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Abstract

Aerodynamics is the top-level of fluid mechanics science which is deals with the flow of air over bodies like aircraft or any
other solid surface. Boundary layer can be classified into hydrodynamics and thermal boundary layer and had wide range of
applications in the Aerodynamics. The present work examines the hydrodynamics boundary layer theory over a flat plate. It
is interested subject due to its wide range of applications in industry and nature like airplane, missiles, rocket etc. the three
laws of physics (mass, momentum and energy) had been derived and then the governing equations of boundary layer had been
derivded. The boundary layer is sub-divided into three regions or zones, which they are the laminar, transition and turbulent
boundary layer. The Integral Momentum Von-Karman Equation is derived in-full details over the flat plate and then it is used
to derived the main parameters in the laminar and turbulent regions like rate of growth of each layer, skin friction coefficient,
shear stress and drag coefficient. It is worthy to mention that despite various velocity profiles for laminar region, there is only
one profile for the turbulent region which is the seventh root law that suggested by Prandtle. Also, for laminar boundary layer,
Blasius proposed a solution that can be used to obtain the drag. The transition zone us discussed also and it is worthy to

mention that the analysis of this region is limited in the textbooks of fluid flows and heat transfer.

Nomenclature Nomenclature

Symbol Description

Tw Wall — Shear stress Eq. (1.1)

1 Dynamics viscosity Eq. (1.1)

3—; Velocity gradient in y direction Eq. (1.1)

p Density Eq. (1.2)

U Free stream velocity

Regr Critical Reynolds number

x x — direction

Y y — direction

z z — direction

U Component of velocity in x — direction

v Component of velocity in y — direction

w Component of velocity in z — direction

P Pressure

F Force

a Acceleration

Gy Component of acceleration in x — direction Eq. (3.19a)
ay Component of acceleration in y — direction Eq. (3.19a)



Nomenclature Nomenclature

Component of acceleration in z — direction Eq. (3.19a)
The work in the x — direction Eq. (3.41)

The work in the y — direction Eq. (3.42)

The work in the z — direction Eq. (3.43)
Instantaneous velocity Eq. [4.1]
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fluctuating velocity

time average velocity Eq. [4.2]

Mass flow rate

Displacement thickness Eq. (5.5)

Momentum thickness Eq. (5.7)

Kinetic energy thickness Eq. (5.8)

Dimensionless length of boundary layer development

38 e

> O
*

5**

Y

U Dimensionless velocity of boundary layer development
Cy Skin friction coefficient Eq. (7.17)

D, dimensionless parameter of velocity profile Eq. (7.18)
6 Boundary layer thickness

Fp Drag force

Cp Drag coefficient Eq. (7.22)

Re, Local Reynolds number

Res Local Reynolds number at the boundary layer thickness Eq. (7.28)

Rer, Local Reynolds number of laminar layer at the transition zone Eq. (7.46)
Ort Laminar boundary layer thickness at the transition region

o7t Turbulent boundary layer thickness at the transition region

Tt Turbulent length in the transition region

Learning Objective

After completion the reading of this chapter, you should be able to

1.

Define the boundary layer theory and its three regions (laminar, transition and turbulent) and the
critical Reynolds number for internal and external flow.

. Derivation the fluid flow and heat transfer laws of physics (mass, momentum and energy) in full —

details

Definition the turbulence and the different between Navier — Stokes equations and the Reynolds equa-
tions.

Derivation the boundary layer thickness, momentum thickness and energy thickness

Knowledge of the hydrodynamics boundary layer governing equation.

Derivation the Momentum Integral Equation for laminar and turbulent regions.

Starting from the Momentum Integral Equation to find an expressions for the rate of growth of bound-
ary layer thickness for laminar, transition and turbulent regions.

Derivation an expression of drag coefficient in terms of Reynolds number for each boundary layer
thickness

. Recognize the laminar and turbulent velocity profile

Introduction

The boundary layer theory is an interesting subject for the researchers among the world due to its wide
range of applications in aerospace engineering like aerodynamics, flows over aircrafts like missiles, airplane,
road vehicles and ships. One of the crucial applications of boundary layer is the determination of the drag
coefficient of flat plate at zero incidences, flows over airfoil, ships, road vehicles and aircraft. The calculation



of the drag is very important as it effects on the fuel consumptions and stability of the body. These days,
the fuel resources are decreases and its prices goes up and the fuel consumption is highly influenced by the
boundary layer over the road vehicles and aircrafts [1]. Also, one of the problems from the boundary layer is
the separation and the stall phenomenon and for this reason there are many aerodynamics modifications to
control or delay the separation as it leads to more fuel consumptions. Finally, there are applications in heat
transfer between the fluid and the body as in the combustion chamber of spark ignition engines. The flow
over a thin flat plate is the first case study of the boundary layer equations of Prandtl (4 February 1875 —
15 August 1953) solved later exactly by Blasius (9 August 1883 — 24 April 1970) in his PhD dissertation on
1908.

