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Abstract

Probability Density Estimation of stochastic electric load is of most importance nowadays in power system operations and urban

planning. This is due to the continuous demand to integrate intermittent renewable energy resources that introduce uncertainties

in the operating state of power systems which in turn requires accurate and reliable methods to estimate load. This paper

is the first to employ a nonparametric techniques called Root Transform Local Linear Regression for estimating electric load.

This robust model proposed estimates electric load data more accurately than parametric models used in current literature.

The performance of the root transform local linear regression model is compared with two kernel density estimation models

and two parametric models (Gaussian and Gamma distributions) and is assessed using the Kolmogorov-Smirnov goodness-of-fit

test, Coefficient of determination and four error metrics. Results confirm the accuracy of the nonparametric models over the

parametric models with the root transform model performing best across all error metrics and K-S test, followed by the kernel

density estimation model. An interactive web application is developed to perform the same analysis presented in this paper on

any type of univariate data.

INTRODUCTION

Electric Load is irregular in nature (Fig. 1) and there exists no system as of yet of storing energy on a wide
scale that is cheap, sustainable, efficient and environmentally-friendly. Statistical models can be used to
predict electrical power demand in a certain time frame using electrical data of domestic consumers and
enterprises. Employing electric load density estimation will enable us to predict the electrical power required
for the day, which we will then need to store less energy for future use and in turn, diminish the energy lost
in the process of storage. Further applications of electric load density estimation include planning studies
for optimal allocation of renewable distributed generation to minimize annual energy loss [1], evaluating
the reliability and accuracy of power systems with PV power generation [2], integrating of batteries with
photovoltaic plants on a large scale [3].

In literature, electric load probability is usually modeled using parametric models, such as the Gaussian
distribution [4] [5] and the beta distribution [3]. However, through careful inspection of electric load, it
would not be accurate to model electric load using a Gaussian distribution nor a Beta distribution due to
its bimodal nature [6] (Fig. 5). In this paper, two nonparametric approaches, Root Transform Local Linear
Regression (RTLLR) and Kernel Density Estimation (KDE), are proposed to provide an accurate model
of electric load probability density functions. The former turns the probability estimation problem into
a regression problem through binning and variance stabilizing transformation of electric load data. The
latter assigns each data observation a certain weight where more populated intervals end up having higher
probability density function values. The performances of RTLLR and two KDE models with Rule-of-Thumb
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bandwidth selectors are compared to two parametric models, Gaussian and Gamma Distributions, and are
evaluated through the Kolmogorov-Smirnov goodness-of-fit test, Coefficient of Determination (R2) and four
error metrics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Mean Biased Error (MBE).

The major contributions of this work can be summarized as follows:

1. For the first time, RTLLR is proposed for estimating electric load data. It is based on converting
the probability density estimation problem into a regression problem that is solved by local linear
regression. The resulting procedure is easy to use and computationally efficient.

2. We show that the RTLLR model avoids the boundary bias present in KDE models and is less sensitive
to outliers in the data. The RTLLR model visually follows the shape of electric load distribution and
has the lowest error metric values and highest R2 values when compared to the KDE models and the
Gaussian and Gamma models.

3. An interactive web application has been built to equip users with all the tools to replicate the analysis
presented in this paper on any type of univariate data.

The remainder of the paper is organized as follows. A detailed description of the problem and electric load
data is presented in Section 2. Then, the statistical model, assessment methods, and developed software are
described in Section 3. Results are discussed in Section 4 and the paper then closes with a conclusion and
acknowledgments.

Figure 1: Irregularity of Electricity Consumption, or Electrical Load, throughout the day [7].

