 45 10.07 0.067270 37.83 107.28 240.00 1479.40 0.57 0.23 13.22 18.83 20.44 289.34 1.21 163.16 6.21
Mingcuihu 74 14.85 0.083680 38.38 106.37 492.00 1140.53 0.6 0.22 13.10 20.40 22.10 203.00 1.00 118.00 4.00
Yuehai 37 39.34 0.060880 38.57 106.21 1070.37 1120.97 0.83 0.27 13.10 20.60 22.27 192.83 1.00 112.83 4.00
Xinghaihu 24 55.21 0.037125 38.99 106.41 3283.91 1179.46 1.12 0.27 13.60 20.96 22.72 177.00 1.00 106.00 4.00
Tianhu 24 6.65 0.037125 38.02 105.74 591.00 1356.68 0.55 0.22 13.60 19.80 21.40 212.00 1.00 123.00 4.00
Hongjiannao 74 1.75 0.082940 39.1 109.88 3330.00 1266.89 1.09 0.06 12.75 19.15 20.92 404.10 2.00 253.05 9.00
Kusaihu 9 0.41 0.017198 35.73 92.83 32600.00 4554.99 0.78 0.11 14.20 5.42 5.42 201.11 1.00 139.64 3.06
Goulucuohu 9 0.49 0.022734 34.6 92.47 2350.00 4762.46 0.67 0.12 15.00 5.80 5.80 269.00 0.00 191.00 4.00
Zhuonaihu 8 0.51 0.012421 35.55 91.95 16300.00 4821.87 0.9 0.21 14.45 4.26 4.26 202.77 0.08 144.73 3.04
Yanhu 9 0.51 0.018675 35.53 93.42 1120.00 4480.50 0.68 0.1 14.10 6.20 6.20 213.00 1.00 144.00 3.00
Chaganhu 94 40.00 0.089094 45.26 124.29 51936.54 123.46 1.56 1.05 11.78 22.10 22.10 433.57 2.00 305.30 7.51
Hengshuihu 113 16.30 0.100239 37.69 115.58 18787.00 22.49 1.12 0.21 11.34 26.41 26.41 454.96 4.00 331.03 14.56
Cuihu 56 15.00 0.068850 40.08 116.17 166.00 157.30 1.76 0.12 11.50 25.50 25.50 669.00 4.00 533.00 13.00
Alagou 8 1.06 0.008048 42.85 87.36 94.00 2893.38 1.62 0.06 12.40 16.80 16.80 196.00 1.00 113.00 5.00
Bosten Lake 58 8.98 0.082285 41.67 86.9 94529.19 1525.86 0.7 0.11 13.60 22.23 22.23 81.22 0.17 51.12 1.75
Heshilike 17 51.07 0.017170 41.75 85.69 525.00 890.18 1 0.08 12.60 25.20 25.20 56.00 1.00 34.00 4.00
Kongquehe 17 39.62 0.017170 41.25 86.5 79.25 876.60 12.19 0.5 13.80 25.60 25.60 45.00 0.00 27.00 2.00
Kenadaliya 17 5.76 0.017170 38.61 86.29 69.90 1059.16 1.14 0.05 16.30 25.10 25.10 21.00 0.00 18.00 0.00
Taitemahu Lake 31 6.65 0.051730 39.48 88.29 26930.42 799.27 0.87 0.03 16.40 26.35 26.35 23.86 0.00 16.07 1.79
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lake name No. of waterbirds species Productivity (mg.m-3) FRic Latitude Longitude Lake area (ha) Altitude (m) TN (mg.L-1) TP (mg.L-1) Mean diurnal range () Mean temperature of wettest quarter () Mean temperature of warmest quareter () Annual precipitation (mm) Precipitation of driest month (mm) Precipitation of warmest quarter (mm) Precipitation of coldest quarter (mm)

Ayakekumuhu Lake 21 2.74 0.046644 37.52 89.79 98800.00 4057.34 1.56 0.08 14.64 7.72 7.72 91.08 0.00 68.16 1.01
Miyun Reservior 113 3.55 0.102017 40.48 116.83 18800.00 242.67 1.29 0.03 12.30 24.01 24.01 531.88 3.00 403.55 10.06
Yehahu Lake 105 5.79 0.089492 40.46 115.84 441.00 777.39 0.82 0.08 12.20 23.40 23.40 440.00 3.00 333.00 10.00

Appendix A1 Map of the CMW (the community-level weighted means of trait values) for the percentage of
foraging on ground in the 35 surveyed lakes. Background is the 3D representation of the surface (hillshade).

Appendix A2 Map of the CMW (the community-level weighted means of trait values) of percent use of
plant materials. Background is the 3D representation of the surface (hillshade).
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