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Abstract

Expansins have the remarkable ability to loosen plant cell walls and cellulose material without showing catalytic activity and
therefore have potential applications in biomass degradation. To support the study of sequence-structure-function relationships
and the search for novel expansins, the Expansin Engineering Database (ExED, https://exed.biocatnet.de) collected sequence
and structure data on expansins from Bacteria, Fungi, and Viridiplantae, and expansin-like homologues such as carbohydrate
binding modules, glycoside hydrolases, loosenins, swollenins, cerato-platanins, and EXPNs. Based on global sequence alignment
and protein sequence network analysis, the sequences are highly diverse. However, many similarities were found between the
expansin domains. Newly created profile hidden Markov models of the two expansin domains enable standard numbering
schemes, comprehensive conservation analyses, and genome annotation. Conserved key amino acids in the expansin domains
were identified, a refined classification of expansins and carbohydrate binding modules was proposed, and new sequence motifs
facilitate the search of novel candidate genes and the engineering of expansins.
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Introduction

Expansins are plant cell wall loosening proteins without apparent catalytic activity, which have been identified
in a broad range of organisms1–4. The loosening mechanism is still elusive, but it has been suggested that
the non-covalent interactions between cellulose microfibrils are weakened and moved against each other,
thus the tight cellulosic structure is loosened1. The interactions between expansins and the plant cell wall,
which consists of lignin, hemicellulose, and cellulose, require further investigation5. Expansins were first
discovered in plants and were described as proteins mediating pH-dependent extension and stress relaxation
of cell walls6. Based on phylogenetic analysis, it has been proposed that expansins in Bacteria and Fungi
resulted from multiple horizontal gene transfers from plants to microbes7, but there is also the possibility
that the microbial expansin subfamily evolved first in ancient marine microorganisms, and then diversified
into distinct terrestrial plant subfamilies8.

Expansins consist of two tightly packed protein domains, connected by a short linker and preceded by
a signal peptide9(Figure 1) . Both expansin domains need to be connected for effective wall extension
activity and weakening filter paper10,11. The C-terminal domain of EXLX1 (expansin-like X) from Bacillus
subtilis dominates the binding to cellulose and to matrix polysaccharides of cell walls through electrostatic
or polar interaction10. The Zea mays β-expansin (Zm EXPB1) primarily binds glucuronoarabinoxylan, the
major matrix polysaccharide in grass cell walls, and loosens it12.
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Key amino acids in the N-terminal domain of Bacillus subtilisexpansin-like protein 1 (Bs EXLX1) are two
threonines at positions 12 and 14, a serine at position 16, two aspartates at positions 71 and 82, a tyrosine
at position 73, and a glutamic acid at position 7510, numbered according to13. The threonine at standard
position 12 is strongly conserved, but not essential for activity10. The aspartate at position 82 is crucial
for activity; the threonine at position 14, the aspartate at position 71, and the tyrosine at position 73 are
important for activity; and the serine at position 16 and the glutamic acid at position 75 play moderate roles
in wall creep activity10. Three disulfide bridges can be found in the N-terminal domain ofZm EXPB114,
and the six participating cysteines are highly conserved in the plant expansin groups, EXPA (expansin A)
and EXPB (expansin B)14. An additional highly conserved cysteine pair is considered as a fourth disulfide
bridge in plant α-expansins15. In the expansin protein Sc Exlx1 from the Basidiomycete fungus Schizophylum
commune , three disulfide bonds are predicted16, whereas there is a lack of disulfide bridges in Bs EXLX113

and many other bacterial expansins.

The N-terminal expansin domain is formed by a six-stranded double- β-barrel13 that is shared by several
protein superfamilies17, e.g. glycoside hydrolase family 45 (GH45)18,19. The expansin-like proteins found in
Fungi such as loosenins, EXPNs, or cerato-platanins are single-domain proteins that resemble the N-terminal
domain of expansins20–22.

The C-terminal expansin domain is responsible for the binding to cellulosic material and is formed by two
stacked β-sheets with an immunoglobulin-like fold1. The cellulose binding site on the protein surface consists
of a linear arrangement of aromatic residues (tyrosines, phenylalanines, and tryptophans)13, which for Bs
EXLX1 includes two tryptophans at positions 125 and 126, and a tyrosine at position 15710. A further key
amino acid residue required for wall extension activity is a lysine at position 11910. The C-terminal domain
of Bs EXLX1 belongs to family 63 of carbohydrate binding modules (CBM63)10, which mediate binding to
polysaccharides23,24.

In this paper, we analyzed the similarity between “expansin-like proteins” (such as GH45s, loosenins, swol-
lenins, cerato-platanins, EXPNs, and expansin-like proteins found in nematodes) and expansin domains on
sequence level by establishing the Expansin Engineering Database (ExED), which collects characterized and
putative expansin homologues. The protein sequences in the ExED were divided into different superfam-
ilies (‘Bacterial expansins’, ‘Fungal expansins’, and ‘Plant expansins’) according to sequence identity, and
not by phylogenetic relationships of expansins, which were analyzed in8. By annotating the two expansin
domains and using a continuous standard numbering scheme, conserved sequence motifs of the expansin
protein family were identified that could be applied in the screening of genomic data for the identification
of novel expansins.

Methods

Sequence collection for the ExED

The Expansin Engineering Database (ExED, https://exed.biocatnet.de) was built within the BioCatNet
database system starting from twenty-five protein seed sequences (Table S1 )25. These seed sequences
were used as queries for the Basic Local Alignment Search Tool (BLAST)26 using an e-value cutoff of
10-10 against the non-redundant protein database27 of the National Center for Biotechnology Information
(NCBI)28 and the Protein Data Bank (PDB)29. Two subsequent updates were performed to further en-
rich the ExED. For the first update, the sequences found by the initial search were clustered by UCLUST
from the USEARCH package (version 11.0.667)30 by a threshold of 80% sequence identity, and the cen-
troids (representative sequences) served as seed sequences for a BLAST search in the NCBI non-redundant
protein database and the PDB. The seed sequences for the database updates of the ExED are available
under https://doi.org/10.18419/darus-622. For the second update, profile hidden Markov models (HMMs)
were generated for the N- and C-terminal expansin domains as described below. Further sequences were
collected by searching with the hmmscan command from the HMMER software package (version 3.1b2,
http://www.hmmer.org, Howard Hughes Medical Institute, Chevy Chase, MD, USA)31. The hits were
filtered by a minimal domain-based score of 35 (chosen after comparison with HMMER’s domain-based “in-
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dependent” e-values), a minimal hit length of 60 amino acids, and a maximal ratio of bias over domain-based
score of 10%.