2
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2. DETAILED DESCRIPTION OF PROBLEM

2.1 Electric Load Data

Data provided by the Customer-Led Network Revolution [8] contains the power consumption over 30-minute
intervals for the years 2011 to 2013 for 908 enterprise and 1538 residential locations in the UK. The enterprises
are divided into 4 main sectors which are Public Sector & Other (PSO), Commercial Offices (CO), Industrial
(IND) and Agriculture, Hunting, Farming & Fishing Enterprises (AHFF). Those sectors are then divided
further depending on the number of employees, the tariff rate and whether the enterprise is a single-site or
multi-site. Residential Locations are also divided into sectors called Mosaic classes, devised by Experian [9],
which takes into account income, age, location and other characteristics of residents. The divisions of
enterprise and residential locations are visualized in Fig. 2 and Fig. 3.

Figure 2: Left Panel: Number of enterprises analyzed based on their sector. Right Panel: Number of
Residential locations analyzed based on their mosaic class.

Figure 3: Detailed Number of Enterprises analyzed based on enterprises’ sector subgroups. Subgroups are
divided based on number of employees (1-9, 10-49, or 50-249 employees), tariff rate (Single-Rate (SR) or
Multi-Rate (MR)) and size of site (Single-Site (SS) or Multi-Site (MS)).

3
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2.2 The Statistical Problem

Electric load data is collected as a time series with n observations X1, X2, . . . , Xn. In the case of the electric
load data in subsection 2.1, a yearly collection of electric load data yields 17520 electric load observations,
denoted as X1, X2, . . . , X17520. Power system planning and optimization require accurate probability esti-
mation at random points in the future during the life of a power network. In other words, let X denote a
random variable whose value is the electric load at some point in the future. The goal is to use the data to
estimate the value of P(a < X < b) for various values of a and b [10].

The goal of estimating P(a < X < b) is a well-known problem in the statistics field [11] [12] which supposes
that X, the electric load data at some point in the future, has a probability density function fX , and
that the dataX1, X2, . . . , Xn are n independent, identically distributed observations drawn from the same
distribution fX . The probability density function fX of electric load is unknown and our goal is to find
or build a function f̂X from the data in order to estimate the unknown fX . After finding a good enough
estimate f̂X , P(a < X < b) reduces to a numerical integration problem of f̂X over the interval (a, b).

3. IMPLEMENTATION AND METHODS

In this section, we define and describe five statistical models used to estimate electric load PDF in this paper,
explore methods to assess models’ performances as well as introduce an interactive web application for users
to perform the analysis done in this paper.

3.1 Statistical Models

Here we describe the 3 types of statistical models we consider: Parametric Estimation, Kernel Density
Estimation, Root Transform Local Linear Regression. Parametric Models are used in previous work [4] [5].
KDE is commonly used in related studies on renewable energy [13]. RTLLR proving more recent method
show to be successful on renewables.

3.1.1 Parametric Estimation

Parametric models are widely used in estimating probability density functions for their ease of use. They
require an investigator to assume that the data comes from a certain distribution defined by a finite number
of parameters and that it follows a specific shape. Therefore, they are considered to have high bias since the
investigator has to make that assumption which may not be true. In Fig. 5, it can be seen that electric load
may be bimodal in nature and thus the Gaussian distribution used in literature would not be a good fit. In
this report, we consider two parametric distributions, Gaussian and Gamma, and compare their performance
with nonparametric techniques.

The PDF of the Gaussian Distribution is:

fGaussian =
1√

2πσ2
e

−(x−µ)2

2σ2

where x ∈ (0,∞), µ is the mean and σ is the standard deviation. The PDF of the Gamma distribution is:

fGamma =
βα

Γ(α)
xα−1e−βx

where Γ is the Gamma function, x ∈ (0,∞) and α, β are the shape and rate parameter, respectively.

These models are fit using Maximum Likelihood Estimation which is the most common method used to
estimate parameters for parametric models.