When a fluid flows past a solid surface, the velocity of the fluid at that solid surface must be the same as
that of the solid surface. If the solid surface is stationary, then the fluid velocity at the surface is zero.
So that there is a region close to the surface where the velocity increases from zero at the solid surface to
the mean stream velocity (Us). In this way, the boundary layer is a narrow region near the solid surface
over which both velocity gradient and shear stress are large. It is also known as shear layer theory. The
boundary layer theory can be divided into two main types which they are hydrodynamics and thermal layers.
The present work illustrates the hydrodynamics boundary layer. The hydrodynamics boundary layer can
be divided into two three region or zones, laminar, transition and turbulent as indicated in Figure 1. The
well — known Reynolds number is used to distinguish between each layer. For this reason before discussing
the hydrodynamics boundary layer it is required to write a section illustrates the concepts of turbulence,
Reynolds number and the three laws of physics (mass, energy and momentum of fluid). Form the first look
on the schematic diagram it can be noted that the laminar flow is parallel and the fluid flows in on layers
gliding smoothly on the adjacent layers. The viscous forces are higher than the inertia forces which makes
the laminar flow with small Reynolds number and thus there is no tendencies towards turbulence, eddies
formations and instabilities. Beside that the velocity profile is parabolic. So as the flow moves further, there
will be eddies formation with higher increasing in Reynolds number which it an indicator on the turbulence
had been begun. The velocity profile in turbulent flow regime is logarithmic.
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Figure 1 Development of the hydrodynamics boundary layer over a flat plate [2]

Boundary layer theory is a subject connected with the study of velocity gradient, shear stress, forces and
energy loss in the boundary layer. For laminar flow, the shear stress can be calculated from Newton’s law:

Tw = /,Lg—; (1.1)

While for turbulent flow, the shear stress can be obtained from the equation inserted below:

T = 0.0233pU T (5)0'25 (1.2)
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Reynolds number

The Reynolds number is a criterion which defines the nature of flow if it is laminar, transitional or turbulent
by measuring its inertial and viscous forces are given by the equation inserted below[1, 3, 4]:



_ pUsx x
Re = £=2 (2.1)

Where Re is the Reynolds number; p is the density of air; U, is the free stream velocity; x is the typical
length scale of the system; p is the dynamics viscosity

As illustrated before, the Reynolds number is used to categorize the nature of the flow type in three regions
as illustrated below in Figure 2.
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Figure 2 Fluid flow visualization over a flat plate [4]

It is found experimentally, that the turbulent flow occurs at Reynolds number more than the critical Reynolds
number as tableted in Table 1

Table 1 Critical Reynolds number for internal and external fluid flows

Type of Flows Type of Flows Type of Flows
External fluid low External fluid flow  Internal fluid flow
Along surface Around an obstacle

Re.,> 5e+5 Re,> 2e+ 4 Re.-> 2300

Governing Equations

The governing equations of fluid dynamics and heat transfer are the mathematical and physical statements
of the three famous conservation laws of physics:

1. ”The mass of a fluid is conserved”

2. "The rate of change of momentum equals the sum of the forces on a fluid particle (Newton’s second
law)”

3. "The rate of change of energy is equal to the sum of the rate of heat addition to and the rate of work
done on a fluid particle (first law of thermodynamics)”

The behaviors of fluid will be described in terms of macroscopic properties such as temperature, pressure,
velocity and density of fluid as well as space and time derivatives. The fluid element for derivation the
conservation laws of physics will be in a 3 dimensional Cartesian coordinates as explained in Figure 3 that



inserted below;
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Figure 3 Schematic representation of fluid element [5].

P.S. The fluid thermophysical properties will be as a function of space and time and they write asp =
p(x,y,z,t), T =T (z,y,2,t),P =P (x,y,2,t),u =u(x,y, z,t)for density, temperature, pressure and veloc-
ity of fluid.

P.S. Taylors series forward and backward will be used up to first two terms measure from the central point.
For example;

forward Taylors series:u (z 4 2) = u (x) + 22

greekxx (3.1)
backward Taylors series

w(z—z)=u(zr) -2

greekxx (3.2)

In this way, if we select the pressure for example;

forward Taylors series

Py=p+

greekxog

evyhion2 (3.3)
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Figure 4 Mass in and out of the box of the fluid [5]

Now let ” pu” is the mass flow rate per unit area at the center of the element, then with help of forward finite
difference scheme along the x — direction

Forward FDM along the right surface

Opu __ PU]HM_ PU]cewep
oxr

englishdx /2

dpu B

PU—‘ z+dr = PU1 center T B

english2

Backward FDM along the left surface

Opu __ pu]<evrep_ PU—‘:L.,(;E
or

englishdz /2




PU-‘ r—0r — PU-| center — 8@7*
english2

Net rate of mass in x — direction = (pul, s, — eVl z—s:)0yd2
= { PU—I center T s

englishQ—( oL] center — Bz
english28(:3C

dpu B
= { PU1 center T ﬁ*{

english2- pv] conter + %g

english26¢:5C
Net rate of mass in x direction = %SEM)E\)C (3.8)
Similarly at y — direction

opv _ Plyysy— Plecvres
oy

englishdy/2Forward FDM along the right surface

ely+sy = @l center + %@

english2

Opv __ p]cevrep_ P—‘yféy
oy

englishdy/2Backward FDM along the left surface

dpv d
P~| y—0y — P~| center — %7‘1’

english2

Net rate of mass in x — direction = (pv], 5, — @] y—sy)0762
= { P.| center 1 %7[;;%

englishQ—( 91 center — %L@

Yy
english28E6¢

= { P-| center T agipyu%

english2- o] conter + %’ZJ@

english23Z87
Net rate of mass in y direction = %—”;SZM)SC (3.9)
Similarly at z — direction

dpw __ Pw-lz+5z7 P"’];awap
oz

englishdz /2Forward FDM along the right surface

dpw L
Pw-‘ z+0z — P(*)-| center T apz -




english2

Opz __ pw—‘cs\nap_ pw—‘z—éz
9z

englishdz/2Backward FDM along the left surface

Opw dC
PC‘)—‘ z—6z = PC‘)—‘ center — gz -

english2

Net rate of mass in z — direction = (pw]_, 5. — pw] .—5.)02dy

9
{ Pw—| center T pw &

english?—( W | center — 85; %
english26Z8¢
{ p(o-| center T 8pw %
englishQ- P®1 center T Og;)%
english26Z8¢
Net rate of mass in z direction = %%UBE&PBC (8.10)
Thus;