Sequence hierarchy in the ExED

The initial twenty-five seed sequences comprise six bacterial, one fungal, and seventeen plant expansins, as
well as one expansin-like swollenin sequence. The BLAST hits for each of these seed sequences were assigned
to a corresponding superfamily named ’Bacterial expansins’, ’Fungal expansins’, ’Plant expansins’, and ’N-
terminal domains’. Hence, the division of the identified protein sequences into the different superfamilies
was based on sequence identity, and not on phylogenetic relationships. Herein, the term family refers to a
group of sequences sharing a certain degree of similarity, i.e. rather a cluster of similar sequences than a
clade in a phylogenetic tree. Homologous families were created by a cutoff of 60% pairwise sequence identity
as determined by the Needleman-Wunsch algorithm implemented in the EMBOSS software suite (version
6.6.0), with gap opening and extension penalties of 10 and 0.5, respectively32,33. All sequence entries which
shared at least 98% global sequence identity were assigned to a single protein entry. For each sequence
entry, the respective superfamily, homologous family, and protein entry were annotated together with the
identifiers of the original source database.

Profile HMMs

A profile hidden Markov model (HMM)31 was derived for each expansin domain from a multiple sequence
alignment built from twenty-eight representative protein sequences, including twenty-two of the twenty-five
seed sequences mentioned above, two fungal sequences, and four sequences for which their structure was
known (Table S2 ). To determine the region of the two domains in a multiple sequence alignment, four
crystal structures of expansins were superimposed (PDB entries 1n10, chain A; 2hcz, chain X; 4fer, chain
B; and 4jjo, chain A). The structure-based multiple sequence alignment (Figure S1 ) was generated by
the Clustal Omega package34 (version 1.2.1-1) and STAMP35 (version 4.4), and visualized by PyMOL36

(version 4.60, Schrödinger, New York, NY, USA). Based on the structural alignment and on annotations
of secondary structures in Pfam37 (entries PF03330.17 for the N-terminal domain and PF01357.20 for the
C-terminal domain), the respective domains were manually retrieved. The individual profile HMMs for the
N- and C-terminal expansin domains were built by HMMER from the multiple sequence alignments. The
input multiple sequence alignments were aligned against the derived output profile HMMs with thehmmalign
command from HMMER in order to determine whether there are shifts between the input and output ali-
gnments. Shifted alignment columns were refined manually with respect to the positions of known secondary
structure elements. The refined profile HMMs of the N- and C-terminal expansin domain comprise 95 and 75
positions, respectively (Figures S2 and S3 ), and are available together with their underlying alignments
at https://doi.org/10.18419/darus-623.

Standard numbering schemes

For the N- and C-terminal expansin domains, standard numbering schemes were introduced to annotate
equivalent positions38. The B. subtilis expansin, Bs EXLX1 (PDB entry 4fer), was used as the reference
sequence for the assignment of standard position numbers to the sequence entries in the ExED upon alignment
against the respective profile HMM and subsequent transfer of position numbers: For both expansin domains,
the standard positions range from 11 to 105 and 114 to 186. Insertions with respect to the reference sequence,
such as loops, were specified by subsequent decimals. Thus, all position numbers mentioned herein are based
on the reference Bs EXLX1, unless otherwise stated. Due to insertions in the reference sequence ofBs EXLX1,
some regions in the underlying multiple sequence alignments of the standard numbering schemes appeared
inaccurate, i.e. these regions could not be aligned properly: In the N-terminal expansin domain, inaccurate
positions are from 14.1 to 17, 39.1 to 47, and 104.1 to 105; in the C-terminal expansin domain, inaccurate
positions are from 162.1 to 164 and 185.1 to 186.

Conservation analyses

The two standard numbering schemes were used to analyze the amino acid frequencies for the two expansin
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domains. The domains were annotated by using hmmscan against all sequence entries of the ExED and
deploying the match criteria mentioned above. Each annotated domain position was analyzed for conserved
amino acids. Groups of amino acids with similar biochemical properties, such as charge or polarity, were
also taken into account39,40. Conservation analyses were performed separately for each superfamily of the
ExED, and additionally for EXPA, EXPB, EXLA (expansin-like A), and EXLB (expansin-like B) (Tables
S3 and S4 ). An amino acid position was defined as conserved if it occurred in at least 70% of all annotated
sequence entries. Conserved positions were compared with the positions in the structures of two bacterial
expansins (PDB entries 4fer, chain B and 4jjo, chain A) and two plant expansins (PDB entries 1n10, chain
A and 2hcz, chain X) to predict their functional relevance.

Co-evolution of expansin domains

For comparison of the co-occurrence of the two expansin domains, all sequence entries from the ExED
were aligned against the two profile HMMs for the expansin domains. Profile-to-sequence alignments were
performed with the hmmsearch command from the HMMER software suite with themax option to collect all
domain-based scores for each possible alignment. The lists of domain-based scores were sorted by sequence
identifiers to ensure comparability, and in case of multiple hits, only the maximal bit score was kept. The
bivariate histogram was visualized as heat map for bit scores greater than zero in MATLAB (version R2019a,
The MathWorks, Natick, MA, USA).

Sequence length distributions

For comparing the lengths of the sequence entries in the ExED, histograms and boxplots were created with
MATLAB to visualize frequency distributions and to identify possibly fragmented or artificial sequences
(version R2019a, The Mathworks, Natick, MA, USA version 2019a, Statistics and Machine Learning Toolbox
version 11.5). The whisker length in a boxplot was chosen as 1.5 times the interquartile range.

Protein sequence networks

Protein sequence networks visualize large sequence datasets as nodes in an undirected graph with edge
weights to derive relationships between different clusters or communities. The protein sequences in the
ExED were sorted by decreasing sequence length and were subsequently clustered using the USEARCH
algorithm (UCLUST) with a threshold of 90% sequence identity (without terminal gaps) to determine a
reduced set of centroid sequences (representative sequences)30. For each centroid sequence, the N- and the
C-terminal expansin domains were annotated by the two profile HMMs with the filter criteria mentioned
above. Pairwise sequence identities between two sequences were derived from global Needleman-Wunsch
alignments as described above and used as edge weights. Protein sequence networks were generated with
edge weights of pairwise sequence identity, filtered by a pre-defined threshold. Metadata of the nodes (e.g.
the sequence ID) and of the edges (i.e. the edge weights) were summarized in GraphML files by applying
the NetworkX library in Python (version 1.9) for an automated assignment of node and edge attributes
41. The GraphML files are available at https://doi.org/10.18419/darus-624. Protein sequence networks were
visualized with Cytoscape version 3.7.242 using a prefuse, force-directed layout with respect to the edge
weights.