4
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3.1.2 Kernel Density Estimation

KDE is one of the most popular nonparametric estimation methods. The purpose of this technique is to
estimate the unknown probability density directly from the data without making any assumptions on the
shape of the distribution that parametric distributions make. The estimate f̂KDE of the unknown density fX
is constructed from n observed data points as follows:

f̂KDE =
1

nh

n∑
i=1

K

(
Xi −X

h

)

where X1, . . . , Xn are the n observed data points, h ∈ (0,∞) is the bandwidth parameter, and the kernel
function K is a nonnegative function with

∫
K = 1

In order to build the estimate f̂KDE, an investigator must decide on the kernel function and the bandwidth
parameter to be used. Research shows that different choices of kernel function have no significant difference
on the fit of the data while the selection of bandwidth is of great importance in the build of f̂KDE [12] [14]. In
this paper, two common rule-of-thumb formulas are used to calculate the bandwidths for the KDE models:

hROT1 = 1.059× σ̂ × n− 1
5

hROT2 = σ̂ × n− 1
6

A limitation of KDE is boundary bias where it underestimates data that is close to the boundaries. This
may pose significant problems when fitting KDEs to electric load data since the bulk of the data do not lie
around the center of the range but rather near the boundaries.

3.1.3 Root Transform Local Linear Regression

Root Transform Local Linear Regression (RTLLR) is a nonparametric technique that aims to turn probability
density estimation into a nonparametric regression problem. The original method proposed in statistics
literature [15] aims to decrease the bias from choosing parametric models and applies a transformation in
order to stabilize the variance of the data. RTLLR also avoids the issue with boundary bias that comes with
KDE estimation [11]. In this subsection, we introduce the motivation behind the RTLLR model, build the
foundation and reasons why the model works and present the implementation of the model.

MOTIVATION

The motivation behind RTLLR is improving on the histogram’s estimate of the pdf. Let X1, X2, ...Xn be
the univariate data with pdf fX . Without loss of generality, we assume that this data has been normalized
to [0, 1]. Let T be a positive integer such that T ≈ n

10 [11]. Bin the data into T equal length intervals on

the unit interval and let Qi be the number of observations that fall in each subinterval Ii =
[
i−1
T , iT

)
. Then,

the joint distribution of the Qi’s is multinomial Multi (n, p1, ..., pT ) where pi is equal to the probability that

some data point Xk will fall in the interval Ii (pi =
∫ i
T
i−1
T

f(x)dx). In order to understand the relationship

between the Qi’s and the pdf f , we will need to know the marginal distributions of the Qi’s. We present
two arguments for why Qi ∼ Poisson(npi).

5
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MATHEMATICAL FOUNDATIONS OF RTLLR

1. Large Sample Size. The marginal distributions of the Qi’s are Binomial (n, pi). However, as sample
size n goes to infinity, the interval of Ii converges to a single point and thus pi is driven to 0. We will show

that as n→∞, Qi
D→ Poisson(10f(xi)).

Theorem 1 Let n be the data sample size and Qi ∼ Binomial (n, pi). Then, as n → ∞, Qi
D→

Poisson(10f(xi)) where xi = i−1
T is the left endpoint of the interval Ii.

Proof. Assume that f is continuous. We first show that as n→∞, λi = npi converges to 10f(xi).

lim
n→∞

λi = lim
n→∞

npi

= lim
n→∞

n

∫ i
T

i−1
T

f(x)dx

= lim
T→∞

10T

(
F

(
i

T

)
− F

(
i− 1

T

))
= lim
T→∞

10
F
(
i
T

)
− F

(
i−1
T

)
1
T

= lim
1
T→0

10
F (xi + 1

T )− F (xi)
1
T

= 10f(xi)

We now show that as n→∞, Qi
D→ Poisson(10f(xi)).

lim
n→∞

P (Qi = k) = lim
n→∞

(
n

k

)
pki (1− pi)n−k

= lim
n→∞

n!

k!(n− k)!

(
λi
n

)k (
1− λi

n

)n−k
=

(
lim
n→∞

λi
k!

)(
lim
n→∞

n!

nk(n− k)!

)(
lim
n→∞

(
1− λi

n

)−k)(
lim
n→∞

(
1− λi

n

)n)
=

(
10f(xi)

k

k!

)
(1)(1)

(
e−10f(xi)

)
=

10f(xi)
k

k!
e−10f(xi)

Thus, as n→∞, Qi
D→ Poisson(10f(xi)).