Net flow rate of mass flow rate = [6’)“ + 3 apu 88”7;“} BEBYBL
%azwac |2 2+ 2 | Gadyoz = 0

+ 8pu + 8/)11 + apw =0 (311)

The above equatlon represents the continuity equation which is one of the fundamental equations of fluid
mechanics. It is valid for transient, compressible or incompressible fluid flow. It can be written in vector
form as follow;

9 1V epV =0 (3.12)

Two special cases that the researchers interested on them due to wide range of their applications in engineer-
ing and industry like solar collectors, internal pipe flow, nanofluid enclosure along with natural convection
which they are;

1. For steady, compressible fluid flow whick makes the density as a function of space only;V e pV =
0 (3.13)

2. For incompressible flow;V e V =0 (3.14) 5% u —|— +
0 (3.15)

3. Momentum Equation

Before derivatives the momentum and energy equations, it is very important to full — understanding the
following concept which is called Material Derivative.

Physically, any property is a function of space and time. The space is represented by the coordinates (x, y,
z) and time which is denoted as t. so that we can write the total or substantive or material derivative which
is denoted as @ as indicated below;

Do _ 0@ 02 dx oo dy 0 dz

Dt — ot T oz dt T ay dt T 9z dt (3.16)
dx _ dy _ dz _

a = W at — U a W



%Z%f’f-ku%—f—kv%—’j—i—wa—g (3.17)

So that the acceleration can be written as below;

_ DV _ oV ov. oV oV

A shorthand notation for the material derivatives operator is;

Do — 92 4 (Vev) (3.19)

Where the V is the velocity vector and it is given by=u i4v j +w k the velocity gradient is denoted as V
and it is given byV@ :g—i i +‘g—‘j j +%—f k

As an example; acceleration — components will be;

ay = %—?Jru%vag—Zer% (3.19a)
ay = % + u% + vg—z + w% (3.190)
a, = %%f + u(%’ + v%—‘y” + w%—’; (3.19¢)

Newton’s law physically states that ”the rate of change of momentum of a fluid particle equals to the sum
of forces on the particle”. Mathematically, it could be written as inserted below

S>F=ma (3.20)
There are two major forces acting on fluid particle;
Surface forces

e Pressure forces
e Viscous forces

Body forces

Gravity force
Centrifugal force
Coriolis force
Electromagnetic field

It is commonly on CFD problems related to heat transfer and fluid mechanics to include two forces which is
a surface force as a separated force and the body force as a source term.

Now let us analysis the surface forces or stresses which contains normal stress and shear stress. The shear
stress is nothing but the force magnitude divided by the area. The stress opposite in the direction to the
proposed direction as shown in Figure 5.
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Figure 5 fluid element with the normal and shear stress applied on it [6]

Net force in the x — direction in the right and left face is
3
[ + Ogx 8

english2- (0’XX — % &

10



english28dL = 22xx3E5Y3Y (3.21)
Net force in the x — direction in the top and bottom face is

OTyx 8¢
[ + e

english2- (Tyx - 65;* o

english2557 = 2752557 (3.22)
Net force in the x — direction in the front and back face is

OTyx O
[TZXJF%*C

english2- (sz — %&
english26¢5C = %BES(PBC (3.23)
0®s = (85? + G+ 6%) DEBYDL (3.24)

Now it is the time to write down the first form of the equation of motion in the x — direction by conjunction
the body and surface forces

Y F=dma, ) F=06b,+ Sy ,0m=péxdydz, Sy = pg

Ay = %?Jru%vag—Zer%

S F=0may

(25 + %= + 25 ) SERYBL+ Sur = p (B¢ +uft + 02 + wt) SR

By canceling 6x08ydz and substitute the source termSy; = pg,

9o | OTyx | O7uy —,(2 el 9 9
(gx + 5=+ gz)+pgz—p(a—’t‘+ua—z+va—z+wa—z)

Then, we can obtain the x — component of momentum equation

(% + %= + % ) + pga = p (G2 + g2 + 38 +wt) (3.25)

Similarly we can obtain the y — component of momentum equation

(6g;y + % 4 @g;-v) +pgy =p (% +udl+vde 4 w%) (3.26)

Similarly we can obtain the z — component of momentum equation

(% + OFsa 4 ag;z) +pg. =p (%’2’ +ugy gy + w%f) (3.27)

From fluid mechanics textbooks; The normal stresses [6];

Oxx = —P +2u (54) (3.28)
ovy = —P+2u (32) (3.29)
0 =—P+2u (%) (3.30)
The shearing stresses [6];

Txy = Tyx = K (% + %Z) (3.31)
Tao = Tox = 10 (52 + 32) (3.32)

11



Tys = Tay =l (az + glyv) (3.33)
Navier — Stokes Equations

These are one of the hardest PDEs that had never solved exactly and it is one of the one million USD
equations. These equations along with the conservation of mass and energy equations are the corner stone
of all of the fluid flow and heat transfer problems due to their wide range of applications. As there is not
exact solutions, an approximate solutions using CFD had been developed for various problems and using of
different models. Since the present work concentrates on the turbulent flow, various turbulence models will
be discussed in full — details later.