For the networks showing the relationships between CBM63s and expansin homologues, and between GH45s
and the N-terminal expansin domain homologues, CD-HIT (version 4.7) was used with a clustering threshold
of 90% and a word size of 5 (instead of UCLUST)43,44. The GH45 sequences were downloaded from the protein
family database (Pfam, version 32.0, accession PF02015)45, whereas the CBM63 sequences were downloaded
from the carbohydrate-active enzymes (CAZy) database on June 3, 201946. In the CAZy database, 633
individual CBM63 sequences were deposited, but only 582 NCBI accessions were available at the time of
writing, as some of the records were moved or entries were merged. Members of CBM63 were annotated by
the profile HMMs for the two expansin domains (https://doi.org/10.18419/darus-625).

Homologous expansin-like domains in other proteins

In order to find similarities between the expansin family and the GH45 endoglucanase family, a structure-
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based multiple sequence alignment was performed of the N-terminal expansin domains of five expansins (PDB
entries 2bh0, 4jjo, 4fer, 1n10, and 2hcz) and the complete sequences of seven GH45s (PDB entries 1eng, 1hd5,
1oa9, 1wc2, 5h4u, 5kjo, and 5xbu). Five representative sequences of expansin-like proteins were analyzed:
swollenin from Trichoderma reesei (NCBI accession AJ245918.1)47, loosenin from Bjerkandera adusta(NCBI
accession ADI72050.2)48, EXPN fromEndogone sp. FLAS-F59071 (NCBI accession RUS20349.1)49,50, an
expansin-like protein found in nematode Heterodera glycines (NCBI accession ADL29728.1)51, and cerato-
platanin fromCeratocystis platani (NCBI accession CAC84090.2)52. The two profile HMMs of the N- and C-
terminal expansin domains were used to search within these five expansin-like protein sequences for expansin
domains with the filter criteria mentioned above.

Identification of expansin domains in actinobacterial genomes

Five actinobacterial genomes were selected to show the application of the ExED for the identification of
expansin domains. An Illumina MiSeq sequencer was used to sequence the genomes (NGS facility, University
of the Western Cape, South Africa). Due to the high G+C content of actinobacterial DNA, a 10% PhiX
spike was included in the run. The genomes were assembled using the A5-miseq pipeline53.

The two newly created profile HMMs mentioned above were applied to search the five actinobacterial genomes
for the occurrence of expansin domains. Nucleic acid sequences were translated using the default codon usage
table available in the transeq tool from the EMBOSS software suite (version 6.6.054). Translated amino acid
sequences with less than 60 subsequent amino acid symbols were discarded to reduce computation time.

The hmmscan tool from the HMMER software suite (version 3.1b2, http://www.hmmer.org, Howard Hughes
Medical Institute, Chevy Chase, MD, USA) was used to scan the translated amino acid sequences with profile
HMMs. The hits from hmmscan were filtered by a minimal domain-based score of 35 and a minimal coverage
of 75% (defined as the ratio of hit length without insertions divided by the length of the profile HMM).

The matches for the profile HMMs of expansin domains were extended to find the adjacent start methionine
and stop codon along the contig sequence of each match. The first or last available amino acid position in a
contig was used to extend the hits, in case of a missing start or stop codon, respectively. The extended hit
sequences are available for download under https://doi.org/10.18419/darus-699.

Results

The Expansin Engineering Database (ExED)

The current version of the ExED contains 15,089 sequence entries, 12,400 protein entries, and twenty-one
protein structures (Tables 1and S5 ), which, based on global sequence similarity, were assigned to four
superfamilies (comprising 12,404 sequence entries, 9954 protein entries and seventeen structures). Three su-
perfamilies include expansin homologues with two domains and were named according to their dominant
source organisms: superfamily 1 ‘Bacterial expansins’ (1172 sequences, ten structures), superfamily 2 ‘Fungal
expansins’ (543 sequences, no structure), and superfamily 3 ‘Plant expansins’ (8269 sequences, six structu-
res). The members of superfamily 4 ‘N-terminal domains’ consist of the N-terminal expansin domain only
(2420 sequences, one structure). This superfamily comprises eukaryotic and bacterial sequences, e.g. from
Magnoliophyta (A, B, and C),Actinobacteria , Oomycetes , and Basidiomycota . The remaining number of
2685 sequences (corresponding to 2446 protein entries) and four structures could not be assigned to the
four superfamilies and was thus collected in an unclassified fifth superfamily, which was omitted for further
investigations.

The sequence lengths in the superfamilies ‘Bacterial expansins’, ‘Fungal expansins’, and ‘Plant expansins’
vary between 40 and 1400 amino acids with a sharp peak between 250 and 270 amino acids and two minor
peaks at 150 and at 600 amino acids (Figure S4 ). The sequence length distributions differ for each of
the four superfamilies (FigureS5 ). For further analysis of whole expansin sequences and comparison with
expansin-like proteins, only sequences with a length between 210 and 300 amino acids were considered (7706
sequences from the superfamilies ‘Bacterial expansins’, ‘Fungal expansins’, and ‘Plant expansins’) (Figure
S4 ).
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In the protein sequence network, which was built from global sequence alignments for the superfamilies
‘Bacterial expansins’, ‘Fungal expansins’, and ‘Plant expansins’, the latter are the most frequent group
forming four large separate clusters, which consist of one or more homologous families (Hfams): cluster A
has been classified as EXPA (Hfams 9-20), cluster B as EXPB (Hfams 21, 22), cluster C as EXLB (Hfams
24, 25), and cluster D as EXLA (Hfam 23) (Figure 2 ). These four clusters are followed by two clusters
of the superfamily ‘Fungal expansins’ (Hfam 7) and three clusters of the superfamily ‘Bacterial expansins’
(Hfams 3, 4; 1, 2, 4, 6; and 3). Noteworthy, the ‘Plant expansins’ clusters A and D also contain bacterial
sequences.