From the above argument, we can deduce that for a large sample size n, Qi can approximated
by Poisson(npi).

2. Poissonization. Assume that the sample size N is random and Poissoned (i.e N ∼ Poisson (n) and N
is independent of Xi). Then, the marginal distributions of the Qi’s end up being Poisson by the following
theorem.

Theorem 2 Let N ∼ Poisson(n) and Q1, Q2, ...QT ∼ Multi(N, p1, p2, ..., pT ). Then, the marginal distri-
butions of the Qi’s are Poisson(npi) and are independent [16].

By the two arguments presented above, Qi ∼ Poisson(npi) where npi = n
∫ i
T
i−1
T

f (x) dx ≈ n
T f
(
2i−1
2T

)
=

10f (x̂i) and x̂i is the center of the interval Ii.

6
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The Qi’s estimate the underlying distribution fX . Therefore, it is possible to build fX through performing
nonparametric regression between the Qi’s and the center points of the intervals Ii. However, an issue
arises because the variances of the Qi’s are not equal (V ar (Qi) = npi). This would violate the major
assumption of homoscedasticity required by many nonparametric regression techniques [17] [11]. In order
to combat the heteroscedasticity of the Qi’s, a transformation g (Qi) is applied to Qi that would fulfill two
major objectives:

1. Minimize Bias. The expected value of g (Qi) should be deterministically related to the expected value
of Qi. This is essential since g (Qi) would enable the estimation of mean of Qi which in turn leads to an
estimate of the unknown pdf, as shown above. In other words, we need to find a transformation that would
minimize the bias of the estimate of fX .

2. Approximate Homoscedasticity. All g (Qi) random variables should have the same constant variance
effectively turning the problem into a homoscedastic regression problem.

Brown [15] found that the transformation
√
Qi + c achieves both of those just goals. We present the result

here for completeness:

Theorem 3 Let X ∼ Poisson(λ) with λ > 0 and let c ≥ 0 be a constant. Then,

E(
√
X + c) = λ1/2 +

4c− 1

8
λ−1/2 − 16c2 − 24c+ 7

128
λ−3/2 +O(λ−5/2)

V ar(
√
X + c) =

1

4
+

3− 8c

32
λ−1 − 32c2 − 52c+ 17

128
λ−2 +O(λ−3)

Proof. We first apply the Taylor series expansion of the function g(X) =
√
X + c around the constant λ− c.

g(X) = g(λ− c) + g′(λ− c)(X − (λ− c)) +
g′′(λ− c)

2!
(X − (λ− c))2 +

g′′(λ− c)
3!

(X − (λ− c))3 + . . .

√
X + c = λ1/2 +

1

2
λ−1/2(X − λ+ c)− 1

8
λ−3/2(X − λ+ c)2 +

1

16
λ−5/2(X − λ+ c)3 − 15

128
λ−7/2(X − λ+ c)4 + . . .

E(
√
X + c) can then be found by applying expectation on the previous equation and using

1. Binomial expansion: (X − λ+ c)
n

=
∑n
k=0

(
n
k

)
(X − λ)

n−k
ck

2. Central moment recursive formula for the Poisson Distribution: µr+1 = λ
(
dµr
dλ + rµr−1

)
where µr = E ((X − λ)

r
) is the rth central moment of X [18].

V ar(
√
X + c) can then be found by using the formula V ar(

√
X + c) = E(X + c)− E(

√
X + c)2.

By Theorem 3, the expectation of
√
Qi + c has approximately the square root of the expectation of Qi which

establishes the first objective. Furthermore, the variance of all the
√
Qi + c’s is approximately 1

4 establishing
the second objective. Therefore, the final goal is to choose the constant c so that both approximations are
reduced. The best candidates for the constant c are c = 1

4 to minimize the first order bias or c = 3
8 which

would minimize the difference in variance between g (Qi)’s. It is at this point that there is a payoff between
minimizing the bias and stabilizing the variance. However, Brown [15] shows, through visual plots of bias
and variance vs. lambda, that minimizing the bias at c = 1

4 outweighs the loss in stability in variance.