Let us first obtained the Navier — Stokes Equation in x — direction;

(a"x" + 6TVX + 3”*) + P9z = p (% +udt + oGt +wg—z)

) d o) d d _ (2 ) ) )
(P2l + g o (B +55) | + & [ (B + 8]+ ome = 0 (3 +ut + 0By +wdt)
Now let us develop the N — S equation in x — direction for a special case study which involves for incom-
pressible, Inviscid flow;
"'QM +M8y0z+u8y8y+u828w+M8z8z+pgw_ ( +udt +ofs —|—w )

. o dv __ 0 dw __
NOW’ simcep g, oy 0x “ax 8y and'u’ 9z Oz ”ax Bz

2
and by putZH% = ,u% + ,u%
Then,

+'u8902 +'u8902 +'U’3z8y+/“l’8y8y+ﬂam Dz +u§zgz+pgm—p<%+u%+v%+w%)

ou v

+M8x2+uaxaz+u8m8y+uay2+M31881;+ (a"_i-u _|_v3u+w8u)

Let us re-arrange them so that we can use continuity equation;

—9P 0y +Max{ +5+ 9 }+u + =p( +ubt +odt fwt )

. Ou ov ow __
rp o=y

oP

—ax+“ax2+”6y2+ —p( —&—uaz—kvay—&-w )

—%—f+u(@wz+ )—l—pgw—( tudt +ofe +ws )

In this way, the N — S Equation in x — direction will be

p (G +udt+032 +wd) = —28 +pg+u (58 + 5% + 0% (3.34)
Similarly and using of the same procedure, we can obtain the N — S equations in

y — direction

p( +ufl +og +wgl )= +pgy+u( +%+§3) (3.35)
z — direction

p(%f +u%+v%+w%) :—%+pgz+u(gig+g22+gig) (3.36)

Energy Equation

12



Figure 6 demonstrates the two components of stresses which they are the normal and shear stresses on a
fluid particle. The normal stress is denoted as”oxx” and the shear stress is denoted by the symbol”7y,”.

Firstly, we consider the x — component of the forces due to pressure, normal and shear stresses components
as illustrated below in Fig. .

dz 2 or. 1
ot 1 _ I
Tyx+a—;".§6y / Y 26

| o 1
p—a—p-i&(\\ | p+3_f:.§6X
(9)( 2 - |
I
|
|

— = 0 | —
! = ad 1
AT W S R < Tt 22
ax 2 S~ ox 2
7 —4-----&-- -

\

T, 1
X -,
T % 5 oz

TXX

Figure 6 two components of stresses on a fluid particle [5]

Forces on the left and right faces are denoted as Fy

F = [(P— op ot

Ooxx 088
ox

english2— (axx —

english2dydz + [— (P + %g

english2+ <(7XX + ag;x 33
english26¢)5C

english2+ (% &

english2dydz + {_ (371;&
english2+ (%E

english26¢:5C

Fr = [ (= 5708) + (%2202)] 840C

Fu = [= 55 + %] 0204 .

Forces on the front and back faces are denoted as Fy

13



F2 = (Tyx + aTyx SLI)

english2dzdy — (Tyx — 8,;;" o9
englishQBE&L
= 2P 5Es b (3.38)

Forces on the top and bottom faces are denoted as F3

Fg = (Tyx + aTyx 8(1)

english2dzdy — (Tyx _ 6gzx 50

english26&d¢

o %&&l)&b (3.39)
Then, the net forces in the x — direction is equal to the sum of all of the three forces;

Fo=F +F+Fy = {[ 9E 1 Ogus] 4 x4 O3 L BEBYY

Now, the work done in the x — direction which is denoted as W, will be the product of the force by the
velocity;

W, = [Ou(— §+axx)] n 8[7(;;3,} 8[ur ]} 6254)&[) (3_41)

Similarly, the surface stresses components in the y and z direction is given by the mathematical formula
indicated below;

[OlvT,,] Olv(—P+oyy 3[1}7
W, = [Tl 4 2eClkewll 4 Xl sesgay (3.42)
W, = |Amaal 4 Zimoel | Olwl=Prowl] aE5gay (3.43)

Now, it is the time to collect the terms that contains the pressure together as indicated below;

Iu d[v o[w .
00 i (P

The total work done on the fluid particle will be;
— i O(uoxx) | (VTez)
W = —div (Pu) + [T + A2Tee)

englishy + Olver)

englishdz + % 4+ (=)
englishoy + 26w
englmhaz + “’Uzz) + (0797)

englishoy + Hlorer)

english0z (3.44)

Now let us find the Energy flux due to conduction heat transfer

14



qz+aqz-£52
dz 2
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Yooy 2
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s ‘ oq, 1
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Figure 7 the net heat transfer in a control volume [5]

The net heat transfer in the x — direction is equal to
94y B

[(a - G

english2— (%c + %&

english28¢3% = — 992 BESYBL

The net heat transfer in the y — direction is equal to
9gqy B

-3

english2— (qy + %L;@

english255 = — 29 5E55L

Yy
€T

The net heat transfer in the z — direction is equal to
9q.