In our study, expansins were found in Bacteria , Archaea , and Eukaryota . When looking in detail at the
major taxa in the tree of life (after Fig. 1 in8), expansins occur in Gammaproteobacteria ,Betaproteobac-
teria , Deltaproteobacteria ,Acidobacteria , Bacteroidetes , Fibrobacteres ,Ignavibacteria , Actinobacteria ,
Chloroflexi ,Firmicutes , Cyanobacteria (all Bacteria ),Euryarchaeota (Archaea ), Metazoa , Fungi,Evosea ,
Discosea , Discoba , Embryophyta ,Chloroplastida , Rhodophyta , and Stramenopiles (allEukaryota ) (Table
S6 ).

Sequence space of expansin domains

Two profile HMMs for the N-terminal and the C-terminal expansin domains were derived and used for
annotation of the two domains in all 12,404 classified sequences of the ExED (superfamilies 1, 2, 3, and 4),
independent of their sequence lengths. For the superfamilies ‘Bacterial expansins’, ‘Fungal expansins’, and
‘Plant expansins’, the N- and the C-terminal expansin domains could be annotated in 9,470 out of 9,984
sequences and in 8,896 out of 9,984 sequences, respectively (Table S5 ). In 2,182 out of the 2,420 sequences
from the superfamily ‘N-terminal domains’, only the N-terminal expansin domain was annotated.

Based on the annotated domains in the classified superfamilies, two protein sequence networks were gene-
rated. The sequence network of N-terminal expansin domains is dominated by three large clusters (Figure
S6 ): Homologues of cluster A classified as EXPA (Hfam 9-20), homologues of cluster B as EXPB (Hfam
21, 22), and homologues of cluster C as EXLX as well as fungal sequences (Hfam 3, 4, 8). These clusters
are supplemented by clusters D (Hfam 24, 25; EXLB), E (Hfam 26;Magnoliophyta A), F (Hfam 23; EXLA),
G (Hfam 7; Fungi), H (Hfam 27; Magnoliophyta B), and cluster I comprising N-terminal domains from
different sources (Hfam 8, 11, 31, 32; Fungi, EXPA,Basidiomycota , Loosenin). The N-terminal domains
ofMagnoliophyta B, Actinobacteria , and Oomycetes form separate clusters. The sequences of CBM63 are
within clusters of homologous families 3 and 4 from the superfamily ‘Bacterial sequences’.

The sequence network of the C-terminal expansin domain is dominated by six large clusters from ‘Plant
expansins’, previously annotated as EXPA, EXPB, EXLB, and EXLA (clusters A-C and E-G), one cluster
from ‘Fungal expansins’ (D, Hfam 7), and three clusters from ‘Bacterial expansins’ (H-J, Hfams 1, 3, 4, 6)
(Figure S7 ). In each of the two domain-based networks, one bacterial sequence was found in a cluster from
‘Plant expansins’, Streptomyces acidiscabies (NCBI accession GAQ55178.1) in EXPA (Figure S6 ), and
Soehngenia saccharolytica (NCBI accession TJX44964.1) in EXLA (Figure S7 ).

The N- and C-terminal expansin domains have not evolved independently, but have co-evolved, as indicated
by the correlation of sequence similarities of the two domains to the respective profile HMM (Figure 3 ).
The shift in respect to the diagonal indicates a higher conservation for the N-terminal expansin domain than
for the C-terminal expansin domain.

Conserved positions in the two expansin domains

Standard numbering schemes for the N- and the C-terminal expansin domains (from positions 11 to 105 and
114 to 186, respectively) were applied to identify conserved positions ([?]70% occurrence) in the superfamilies
‘Bacterial expansins’, ‘Fungal expansins’, and ‘Plant expansins’ (Table 2 ). In both expansin domains,
glycine was the most frequently conserved amino acid (Tables S3 andS4 ). In the N-terminal expansin
domain, nine positions were conserved in the three superfamilies (‘Bacterial expansins’, ‘Fungal expansins’,
and ‘Plant expansins’): threonine 12, glycine 21, alanine 36, glycine 53, proline 74, aspartate 82, leucine
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83, phenylalanine 88, and glycine 97 (Table S3 ). In the superfamily ‘Bacterial expansins’, further seven
positions were highly conserved ([?]90% occurrence): valine 58, glycine 60, glycine 63, aspartate 71, serine
84, alanine 87, and isoleucine 91; in the superfamily ‘Fungal expansins’, additional highly conserved amino
acids are cysteine 23, phenylalanine 25, tryptophan 44, cysteine 52, cysteine 55, methionine 68, and leucine
81; and in the superfamily ‘Plant expansins’ highly conserved amino acids are alanine 22, cysteine 23, glycine
24, glycine 49, cysteine 52, cysteine 55, cysteine 60, cysteine 61.8, threonine 70, and phenylalanine 81.

Due to our conservation analysis, five of the previously proposed six cysteines14 were highly conserved in the
superfamily ‘Plant expansins’, three conserved cysteines were found in the superfamily ‘Fungal expansins’,
and none in the superfamily ‘Bacterial expansins’ (Table 2 and https://doi.org/10.18419/darus-735). The
conserved cysteines at standard positions C23 and C52, C55 and a cysteine upstream of the N-terminal
expansin domain standard numbering, and C60 and 61.8 were proposed to form disulfide bonds14.

In the C-terminal expansin domain, only two positions are conserved in the three superfamilies ‘Bacterial
expansins’, ‘Fungal expansins’, and ‘Plant expansins’: tryptophan 149 and glycine 179 (Table S4 ). In
addition, in the superfamily ‘Bacterial expansins’, highly conserved positions are lysine 119, glycine 121,
tryptophan 126, proline 137, tyrosine 157, asparagine 158, glycine 166, threonine 175, and aspartate 176; in
the superfamily ‘Fungal expansins’, glycine 121, serine 123, tryptophan 126, phenylalanine 127, glutamine
130, valine 131, asparagine 133, valine 143, serine 143.1, aspartate 146, arginine 154, tyrosine 157, asparagine
158, phenylalanine 160, glycine 164, valine 172, and threonine 175; and in the superfamily ‘Plant expansins’
highly conserved amino acids are glycine 136, glycine 157, and tryptophan 160. From the conserved positions,
superfamily-specific motifs were derived. In the N-terminal domain of ‘Bacterial expansins’, these motifs
are VpGP (standard positions 58-61, “p” is the abbreviation for polar amino acids selected from 40) and
HLDL (80-83) (Table 3 ); in the superfamily ‘Fungal expansins’ the motifs T(F/W)YG (12-14 and 14.1),
GTAnS (34-38, “n” is the abbreviation for non-polar amino acids selected from40), VpGn (58-61), and
HLDL (80-83) were identified; and in the superfamily ‘Plant expansins’, the motifs T(F/W)YG (12-14 and
14.1) in EXPA and EXPB, GGACGYG (20-26) in minor modifications in all four plant expansin groups, and
HFDL (80-83) in EXPA and EXPB were identified (Tables 3 , S3 and https://doi.org/10.18419/darus-735).
In the C-terminal expansin domain of the superfamily ‘Bacterial expansins’, the motif QVRNH (130-134)
was conserved; in the superfamily ‘Fungal expansins’ the motifs QVnN (130-133), LEVSTDGD (141-146,
including 143.1 and 143.2 as insertions relative to the reference sequence), GGG (164-166), and VDVRVT
(170-175) were identified. At the standard positions 170 to 175, the motif LSFpVT is included in sequences
of EXPA. Sequences from the superfamilies ‘Bacterial expansins’ and ‘Fungal expansins’ were found to share
the motif, KpG(S/T)S (119-123); and pGS exists also in EXPB. EXLA and EXLB were found to share the
motif, YLA (126-128). The motif WGA exists in minor modifications in all four groups of ‘Plant expansins’
(Tables 3 , S4 and https://doi.org/10.18419/darus-735).