Therefore, the transformation
√
Qi + 1

4 is chosen.

7
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IMPLEMENTATION

After building a transformation, we can now go to the RTLLR implementation. Building the estimate f̂RTLLR

of the unknown density fX can be summarized into five steps [11] [19]:

1. Binning. Electric load data is divided into T ≈ n/10 bins, where n is the number of data observations.
Let Q1, . . . , QT denote the positive integer corresponding to the number of observations in each bin,
and x1, . . . , xT represent the centers of each of the T bins.

2. Variance Stabilizing Root Transform. Calculate yi =
√

1
10 ·

√
Qi + 1

4 , thus yielding a new

paired data set with T observations: (x1, y1), . . . , (xT , yT ).
3. Nonparametric Regression. Any nonparametric regression can then be used on the new paired

data (x1, y1) , . . . , (xT , yT ). We elect to use local linear regression. This will build a regression

function r̂(x) where r̂(x)
2

is an estimate of the PDF fX . We have used local linear regression because
of its efficiency and accuracy in regression modelling.

4. Unroot. Reverse the root transform by squaring the function to obtain f̂u(x) = r̂(x)
2

5. Normalize. To ensure the estimator is a PDF (i.e. the estimator integrates to 1), we normal-

ize f̂RTLLR so that f̂RTLLR = f̂u(x)∫ 1
0
f̂u(x)dx

.

3.2 Methods for Assessing Model Performance

In this subsection, performance assessment methods are explored in order to evaluate the models presented
in subsection 3.1.

3.2.1 Error Metrics

In renewable energy research, some commonly used error metrics to assess the performance of PDF models
are the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE) and Mean Biased Error (MBE) [20] [21]. Each of these errors measures different characteristics of
fit, but all serve the same purpose. The error metrics range from [0,∞), with the exception of MBE which
can be any real number, with 0 signifying that the model is a perfect fit for the data. The error metrics
formulas are presented down below.

RMSE =

√√√√1

t

t∑
i=1

(pi − p̂i)2

MAE =
1

t

t∑
i=1

|pi − p̂i|

MAPE =
1

t

t∑
i=1

∣∣∣∣pi − p̂iyi

∣∣∣∣
MBE =

1

t

t∑
i=1

(pi − p̂i)

where t is the number of bins of data chosen using the Freedman-Diaconis Rule [22], pi is the probability of
electric load being within bin i calculated from the data set, and p̂i is the probability within the same bin
calculated from the estimated data set which found by integrating the model within bin i.

8
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3.2.2 Coefficient of Determination (R2)

Coefficient of determination R2 is a statistic that calculates the proportion of variance of the data explained
by a model. Ideally, a model with a perfect fit of the data completely captures the variance of the data and
would have an R2 of 1. Another interpretation of R2 is how well the model does relative to a constant
model with the value of the data mean. A negative value of R2 signifies that the model studies is worse than
a model a constant model with the value of the data mean through out the whole domain. The formula for
R2 is presented below.

R2 = 1−
∑t
i=1 (pi − p̂i)∑t
i=1 (pi − p̄i)

, p̄i =
1

t

t∑
i=1

pi

3.2.3 Kolmogorov Smirnov Test

Another interesting error metric we explored is the One-sample Kolmogorov-Smirnov (KS) test. Kolmogorov-
Smirnov tests if data is distributed according to a specific model. The KS test is done by finding the
supremum distance statistic which is calculated by finding the difference between the data’s Empirical CDF,
an estimator of the data’s CDF, is to the model’s CDF. Then, the KS test p-value can be calculated using
the supremum distance statistic which has an asymptotic CDF given by the KS function [23]. There is
evidence that a model is a good fit for the data if the KS test’s p-value is larger than the threshold α where
we consider a threshold of α = 0.01 in this report.