G

english2— (qz + %%

english28E8¢) = — 94=5EFYBL

Then; the total heat rate per unit volume is the sum of all of the heat flow across the boundaries divided by
0x0y0z

9qa 9 9q. .
— % = _BL; =% = —div(q) (3.45)
The heat flux and the temperature gradient can related by Fourier’s law;
qx = 71{%%] = 7]{(89%(12 = 71{%

15



q=—-k grad T
—div (q) = div (k grad T ) (3.46)

In this way, Energy Equation can be written as below;

x

pBE —= —div (Pu) + | 207=) . ()

englishdy + Olores)

english0z + LUS‘;”) 4 (=)
englishdy + cledd)
english0z + 78(“5‘;”) 4 (omed)

englishdy + Hlorer)
englishdz + div (k grad T ) (3.47)

1. Turbulence
2. What is Turbulence?

Turbulence is a the top level and a leading subject of fluid flow researches and during the last century some
of the famous mathematician worked in this specific area like Reynolds, Taylor, Von — Karman, Parbdtl
and his PhD student Blasius. Turbulence may be defined as a random, irregular, unpredictable motion
in which each quantity of fluid flow properties fluctuates continuously with respect to the time and space
[5]. Turbulence leads to increases drag, mixing, energy dissipation and heat transfer beside that it is a 3 —
D flow [7]. For example, Figure 8 displays the water jet image visualized using laser-induced fluorescence
technique under turbulent flow. It can be seen how the turbulence effect is high on the irregularity of the
water distribution. Also, the turbulence is a recommended technique to increases the flame speed which
enhance the heat release as illustrated in Figure 9 which is tangential swirl burner. Based on Figure 10 it
can be seen that the instantaneous velocity fluctuate about its average value and can be written as indicated
below;

U:u+u&t) (4.1)

Where u (t) it is the fluctuating velocity

u it is the time average velocity and can be calculated from

u=1[TUdt (4.2)
Hosted file

image9.enf available at https://authorea.com/users/311520/articles/442218-on-the-theoretical-
and-mathematical-analysis-of-hydrodynamics-boundary-layer-fluid-flows-regimes

Figure 8 An axisymmetric water jet image measured visualized using laser-induced fluorescence technique
8]
Hosted file

imagel0.emnf available at https://authorea.com/users/311520/articles/442218-on-the-theoretical-
and-mathematical-analysis-of-hydrodynamics-boundary-layer-fluid-flows-regimes

Figure 9 Tangential air insert to generate more turbulence [9]
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Figure 10 Influence of Turbulence on velocity history [5]
Reynolds equations

In the Navier — Stokes equations, the turbulence motion had been neglected and only the mean viscous
stresses and the apparent turbulent stresses had been taken in the considerations. In this way, the laminar
and turbulent fluid flows can be treated in a common frame work of the Navier — Stokes equations. Thus, if
the turbulences stresses included in the equation of motion, then the resulted equation called the Reynolds
equation.

From fluid mechanics textbooks; The normal stresses [6];

.2

O = —P 421 (%%) — pu (4.3)
N .2
oyy =—P+2pu (8—5) —pv (4.4)
.2
0 = —P 421 (%) — pw (4.5)

The shearing stresses [6];

Txy = Tyx =W (% + %Z) — puv (46)
Txz = Tax = [b (g—g’ + g—;‘) — puw (4.7)
Tys = Toy = [ (% + 3—7;) — pwu (48)

If we substitute the above formulas eq. (4.3) — (4.8) in the Navier — Stokes equation, the Reynolds equations
will be as indicated below;

(Be) =192 4 pveu - [ () ‘2 (@) i 2 (w)] (1.9
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(B2) =192 4 v [ @) i2 () i 2 (wﬂ (4.10)
(B2) = 100 4 vt [ (@) v2 (zm;) y2 (wﬂ (a11)

In the present work, Navier — Stokes equation will be used instead of Reynolds equations for the boundary
layer analysis as it will be demonstrated in the next section.

1. Estimation of boundary layer characteristics
2. Displacement thicknessd™

It is the distance (y) by which the external free stream is effectively displaced to formulation of boundary
layer.

— streamline i
L
Yy

\

-
L) Lol

\ X

Boundary layer

Figure 11 displacement thickness [2]

If a free stream of velocity U, is effectively displaced byd*. The loss of the mass flow rate per unit time is
given by:-

1 = pooUsed”* (5.1)
The loss of the mass flow rate per unit time is given by:-

din = p (U — u)dy

Then the total mass flow rate per unit time is:

i = [y p(Us —u)dy (5.2)

By equation the above equations, we get

pocUscd™ = [} p(Uso — u) dy

If the fluid flow is assumed to be incompressible i.e, the density remains constant, and then the above
equation will be written as follow;

PoclUccd™ = foé p (Uso —u)dy
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o = Jy (1= =) ay (5.3)
In the fluid mechanics it is recommended to transform the equations into non-dimensional form. In this way;
Lety=% and U = g—we will get;

. (1 - i) 35y
=L (1-U)ay (5.4)
momentum thickness
Now let us formulate an expression to the momentum thickness;
The loss of momentum flow of the free stream equals to:
= pPoclUoct Uso (5.5)
The total loss of momentum is given by;

fo —u) udy (5.6)

By equating the above two equations, we get

PooUsol Uso fo —u) udy
For incompressible flow;U,.0 * Uy fo — u dy
offo o0 U2dyff0(—i>ﬁdy
- ﬁf = (1 ) dy (5.7)

fo (1 - ) dy
kinetic energy thickness

Finally, an expression for the kinetic energy thickness will be after derivation something like this;

= U ( ) dy (5.8)

Momentum equation of hydrodynamics boundary layer over a flat plate

First of all, let us develop the governing equation of the hydrodynamics boundary layer.