Homologous expansin-like domains in other proteins

The GH45 protein sequences show conserved positions, which are also highly conserved in the superfamilies
‘Plant expansins’ and ‘Fungal expansins’: the EXPA/EXPB motif HFDL (80-83), glycine 21, cysteine 23
and glycine 24 of the plant motif GGACGYG (21-26), threonine 12 and tyrosine 14 of the plant and fungal
motif T(F/W)YG (12-14 and 14.1), and alanine 36 of the fungal motif GTAnS (34-38) (Figure S8 ). Thus,
on a local sequence level, GH45 endoglucanases are more similar to the N-terminal expansin domain than
expected from their different global protein sequences (Figure 4 ).

For further comparison, 582 protein sequences of the carbohydrate-binding module family 63 (CBM63) with a
sequence length between 57 and 746 amino acids were downloaded from the CAZy database46. Interestingly,
511 of these sequences contained both expansin domains and were therefore already annotated in the ExED
in the superfamilies ‘Bacterial expansins’ and ‘Fungal expansins’. Four CBM63 sequences contained only the
C-terminal expansin domain, whereas 58 CBM63 sequences contained only the N-terminal expansin domain
and shared a sequence identity of over 60% with N-terminal expansin domains of the superfamily ‘Bacterial
expansins’ (Figure S6 ). A protein sequence network including the whole CBM63 sequences and expansin
sequences from the superfamilies ‘Bacterial expansins’, ‘Fungal expansins’, and ‘Plant expansins’ revealed
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the similarity of CBM63 sequences to ‘Bacterial expansins’ and also to ‘Fungal expansins’ from homologous
family 7 (Figure 5) .

The members of the superfamily ‘N-terminal domains’ consist of the N-terminal expansin domain only. Simi-
larly, loosenin (NCBI ADI72050.2), EXPN from Endogone sp. FLAS-F59071 (NCBI accession RUS20349.1),
the expansin-like protein found in nematodeHeterodera glycines (NCBI ADL29728.1), and cerato-platanin
from Ceratocystis platani (NCBI accession CAC84090.2) consist only of the N-terminal expansin domain
(Table S7 ). At a threshold of 60% sequence identity, the N-terminal domains of loosenin and Basidiomy-
cota cluster with fungal sequences from Hfam 7 and plant sequences from Hfam 11 (Figure S6 ). In contrast,
swollenin was found to possess only a distantly related C-terminal expansin domain (Table S7 ).

Annotation of expansin domains in actinobacterial genomes

As a case study for the application of ExED in genome sequence annotation, actinobacterial genomes from
various South African habitats were analyzed for the presence of expansin domains and conserved amino acid
positions, using the profile HMMs of the expansin domains (Tables S8 and S9 ). In general, the sequence
regions identified for the N-terminal expansin domains emerged with higher HMMER scores, whereas the
C-terminal domains seemed less conserved (compare with Figure 3 ). Despite the lower scores for the C-
terminal expansin domain, the coverage for the underlying profile HMM was still high (90%). One genome
hit was identified in sediment samples collected at Gamka River in the Swartberg Mountain Range, which
was identical to an expansin homologue from Streptomyces swartbergensis (NCBI accession WP 086602418),
which matched well the profile HMM of the N-terminal expansin domain (score: 60, 98% coverage) and mod-
erately the profile HMM of the C-terminal expansin domain (score: 19, 89% coverage). The sequence from S.
swartbergensis contains amino acids that are conserved in the superfamily ‘Bacterial expansins’ (threonine
12, glycine 21, alanine 36, glycine 53, tyrosine 55, proline 74, aspartate 82, leucine 83, phenylalanine 88, and
glycine 97 in the N-terminal expansin domain; lysine 119, tryptophan 126, tryptophan 149, tyrosine 157, and
glycine 179 in the C-terminal expansin domain) and also amino acids that are conserved in the superfamilies
‘Fungal expansins’ or ‘Plant expansins’ (tyrosine 14, cysteine 23, cysteine 52, and cysteine 73).

Discussion

Expansins typically consist of about 225 amino acids (about 26 kDa) and an N-terminal signal peptide2, in
total 250 to 275 amino acids55, which is in agreement with the average sequence length of 262 amino acids
identified in this study. Thus, sequences shorter than 210 amino acids or longer than 300 amino acids were
excluded from global sequence analyses (Figure S4 ). However, sequences with a length of about 600 amino
acids contained replications of expansin domains as fusion proteins or due to sequencing errors, leading
to expansin sequences that contained each domain two or three times. Since the two expansin domains
have a length between 80 and 90 amino acids, shorter protein sequences can be considered as fragments or
incomplete expansin domains.

The occurrence of expansins in major taxa in the tree of life (after Fig. 1 in8 where a comprehensive
phylogenetic analysis of expansin genes across all kingdoms of life is shown) is comparable to the results
obtained in this study (https://doi.org/10.18419/darus-693). For twelve out of ninety groups that were
compared, the results are different, e.g. the archaeon Halomicroarcula sp. LR21 can be found in the ExED
and contains one expansin homologue for which both expansin domains are annotated, whereas previous
studies in8 did not find a putative expansin in Archaea . Other, apparently hitherto unknown, occurrences of
putative expansins in the ExED include thirty-six sequences of Fibrobacteres , one sequence of Ignavibacteria
in which both expansin domains can be found, seven sequences of Discosea , one sequence ofDiscoba , and
one sequence of Acidobacteria , but without domain annotations. Further expansin sequences that were
not included in this study but mentioned in 8 are from the taxaVerrucomicrobia , Chlorobi , Tubulinea
,Glaucophyta , Haptophyta , Dinoflagellata , andPhaeophyta .