3.3 Data Splitting

A common practice in statistics that is not present in power systems engineering systems field is data
splitting. When estimating the PDF of data to accurately test a model’s fitness on the data, one should
first split the data into two datasets test and train. Then, one fits their model on the training dataset and
test how good the model is on the test set. This is because if a model is a good fit for the current data, it
doesn’t necessarily mean it is a good fit for other data. Therefore, we consider the test dataset as other data
that we use to measure the model’s quality. What exactly do we do? The train and test datasets were split
randomly according to a 75%:25% split in all analysis in this paper.

3.4 Developed Software

We built an interactive web application on R Shiny called PDEP (Probability Density Estimation Project)
which enables users to perform the same analysis that was presented in this paper for any type of univariate
data. It is equipped with a wide array of features from Data Splitting, where the user can split their data
into training and test datsets, as well as setting the seed and train split percentage. Furthermore, users
can also plot histograms of the data with customizable binwidth and fit the data to multiple parametric
models (Gaussian, Gamma, Beta & Weibull) as well as nonparametric models (KDE with ROT1 & ROT2
bandwidths and RTLLR). Moreover, the user is able to download the plots with their preferred models of
fit as well as view the assessment metrics introduced in this paper which are the RMSE, MAE, MAPE,
MBE, R2 and KS p-value. Analysis of Figure 5, Table 1 and Table 2 were done through the application
and Fig. 4 displays a screenshot design of the application with its current features. The application will be
released once our team explores potential patents and/or journal publications.
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Figure 4: Screenshot of the PDEP app reproducing Fig. 5 left panel and Tables 1 analysis.

10



P
os

te
d

on
A

u
th

or
ea

5
M

ay
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

87
01

34
.4

62
23

85
7

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

4. RESULTS

In this section, the performance of the Gaussian and Gamma distributions are analyzed alongside the Root
Transform Local Linear Regression method and two Kernel Density models with 2 different bandwidths.
First, electric load data from a commercial enterprise site with single-tariff is fit with the models and the
models are assessed. We, then, repeat the analysis of electric load data from all 2446 enterprise and residential
locations.

Fig. 5 shows the histograms for both train and test electric load datasets fit with all 5 models. Visually the
RTLLR model seems to fit the data best followed by the two KDE models & then parametric distributions.
This finding is also supported by the results in Tables 1 and 2 where the following observations can be made:

1. RMSE and MAE values are lower for the RTLLR model followed by the KDE models and lastly
parametric models.

2. The R2 values for RTLLR are the highest followed by the KDE models then the parametric distributions
3. RTLLR is the only model that fails to reject the null hypothesis for the KS test.

In the remainder of this section, the performance of the parametric and nonparametric models is evaluated
by the test RMSE (Fig. 6), test R2 values (Fig. 7) and Train KS test p-values (Fig. 8) of all enterprise and
residential sites.

The left panel of Fig. 6 presents the average scores of each model according to a scoring system from
1 to 5, 1 for the model with the highest Test RMSE and 5 the one with the least. The right panel of
Fig. 6 displays a box plot for the relative percentage test RMSE improvement of the RTLLR, two KDE
and Gamma models with the Gaussian model. The results show that RTLLR almost always outperforms
all models (score = 4.89) and has a significant average relative percentage improvement (around 80%) with
respect to the Gaussian distribution. The 2 KDE models also show promising results with average relative
percentage improvement (around 50%) to the Gaussian distribution. However, the Gamma distribution
while overall outperforming the Gaussian distribution, around 30% average percentage improvement, seems
to be unreliable as it underperforms significantly in multiple locations, as seen in the numerous outliers below
the bottom whisker.

Fig. 7 presents similar visual plots as Fig. 6 but with test R2 values rather than test RMSE values. Results
from the left panel of Fig. 7 shows that the RTLLR method outperforms all other techniques in most locations
followed then by the KDE models and finally the parametric models. The right panel of Fig. 7 visually shows
the reliability of the RTLLR method in explaining the data’s variance since the mean R2 value is almost
1 and it has the narrowest interquartile range of R2 values among all other models. Moreover, the KDE
models, µR2 ≈ 0.77, seem to perform significantly better than both the Gamma, µR2 ≈ 0.70 , and Gaussian
distributions, µR2 ≈ 0.35. In addition, there are also instances where the parametric models attain negative
R2 values signifying that a constant mean model would provide a better fit for the data.