The navier-stoke equation in x-direction that derived in section 3;

2 2 2
p<6t+u8w+vgu+w )=—%§+pgm+u(%+§73+2;) (3.34)
Assumptions

The flow is steady and the fluid is incompressible.

The viscosity of the fluid is constant

The pressure variation in the direction perpendicular to the flow is negligible.
Viscous — shear forces in the y-direction is negligible.

5. Fluid is continuous both in time and space.

Ll

After applying the assumptions mentioned before, we get

ug—g +vgy z/gy” (6.1)
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The equation mentioned above is representing the equation of motion of the momentum equation for hydro-
dynamics boundary layer.

The next pages, two mathematical solutions will be used to solve the momentum equation for hydrodynamics
boundary layer. One of the solutions is approximate which is called Von — Karman and the second is the
Blasius Exact solution.

1. Von-Karman Momentum Integral Equation
2. Derivation of the Momentum Integral Equation

Let us consider control volume of ABCD as in Figure 12 below

U(x}—- C-_-_.__.__--- —
b o=
-
|
-7 ! |
I i 8 (x)
\ CV——1
y |
I I
' I
I I
al______ add

Figure 12 Control volume of Von-Karman Integral Momentum Equation [10]

Mass flow rate entering the c.v. upstream (ab):

s
r'nl:/O eudY (7.1)

Mass flow rate leaving the c.v. downstream (dc):

° d
m2:/0 pu&p—i—&

5
/0 pu&l)} dx (7.2)

The net mass flow rate is

/06 pu&[)] dx — /06 pudY

&
’fTLQ — m1 = % [/0 QUE¢‘| dx (73)

Momentum flux entering ab =

5
Jo putdy (7.4)

J d
Y — N = 8 —_
Tho — 1h /0 pudY + o
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Momentum flux entering cd =

§ é
Jo puidy + & [fo pu2dy} dx (7.5)
Momentum flux entering through bc is given by
Use * (1 — 1i01) = Uno L [ N pu&];} dx (7.6)

Now the total drag force must be equal to the rate of change of momentum in flow and out flow;

—Fp = Momentum Flux]|_ , — Momentum Flux],,
—Fp = foé puldy + L U(;S pu2dy] dx — fg puldy — Us L U(;S pu&p] dx
~Fp = 4L | ) putdy| do — U & [ J7 pud] ax
—Fp = pt [y 1o — uUsc]dy] dx (7.7)

Let us multiplying and divided Eq. (7.7) by g:z

2
—Twdz = pL [ 05 gzz [u — uUOO]dy} dx

o = pUs” g [y o (1= o))

e 0 (-0 ®2

The above expression is the Von-Karman M.LE. valid for laminar and turbulent shear layer. It has the
following form with some manipulation;

Letl = ¢ = [ U (1 . U) dy (7.9)
T = pUs 2L [5 o (1 - U)dy} (7.10)
Tw = pUso” % (7.11)

Laminar Boundary Layer

There are many Laminar velocity Profiles like the inserted below;

U=y (7.13)
U=3y—1Ly’ (7.14)
U=2y— y2 (7.15)
U =sin §y (7.16)

skin friction coefficient

Firstly, an expression of skin friction coefficient will be developed
w _ 2

Cp =1 = Tw = 3pUs” # Cf (7.17)

From Von-Karman IME:7,, = pUOOQIdd—X (7.12)
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Equate the above Eq. (7.12) with Eq.(7.17)two expression of the shear stress, we find out;

50U % Cp = pUssI 5

Cr=2xI»L =24 (7.13)
Rate of growth of L.B.L. over a flat plate

Now we will develop an expression of the rate of growth on flat plate

Cy = %p;}vooQ (7.17)Also, From Newton’s law:7,, = ug—’y‘ (1.1)
Cy= %p(;fjog) (719

2 du
Cp— -2u, du
f U2 dy y=0

Sincey = ¢ and U = g-we will get;

du—‘ _ d (U U)—‘ _ Ux dU—‘
du = 4 o= 2= Y
| y=o 3oy \ X v O dy [y—o

Cp = 28 4 U diUW - 2 diUW
f PU 0 dy y=0 PdY oo dy y=0
Let us assume dimensionless parameter of velocity profile D, = ‘Z—U—‘
y ly=0
__ 2uD
Cf = pBT; (7.18)

Now let us equalize the Eq. (7.13) with Eq.(7.18) ;55{?0 =2xxL

This is 15* ODE can be solved simply using the separation of variable method

d _ _pDe
dx = pdY ool
_ [ Do 82 _ puD,
J 685 = frdx = & = frmatc

atx=0,=0—>¢c=0

2
& — LDo o hytRe = LU=z _y pUx _ Re

2 7 pUsT o o T
ﬁ __ xxD, _ 2D, x
5 = TReT 2 0=\ R

§ =/ 22e T (7.19)