The protein sequence networks confirmed the nomenclature and classification of expansins into three king-
doms of Bacteria , Fungi, and Viridiplantae and the subclassification of plant expansins into EXPA, EXPB,
EXLA, and EXLB56(Figure 2 ). Despite the differences on global sequence level, the protein sequence
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networks of expansins from Bacteria andViridiplantae share similarities on a domain-based sequence level
(Figures S1, S6 and S7 ). The N-terminal expansin domain is more conserved than the C-terminal ex-
pansin domain (Figure 3 and https://doi.org/10.18419/darus-735). When expansin homologues from more
diverse backgrounds are discovered in the future, updated profile HMMs will show more insights into the
possible co-evolution of both expansin domains.

A conservation analysis revealed and confirmed positions with an essential functional or structural role in
expansin homologues. Glycine is structurally relevant, as it mediates the formation of short loops57 and
is frequently observed at the N- and C-caps of α-helices to increase helix stability58. As observed previ-
ously for other protein families59,60, glycine is the most conserved amino acid in both expansin domains.
In expansins, all four conserved glycines are located in loop regions (Table 2 , compare with Figure 1 ).
The conservation of threonine 12 and aspartate 82 in Bacteria , Fungi, EXPA, and EXPB confirms their
functional role10. Interestingly, at standard position 75, which plays a moderate role in cell wall extension
activity of Bs EXLX110, a glutamate is conserved in the superfamily ‘Bacterial expansins’, and a glycine in
EXPA and EXLB. In contrast, standard position 75 is not conserved in the superfamily ‘Fungal expansins’,
in EXPB, and in EXLA (Table 2and https://doi.org/10.18419/darus-735). Aspartate 71, which has been
proposed as important but not essential for wall extension activity ofBs EXLX110, is conserved in the su-
perfamilies ‘Bacterial expansins’ and ‘Fungal expansins’, and in EXPB, EXLA, and EXLB (Table 2 and
https://doi.org/10.18419/darus-735). However, three other proposed key amino acids for cell wall exten-
sion activity (threonine 14, serine 16, and tyrosine 7310) are neither conserved in expansins from Bacteria ,
Fungi, norViridiplantae (Table S3 and https://doi.org/10.18419/darus-735), indicating the importance of
an increased sample size for conservation analysis. The large number of expansin sequences investigated here
also provided a deeper insight into the structural or functional relevance of disulfide bridges in the different
superfamilies. Previously, three disulfide bridges were proposed to stabilize the tertiary structure of the
N-terminal expansin domain of EXPA and EXPB14,15. Five of the proposed six cysteines could be confirmed
as highly conserved in the superfamily ‘Plant expansins’ (Table 2 and https://doi.org/10.18419/darus-735).
The sixth cysteine is located directly before the linker to the C-terminal expansin domain and therefore
not included in our profile HMM for the N-terminal expansin domain. Against expectations, the addi-
tional highly conserved forth cysteine pair in plant α-expansins from 15 was not found in our analysis(
https://doi.org/10.18419/darus-735) . Only three conserved cysteines were found in the superfamily ‘Fungal
expansins’, thus not all fungal expansin homologues possess three disulfide bridges, as concluded from the
expansin Sc Exlx116. None of the six cysteines was conserved in the superfamily ‘Bacterial expansins’ (Table
2 ), which is in accordance with previous observations of bacterial expansins lacking disulfide bridges13.

In the C-terminal expansin domain, the three aromatic residues at standard positions 125, 126, and 157,
which mediate binding to cellulose10, are conserved in the superfamilies ‘Bacterial expansins’ and ‘Fungal ex-
pansins’, but are less conserved in the superfamily ‘Plant expansins’ (Table S4 and https://doi.org/10.18419/darus-
735). Lysine 119, which is important for cell wall-loosening activity10, is conserved in the superfamilies
‘Bacterial expansins’ and ‘Fungal expansins’, but not conserved in the superfamily ‘Plant expansins’ (Table
2 ).

Through the use of conservation analysis, previously published family-specific motifs were confirmed: in
the N-terminal expansin domain, the T(F/W)YG motif was present in the two superfamilies ‘Bacterial
expansins’ and ‘Fungal expansins’ (standard positions 12-14 and 14.1), and the motifs GGACG (20-24)
and HFD (80-82) in the superfamily ‘Plant expansins’9,55 (Table 3 ). We suggest to extend the GGACG
motif to a GGACGYG motif and the HFD motif to a HFDL motif in plant expansins. In bacterial and
fungal expansins, these two plant motifs are slightly different: in the superfamily ‘Fungal expansins’, the
GGACGYG motif is shorter (GGxC), and in fungal and bacterial expansins the HFDL motif is replaced
by HLDL. The HLD motif as well as the GGACS motif were already described for the fungal expansin Sc
EXLX116. Newly proposed motifs in the N-terminal expansin domain are VpGP (58-61) in the superfamily
‘Bacterial expansins’ and GTAnS (34-38) in the superfamily ‘Fungal expansins’ (Tables 3 and S3) , where
p and n denote polar and nonpolar amino acids, respectively. In expansins from Fungi, the proline of the
VpGP-motif is replaced by a non-polar amino acid. The previously described CDRC-motif at the amino
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terminus of EXLA55 is located beyond the boundaries of our profile HMM for the N-terminal expansin
domain .

No sequence motifs have been proposed yet for the C-terminal expansin domain, whereas we found eight
novel motifs: KpG(S/T)S (119-123) and QVRNH (130-134) in the superfamilies ‘Bacterial expansins’ and
‘Fungal expansins’, where QVRNH shows slight modifications; LEVSTDGD (141-146, including 143.1 and
143.2), GGG (164-166), and VDVRVT (170-175) in ‘Fungal expansins’; YLA (126-128) in EXLA and EXLB;
WGA (156-158) in EXPB and with slight modifications in EXPA, EXLA and EXLB; and LSFpVT (170-175)
in EXPA (Table 3 ). When annotating expansin sequences in future studies, these sequence motifs will help
to assign unknown protein sequences (e.g. metagenomic sequences) to the kingdomsViridiplantae , Bacteria
, or Fungi, and to distinguish the plant expansins EXPA, EXPB, EXLA, and EXLB (Tables 3 ,S3 , and
S4 ). Exemplary annotations were shown herein for actinobacterial genome samples from South Africa,
including a putative expansin homologue from S. swartbergensis(Tables S8 and S9 ).