Fig. 8 shows the train KS test p-values of all enterprise and residential sites. The figure suggests that electric
load data does not seem to be distributed by a Gaussian nor a Gamma distribution since they reject the
KS test null hypothesis for all sites (i.e. p < 0.01). The 2 KDE models do seem to be a good fit for a small
number of locations. However, the RTLLR looks more promising as it does well in a good number of the
locations and attains the highest p-values in our study.
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Figure 5: Histograms of electric load data from a commercial site with single tariff with parametric and
nonparametric models fit. The training dataset is presented on the left while the test dataset is on the right.

Figure 6: Left Panel: Average scores of each model from worst to best relative to Test RMSE. Right Panel:
Percentage Improvement of each model vs. the Gaussian Distribution. Error metric analyzed is the Test
RMSE.
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Figure 7: Left Panel: Average scores of each model from worst to best relative to Test R2. Right Panel: R2

values of each non-parametric method vs. the Gaussian Distribution. Error metric analyzed is the Test R2.

Figure 8: Left Panel: KS test p-values of all locations analyzed by subgroup. Right Panel: Number of
locations that were fit well by each model, pass the p-value = 0.01 threshold, as suggested by the KS test.
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RMSE MAE MAPE MBE R2 KS p-value

Gamma 3.20× 10−2 1.79× 10−2 1.49 −2.09× 10−3 3.12× 10−1 < 2.2× 10−16

Gaussian 3.62× 10−2 1.95× 10−2 1.45 −3.42× 10−3 1.18× 10−1 < 2.2× 10−16

RTLLR 1.02× 10−3 5.90× 10−4 3.42× 10−1 −8.43× 10−5 9.99× 10−1 3.02× 10−1

ROT1 1.35× 10−2 5.21× 10−3 2.52× 10−1 −7.40× 10−4 8.77× 10−1 < 2.2× 10−16

ROT2 1.73× 10−2 6.94× 10−3 3.39× 10−1 −1.18× 10−3 7.99× 10−1 < 2.2× 10−16

Table 1: Train electric load dataset assessment for the location in Fig. 5

RMSE MAE MAPE MBE R2 KS p-value

Gamma 3.07× 10−2 1.80× 10−2 1.45 −2.18× 10−3 2.86× 10−1 < 2.2× 10−16

Gaussian 3.47× 10−2 1.99× 10−2 1.65 −3.46× 10−3 8.65× 10−2 < 2.2× 10−16

RTLLR 1.99× 10−3 1.33× 10−3 1.37× 10−1 −1.54× 10−4 9.97× 10−1 3.86× 10−1

ROT1 1.33× 10−2 5.71× 10−3 2.63× 10−1 −7.88× 10−4 8.66× 10−1 < 2.2× 10−16

ROT2 1.69× 10−2 7.18× 10−3 3.26× 10−1 −1.23× 10−3 7.84× 10−1 < 2.2× 10−16

Table 2: Test electric load dataset assessment for the location in Fig. 5

CONCLUSION

Two nonparametric models Root Transform Local Linear Regression and Kernel Density Estimation are
proposed for estimating electric load PDF over the Gaussian distribution used in literature to improve the
accuracy of electric load modeling. The performance of the nonparametric techniques was compared alongside
the Gaussian and Gamma distribution and assessed using electric load data from over 2400 enterprise and
residential locations in the United Kingdom using RMSE, R2, Kolmogorov-Smirnov test and data splitting.
Root Transform Local Linear Regression had the best results across the board with the lowest Test RMSE
values and with the most locations producing p-values greater than 0.01 when conducting the KS test
followed by Kernel Density Estimation. The parametric distributions had overall the highest RMSE values
per location and the KS test null hypothesis was rejected for all locations using those models. Further
research areas would investigate the performance of RTLLR in power systems planning and optimization
studies for predicting stochastic load.
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