On structural identifiability analysis of cascaded linear time varying systems in dynamic isotope experiments

Weilu Lin¹, Mingzhi Huang², Zejian Wang³, Ju Chu⁴, Yingping Zhuang³, and Siliang Zhang³

May 5, 2020

Abstract

A well known \emph{in silico} analysis in metabolic flux analysis is the structural identifiability analysis. It comes from the fact that some enrichment measurement sets cannot uniquely elucidate all intracellular fluxes. To the best of our knowledge, the structural identifiability analysis of dynamic isotope experiments is not available in the literature. In this work, it is shown that if one measurement plan makes the dynamic isotopic fractions balance equations structurally identifiable then for any arbitrary small time interval the plan also makes the equations structurally identifiable. Based on the fact, in order to resolve the local structural identifiability problem of the dynamic isotopic fractions balance equations approximated with piecewise affine intracellular fluxes, one should check the local structural identifiability for the corresponding cascaded linear time invariant system at each sampling point with the approach proposed in our earlier work (Lin \emph{et al.}, Math Biosci. 2018; 300:122-12).

Hosted file

Structure_Identifiability_of_Dynamic_13C.pdf available at https://authorea.com/users/299596/articles/433907-on-structural-identifiability-analysis-of-cascaded-linear-time-varying-systems-in-dynamic-isotope-experiments

¹East China University of Technology

²Affiliation not available

³East China University of Science Technology

⁴East China University of Science & Technology, Institute of Fine Chemicals, State Key Laboratory of Bioreactor Engineering