The large number of expansin sequences used for analysis not only improved the identification of motifs, but
also shed light on evolutionary relationships. Interestingly, when searching with the newly established profile
HMMs for expansin domains within the CBM63 protein sequences from CAZy, 510 out of the 582 CBM63
protein sequences were found to contain both expansin domains (Table S10 ). Only four sequences had a
similarity to the C-terminal expansin domain, while missing the N-terminal expansin domain, as suggested
previously1, and 58 CBM63 sequences contained only the N-terminal expansin domain.

The observation of four bacterial sequences being found in clusters of plant expansins supports the hypothesis
that microbial expansins were derived via horizontal gene transfer from plants to microbes7 (Figures 2 ,
S6 , andS7 ). The two bacterial sequences in clusters of the superfamily ‘Plant expansins’ (Figure 5 ) are
from the plant pathogensKutzneria sp. 744 (NCBI accession EWM10128.1) andStreptomyces acidiscabies
(NCBI accession WP 050370046.1), which are both actinobacteria, as described previously2.

With the chosen filter criteria, the sequence of the fungal swollenin does not contain any expansin domain.
As the score for the C-terminal expansin domain is far below the chosen criteria, the swollenin sequence
resembles a distantly related C-terminal expansin domain (Table S7 ), but we found no N-terminal expansin
domain within the protein sequence of swollenin. This is due to the short N-terminal expansin domain in
the swollenin from Trichoderma reesei and confirms the rather low sequence similarity between swollenin
and expansins47.

On a global sequence level, GH45s and N-terminal expansin domains share less than 30% pairwise se-
quence identity (Figure 4 ), and neither the profile HMM search of the N- and C-terminal expansin
domains in the 542 GH45 sequences nor the profile HMM search of the GH45 profile HMM from Pfam
(https://pfam.xfam.org/family/PF02015/hmm) in the 15,089 sequences of the ExED resulted in a match.
In comparison to N-terminal expansin domains, GH45 sequences are longer due to several inserts and longer
loop regions (179-208 amino acids as compared to 90-115 amino acids of the N-terminal expansin domains).
Despite these differences, the evolutionary relationship between the two protein families is underlined by
conserved amino acids. Both the conserved threonine and aspartate at standard positions 12 and 82, and
the HFDL-motif (standard positions 80-83) were found in the GH45 protein sequences.

This study confirms the observation that microbial expansins comprise two protein domains and are widely
distributed across diverse lineages of Archaea ,Bacteria , Fungi, other eukaryotic microbes8, and Viridiplantae
. Therefore, the ExED can serve as a basis for a more detailed phylogenetic analysis in order to elucidate
the origin of expansins and ancient evolutionary dynamics. Furthermore, the ExED can be used to search
for expansin genes in virulent fungal and bacterial plant pathogens.
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Tables

Table 1 : Numbers of homologous families (Hfams), protein entries, sequence entries and crystal structures
in the different superfamilies (Sfam) of the ExED. Superfamilies 1 to 3 were named after the kingdom of
their most abundant source organisms. Superfamily 4, named ‘N-terminal domains’, comprises only proteins
containing the N-terminal expansin domain.

Sfam Sfam name Hfams Proteins Sequences Structures

1 2 3 4 Bacterial expansins Fungal expansins Plant expansins N-terminal domains 6 1 17 8 795 421 6,636 2,102 1,172 543 8,269 2,420 10 0 6 1
Total Total 32 9,954 12,404 17

Table 2: The conserved amino acids or groups of amino acids according to the standard numbering scheme
for the N- or C-terminal expansin domain, with the sequence of Bacillus subtilis (PDB accession 4fer) as
reference sequence. All positions are listed separately for superfamilies 1 ”Bacterial expansins”, 2 ”Fungal
expansins”, and 3 ”Plant expansins” that are at least conserved to 70%. Positions marked in the standard
numbering scheme as inaccurate are excluded (described in the Methods section). The last column names
the function and the motif known from literature9,55. If a single amino acid is at least conserved to 70%,
the conservation of the respective amino acid group is not mentioned. Amino acid groups: non-polar (A, C,
F, G, I, L, M, P, V, W)40; polar (D, E, H, K, N, Q, R, S, T, Y)40.

Standard position

Conserved amino
acids in expansins
from

Conserved amino
acids in expansins
from

Conserved amino
acids in expansins
from Function and motif

Bacteria Fungi Viridiplantae
N-terminal
expansin domain

N-terminal
expansin domain

N-terminal
expansin domain

N-terminal
expansin domain

N-terminal
expansin domain
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Standard position

Conserved amino
acids in expansins
from

Conserved amino
acids in expansins
from

Conserved amino
acids in expansins
from Function and motif

12 14 21 23 36 52
53 55 60 61.8 71
73 74 75 82 83 88
97

T (73%) Polar
(76%) G (91%)
Non-polar (92%)
A (94%), G (4%)
Non-polar (100%)
G (100%) Y
(70%), C (13%) G
(92%), N (3%) D
(97%), N (3%) P
(93%), G (2%) E
(73%), G (11%)
D (99%) L (96%),
M (3%) F (98%),
Y (1%) G (96%)

T (71%), S (3%)
Y (86%), T (1%)
G (98%) C (99%)
A (79%), C (19%)
C (100%) G
(100%) C (100%)
G (70%), Y (21%)
D (78%), N (21%)
C (79%), T (19%)
P (73%), G (19%)
D (99%), N (3%)
L (81%), M (9%)
F (82%), W
(16%) G (95%)

T (82%), A (4%)
Y (85%), F (2%)
G (96%) C (97%)
A (83%), G (9%)
C (99%) G (99%)
C (98%) C (99%)
C (96%), Y (1%)
Polar (99%) C
(79%), N (9%) P
(76%), Y (5%) G
(78%), N (6%) D
(80%), V (8%) L
(70%), M (26%)
F (82%), W (9%)
G (93%), S (1%)

T(F/W)YG-motif
T(F/W)YG-motif
GGACGYG-motif
Disulfide bridge14,
GGACGYG-motif
Disulfide bridge14