Drag coeflicient for flat plate
The drag force is the component of force on a body acting parallel to the direction of motion.
Fp=w fOL T.dx From one surface

For two upper and lower surface;

Fp=2x [w fOL dex}

Fp =2wLT,
The drag coefficient isCp = %pgizA = pgi@A (7.20)
2uD, _ /2D, =
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Cf _ 2uD, 2uD,

2D 2D,
pUooxy/ =72 \/gTa: pU RV \/W

Cf = /2Rl (7.21)

L D I 2D,1 L x 2D,1
Cr=1+ [fCrdx=Cp=1 [ \/Reldx=1,/ R E=F VL
Cp = 2\/2D oIu \/SD ol — 9.9 RCL

Cp =2 /321 (7.22)
CD = QCf
Note:

Blasius is one of the PhD students of Prandtl. The full-detailed of this solution is discussed in Fluid Mechanics
books that the reader can read them. However, we will summarized only the obtained formula of

Blasius Exact Solution

Rate of growth of L.B.L. 157 = ‘K’R(im (7.23)
Local skin friction coefficient:Cy = f}% (7.24)
Average skin friction coefficient:C; = Cp = \1/'% (7.25)

As an example to explain the laminar boundary layer, let us assume we have the simplest laminar velocity

profile which isU =y

We shall use the rate of growth formula inserted below;

8o

|
I=Jyu(1=U)dy=[yy(1-y)dy=}

§ __ 3.464101615
Then, z = W

Let us obtained the local skin friction coefficient using the formula inserted below;

4 {M } =14 {3.464101615%5*

d
CfIZQ*I*E:Q* Ro.

1
6
0.

5 0.5 V3 0.5
Cr,=3+3616 (=) 4% = 14364605 (=) 1/2%5 = %2 ()

x

_ 0.5773502692 ; . _ 0577
Cy, = JRe Commonly written as Cy_ = JRes

The drag coefficient is more convenient in the aerodynamics researches, in this way, we shall find out its
expression for this profile;

Cp=1 Jy Crpdx =1 [) %ldx =

T
0.5 0.5
_ 0577 (v L 054, _ 0577 (_v_ z08
Cr="1 (UW) Jo a7 0Pdx = 5% ( oo) 0.5
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The same procedure can be used for other laminar velocity profile. We tableted the famous velocity profiles
and their characteristics below in Table 2;

Table 2 Velocity Profile of Laminar Boundary Layer Characteristics

Velocity profile Rate of growth §/x Drag Coefficient C¢
U= 3.464101615 1.1547
=Y v Reg vRer,
U=3y_1,7 4.64 1.292
- 22y vRey Rer,
9 5.48 1.46
U - 2y y Re, Rer,
i T 4.795 1.31
U =sinJy e fier
Blasius Exact Solution \/E{Tz \/7{'}3{1

Turbulent boundary layer

Unlike the L.B.L. there is only one well-known turbulent velocity profile which is known as the seventh root
law profile that suggested by the Prandtl:

1
U=y"’ (7.26)
Local stream-function coefficient

Let us formulate an expression of the local stream-function coefficient in turbulent boundary layer.

., 0.25
T = 0.0233pU T (5) (7.27)
. 0.25 0.25
- 0.0233pU & (g) 0,046 pU' T (Z)
Cr=13 - 2= 1 2 = 2'
50U 5PUc PUso

aty=90 > U =Uy
O, — 20466 pU (y)o'% _ 0.04661°%5 _ 0.0466

f= U2 — U02550.25 — Re025,
Cy = poisg (7.28)

Rate of growth of turbulent boundary layer
The derivation is starting by writing the M.I.E. ;
U248

0 dx

Tw = pUJI(%{

1=fu(1-v)ay=fyy" (1-4")ay=1%

Tw = 72PU002 — pU 7 = 71(% (729)
Let us equalize Eq. (7.17) with Eq. (7.29), we get 5 <L = 1C; (7.30)
But we have already obtainedCy = rgé?;%g% (7.28)

Substitute Eq. (7.28) in Eq. (7.30)
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0.25 . . . . .
i { 0.0466 } = L4 1 00 = Z 4 This is 1°* ODE will be solved simply using separation of variable

Re60.25

method

72 dx

oo

” 0.25 1/4
17 0.23965 (@) dx = [ 55— 465/1 = 0.23965 (i) x

1/5 0.2
§ = 0.3812325351 (i) #4/5 — 0.3812325351 (i) =
_ 0.3812325351x
e T

7 _ 0.38123
z ~ Reg%2

1. Characteristics of turbulent boundary layer
2. Displacement thickness

s _1,5_ 1, 038123 _ 0.04765
0" = g*0 =g * Re07 = Re,o2 X
§* — 0.04765

= Re,02

Momentum thickness

S=fu(i-U)dy= Ly (v ) a4

Similarly, we get 6 = (i{ 03’(7)026 <

Energy thickness

By the same approach, we shall getd** = %
Skin friction coefficient for turbulent boundary layer

__ 0.0466
C Reéo 25

0.25 0-25 0.25
Cr = F2%%5= = 0.0466 (i) *(3)

0.38123

) 0.38123
- = Re, 02 X

T Re, 02

Substitute Eq. (7.31) into Eq. (7.28), results;