Disulfide bridge14

Disulfide bridge14

Disulfide bridge14

Important for
wall extension
activity10

Important for
wall extension
activity10

Moderate role for
wall extension
activity10

H(F/L)DL-motif,
crucial for wall
extension10

H(F/L)DL-motif
C-terminal
expansin domain

C-terminal
expansin domain

C-terminal
expansin domain

C-terminal
expansin domain

C-terminal
expansin domain

119 125 126 149
157 179

K (97%), Q (1%)
W (63%), Y
(30%) W (98%),
Y (1%) W (88%),
F (8%) Y (90%),
W (3%) G (91%),
H (5%)

K (89%), H (6%)
Y (58%), N (15%)
W (95%), F (3%)
W (99%), Y (1%)
Y (93%), P (4%)
G (95%), K (3%)

Polar (94%) Y
(61%), N (14%) F
(57%), W (13%)
W (93%), C (3%)
G (99%), S (1%)
G (76%), R (12%)

Important for
wall extension
activity10 Binding
to cellulose
material10

Binding to
cellulose
material10

Binding to
cellulose
material10

Table 3: Known motifs from expansins in literature9,55 and the newly suggested motifs for the N- and
C-terminal expansin domains based on the conservation analysis performed in this study (Tables S4 , S5 ,
and https://doi.org/10.18419/darus-735). Sequence motifs known from literature are marked with a star (*).
Polar residues are abbreviated with “p” and non-polar residues with “n”. The expansins fromViridiplantae
are separated into EXPA, EXPB, EXLA, and EXLB.
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Standard
positions

Bacterial
expansins

Fungal
expansins EXPA EXPB EXLA EXLB

Motifs in the
N-terminal
expansin
domain

Motifs in the
N-terminal
expansin
domain

Motifs in the
N-terminal
expansin
domain

Motifs in the
N-terminal
expansin
domain

Motifs in the
N-terminal
expansin
domain

Motifs in the
N-terminal
expansin
domain

Motifs in the
N-terminal
expansin
domain

12 to 14 and
14.1 20 to 26
34 to 38 58 to
61 80 to 83

VpGP HLD*L T(F/W)YG*
GTAnS VpGn
HLD*L

T(F/W)YG*
GGACG*YG
HFD* (L/I/V)

T(F/W)YG*
GGACG
HFD*L

GACG*YG GACG(Y/F)G

Motifs in the
C-terminal
expansin
domain

Motifs in the
C-terminal
expansin
domain

Motifs in the
C-terminal
expansin
domain

Motifs in the
C-terminal
expansin
domain

Motifs in the
C-terminal
expansin
domain

Motifs in the
C-terminal
expansin
domain

Motifs in the
C-terminal
expansin
domain

119 to 123
126 to 128
130 to 133
(and 134)
141 to 146
(including
143.1 and
143.2) 156
to 158 164
to 166 170
to 175

KpG(S/T)S
QVRNH

KpG(S/T)S
QVnN LEV-
STDGD
GGG
VDVRVT

WGp
LSFpVT

pGS WGA YLA pGA YLA
(Y/F)GA

Figure legends

Figure 1 Functionally relevant positions in the expansin domains from the representative protein structure
of Bacillus subtilis expansin Bs EXLX1 (PDB entry 4fer, chain B) are labelled with standard position
numbers (numbering according to13) and shown as sticks. The substrate cellohexaose is depicted above the
C-terminal expansin domain in green.

Figure 2 Protein sequence network showing the sequence space of the expansin sequences in the ExED
belonging to the superfamilies ‘Bacterial expansins’, ‘Fungal expansins’, and ‘Plant expansins’. All protein
sequences presented in this network have a sequence length between 210 and 300 amino acids (Figure S4
). The threshold for the nodes is 90% sequence identity (clustered with USEARCH) and the threshold for
the edges is 50% pairwise sequence identity (determined by Needleman-Wunsch alignments). This network
consists of 3504 nodes and 1,036,745 edges. With respect to the taxonomic lineages, the nodes fromBacteria ,
Fungi, Viridiplantae , and other origin are colored in red, orange, green, and white, respectively. The protein
sequences of the fifteen biggest clusters belong to the following homologous families (Hfams) and expansin
classifications: A (Hfams 9-20; expansin classification EXPA), B (21-22; EXPB), C (24-25; EXLB), D (23;
EXLA), E (7, Fungi), F (3, 4; EXLX), G (1, 2, 4, 6; EXLX), H (3; EXLX), and I (7, Fungi). The bacterial
sequences (red) in clusters A and D belong to Streptomyces acidiscabies (NCBI accession WP 050370046.1),
Kutzneria sp. 744 (NCBI accession EWM10128.1, both Hfam 5, cluster A), and Soehngenia saccharolyta
(NCBI accession TJX44964.1, cluster D).

Figure 3 Bivariate histogram of co-occurring HMMER bit scores of the N- and C-terminal expansin domains.
The greyscale bar represents the relative frequency of the bit scores. The black diagonal line is the bisecting
line.

Figure 4 Protein sequence network showing the protein sequence space of GH45 sequences from Pfam45
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(accession PF02015) and the sequence regions annotated as N-terminal expansin domains from the super-
families ‘Bacterial expansins’, ‘Fungal expansins’, ‘Plant expansins’, and ‘N-terminal domains’. The colors
representing the origin of the expansin sequences correspond to the scheme in Figure 2 with GH45 sequences
colored in blue. The threshold for the nodes is 90% sequence identity (clustered with USEARCH) and the
threshold for the edges is 30% pairwise sequence identity (determined by Needleman-Wunsch alignments).
This network consists of 4,031 nodes and 2,182,810 edges.

Figure 5 Protein sequence network showing the protein sequence space of CBM63 sequences from CAZy and
the protein sequences of the superfamilies ‘Bacterial expansins’, ‘Fungal expansins’, and ‘Plant expansins’
with a sequence length between 210 and 300 amino acids (Figure S4 ). In contrast to the four big clusters
from ‘Plant expansins’ (EXPA (A), EXPB (B), EXLA (C), and EXLB (D)), where no CBM63 sequences
can be found, the clusters from the superfamilies ‘Bacterial expansins’ and ‘Fungal expansins’ show many
connections to sequences of CBM63. The colors representing the origin of the expansin sequences correspond
to the scheme in Figure 2 with CBM63 sequences colored in cyan. The threshold for the nodes is 90%
sequence identity (clustered with USEARCH) and the threshold for the edges is 50% pairwise sequence
identity (determined by Needleman-Wunsch alignments). This network consists of 3,344 nodes and 844,280
edges.

Figures

Figure 1
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