Cr = 0.0466 . 025 1 0~25_ v 0.25 Re, 0-20-25
f=VY. * Us * 038123 = 0.0466 * U * — _

Re,-o'é

- 0=

0.25
Cy = 005930470493 * (UL) T Res0 05030470493 # (7%)  Re"

C _ 0. 05930470493
fo ™ Re,

Finally, the wall shear stress will be;

T = 3pUxCy, = 5pU? {45581 = 0.02065 « 42

Mixed (Transition) Boundary Layer Region

The schematic diagram of the external flow over a flat plate is inserted below;

25

0.381230-25 x0-25

(7.31)
(7.32)
(7.33)
(7.34)
(7.28)
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Figure 13 External flow illustrating the transition zone [11]

Firstly, let us develop an expression of turbulent boundary layer thickness at the transition region in terms
of Reynolds number at the laminar boundary layer region as explained below;

However, for laminar zone, sine profile will be selected as a special case study;U = sin Sy

4.795 x
§r . = 215 L _ 4 g (#
Lt ./ReLyt Uso TL,t

Multiplied and divided the above equation by(U—V“’) 1/2

1
4.795 0.5 05, (Usc\3 (_v )2
O = ——=Et =479 (—” ) x x (£=)2

Lt /reL’t U L.t ( ) U

1/2
Or4 =479 ( U”oc) Rep, ;" (7.38)

0.5 0.5
) e =479 () @000 (7.37)

Thus,67, = 1.4, (7.39)

[N

1
oy = 145479 ()" Rep = 6.706 ()" Rep,

)

1
O = 6.706 (¢ )" Rep (7.40)

oo

Secondly, let us find out a general expression of turbulent layer in the transition region;

_ 0.381230:?27“ _ 0.38123 zp 4 038123<

0.2
6T’t - Rer, ¢ - (Uoo ET,t)O'Q = ) ‘,I"T7t0.8 (741)

v
Uso

By equalizing Eq. (7.40) with Eq. (7.41);

% 0.5 0.2
) Rey " :O.38123( y ) w08

6.706 (-5 v

v
oo

0.8
T 0.8 __ _6.706 v Re 0.5
Tt = 0.38123 \ U Lt

x7, = 36.023469

i Rep*/* (7.42)

Finally, as aerodynamics researchers we are more interest in obtaining a formula for drag coefficient at the
transition zone;
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The effective length of turbulent layer is given by;Ly = L — Xy + X1
fL Xi+Xr ¢ T dx = 2pU 2 L Xr+XTtC dx

The local skin friction coefficient in the turbulent region can be obtained from the equation inserted below;

Oy = 00593

RCTU 2
D = JpU? JE 5 855
D = 0059 Uoo2 o T dx
D= %pUm2 OL_XH_X“ (ULDO)OQ x02dx

0.2
L—X+X _
D= 0'02593pU002 ( v ) Lot X p02gy

2
D= 00593 57 2( v 02 (L X, +X7r.)"®
2 PYoc \ T 0.8

0.2
D = 53% U ( [I]/OO) (L — X¢+ Xr0)"® (7.43)

Let us first simplify (L — Xy + XT’t)O.S by multiplying and divided it by(U%/"’)

0.8
(L — Xt + XT’t)0'8 = ( JW kx == (L Xt + XTt)) = ( J * (RGL — Ret + ReT)t))
=099, 2( v )" (v (Re, —Re, + Rery))
D =555 Us Ue L e + Rer )
0.2
2D =580, 2 () (4 ) (Rez — Re + Rep,)"®
D= 0228983 Us? T (Rer, — Rey + ReT,t)O'8
-.D =0.0370625 pUsov (Re, — Rey 4+ Reqy)*® (7.45)
The drag coefficient is nothing but the drag divided by% pUs%S
C, = D _0.0370625 pUsov(Rer, —Re;+Rer )08
4= TpUL25 35U Ll

O, — 2x0.0370625 v(Rer, —Re;+Rep )08
d= UL

C, = 0.074125 ( ) (Re — Rey + Rery)"®
C = % (RGL — Ret + ReT,t)O'S

. Uso X
Since Rep; = ==+

The equivalent length of turbulent layer in the transition zone(X,,) is given for sine laminar profile as
derived previously,

5/8

5/8

ReT,t =

Rer,; = 36.023469 ReLf
In this way, we finally get
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__ 0.074125 0.8
Cd = v (ReL — Ret + ReT’t)

0.8
Ca = 297425 (Rey, — Re, +36.023469 Rer,*/* ) (7.46)

Chapter Summary and study guide

The present chapter demonstrates the mathematical analysis of the hydrodynamics boundary layer over a
flat plate. The main important points can be summarized in the following points:

e The boundary layer over a flat plate are three regions :laminar, transition and turbulent region. It
is worthy to mention that the transition region analysis in the text book is limited and we hope the
explanation of the transition region in the present chapter could help to the engineering students in
better understanding of this region.

e The governing equations of fluid mechanics :mass, energy and momentum of fluid had been derived in
— full details.

e The turbulence is also illustrated in this chapter with mention of important applications of the turbulent
flow.

e The governing equations of hydrodynamics boundary layer had been investigated also and then Von —
Karman solution for this equation is derived.

e We starting from the M.L.E. to derive an expression of the boundary layer thickness, drag, skin friction
coefficient, drag coefficient, shear wall stress in terms of Reynolds number for laminar, transition and
turbulent regions.
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