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Abstract

Hepatitis virus infection is a leading cause of chronic liver diseases, including cirrhosis and hepatocellular carcinoma (HCC).

However, the molecular mechanism by which hepatitis causes liver cancer remains unclear. Additionally, new biomarkers for

diagnosis, prognosis and therapeutics are needed. Regulatory pathways play important roles in many pathogenic processes,

and identifying the pathways by which hepatitis C virus (HCV) induces HCC may lead to better diagnosis and treatment. We

employed a systematic approach to identify important regulatory pathways in this disease process, and found several important

regulators. First, three networks were constructed based on the gene expression in patients with hepatitis alone, HCC alone,

and hepatitis with HCC. A priority algorithm was used to extract the regulatory pathways from the networks, which were then

scored based on the disease-related genetic information to identify key pathways. After integrating the regulatory pathways

involved in the three networks, we found key regulatory genes, including EZH2 and hsa-miR-155-5p. Based on network analysis,

it appeared that in HCC patients the abnormal expression of genes and miRNAs were mostly caused by abnormal expression

of these key regulatory factors. This method may help researchers discover the potential pathogenic factors of HCC and could

also yield new biomarkers for disease diagnosis.

Introduction

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide 1. The
disease is often diagnosed at an advanced stage and progresses rapidly. Therefore, early diagnosis is very
important to improve the prognosis of patients. Currently, early clinical screening methods involve serum
alpha fetoprotein (AFP) detection and liver ultrasound examination2. However, the sensitivity and specificity
of markers such as AFP are marginal 3. Additionally, ultrasound examination relies heavily on the subjective
judgment of the operator, and conventional ultrasound often does not give results which can be used to
conclusively identify liver lesions. Therefore, there is an urgent need to find more effective and accurate
methods for screening for liver cancer. As the understanding of tumor biology improves, liquid biopsy will
become an increasingly useful tool for early diagnosis. Risk factors for primary liver cancer include hepatitis
B virus (HBV) or hepatitis C virus (HCV) infection, aflatoxin B intake, alcohol consumption, cirrhosis and
others. Among these risk factors, HBV and HCV infections are the most significant, with viral hepatitis
(HBV and HCV infections) accounting for 90% and 40% of liver cancer incidence in developing and developed
countries, respectively.

To date, few studies have been conducted to assess the factors leading to liver cancer in HCV patients. At
present, HCV RNA, cirrhosis and HCV genotype are thought to affect the occurrence of HCV-related liver
cancer, but these factors have not been conclusively proven. At present, 180 million people are chronically
infected with HCV, which has been reported to cause more than 350,000 deaths annually 4. Epidemiological
studies also indicate that HCV is associated with a number of extrahepatic manifestations including insulin
resistance, type 2 diabetes mellitus, glomerulopathies, oral manifestations and others5-7.
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It has been demonstrated that 55% to 85% of new HCV-infected patients will develop chronic hepatitis C,
and 20% to 30% of chronically ill patients will develop cirrhosis and liver failure 8. Over the course of 30
years, 1% to 3% of patients with HCV without cirrhosis will eventually develop HCC 9,10. Studies have
shown that one-third of HCC cases are caused by hepatitis C11. At present, there are three major known
mechanisms for HCV-induced HCC: direct pathways involving HCV core proteins, indirect pathways caused
by oxidative stress and steatosis, and microRNA (miRNA)-related pathways 12. Previous studies have shown
that while biological signaling systems are complex, the analysis of linear pathways can still provide valuable
insights13.

In this study, we integrated multiple resources, including KEGG pathways, known disease genes, miRNAs
and differentially expressed genes, to identify regulatory pathways and key regulators in HCV and HCC from
curated trans factor and miRNA regulatory networks. This analysis revealed that EZH2 and hsa-miR-155-
5p are critical genes in the development of hepatocellular carcinoma. These genes and pathways may be
important biomarkers for predicting HCV-induced HCC. The workflow of our study is shown in Fig. 1.

Materials and Methods

Construction of human Transcription factor and miRNA regulatory networks

The human Transcription factor (TF) and miRNA regulatory networks were built by integrating miRTarBase,
TarBase, TRANSFAC and TransmiR14-16. These four databases include curated interactions among human
TFs, miRNAs, and target genes as well as standardization of gene and miRNA names within the regulatory
networks using data from NCBI and miRbase databases. Additionally, all regulatory relationships within
the regulatory network were literature-supported. In total, there were 460 TFs, 2,434 miRNAs, 13,898 target
genes and 98,894 edges in the regulatory network.

Known HCC and HCV-associated genes and miRNAs

DisGeNET, a discovery platform containing one of the largest publicly available collections of genes and
variants associated with human diseases, was utilized to identify two disease-associated genes 17. Two disease-
associated miRNAs were collected from the miR2Disease18 and HMDD 19 , which are curated databases
containing experimental evidence for human microRNA (miRNA) and disease associations. We also utilized
genes in the KEGG pathways associated with HCC (168) or HCV (155). We included 30 known HCC-
associated genes in DisGeNET and 463 known HCC-associated miRNAs from either miR2Disease or HMDD.
Finally, 18 known HCV-associated genes in DisGeNET and 100 known HCV-associated miRNAs in either
miR2Disease or HMDD were used for network analysis.

Disease-related network construction

For the disease-related network construction, the closer the nodes in the network to the known disease genes,
the more likely they are disease-associated 20. In order to construct a more closely related subnet, we selected
nodes directly connected to the known disease-associated genes in the background network to build an HCC
and HCV-related network. In total, there were 409 TFs, 2,300 miRNAs, 10,697 target gene and 48423 edges
in this regulatory network.

Differentially expressed genes in the three datasets

The normalized mRNA expression profiles of HCC (TCGA), HCV (GSE15387) and HCV-related HCC
(GSE44074) were downloaded from the Gene Expression Omnibus (GEO) database 21 and The Cancer
Genome Atlas (TCGA) database 22. There were 374 HCC samples and 50 normal samples in the TCGA
data set, 35 HCV-related HCC samples and 37 HCC samples in the GSE44074, as well as 60 HCV samples
and 60 normal samples in the GSE15387. For mRNA expression data, probe sets were mapped to Entrez
Gene IDs. When multiple probes corresponded to the same gene, the mean expression value of these probes
was used to represent the gene expression level. We obtained 2, 3, and 4 differentially expressed genes at
the p -values of less than 0.05 by using edgeR (TCGA data) and SAM (GEO data) in each of the three data
sets.
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Identification of the subnetworks for each dataset

To construct subnetworks for each dataset, we extracted differentially expressed genes and their neighbor
genes from the disease-related network. The regulatory relationships between these genes and miRNAs con-
stituted a core regulatory subnetwork at multiple stages of disease development. We identified 3 subnetworks,
which we termed the HCC subnetwork, HCC-HCV subnetwork and HCV subnetwork.

Extraction of candidate risk regulatory pathways

Using the BFS algorithm to extract risk regulatory pathways from the three subnetworks, we identified all
the pathways in the network from the nodes indegree 0 to outdegree 0, and pathways with a length greater
than 2 were regarded as the candidate risk pathways.

Prediction of key regulators

Gene expression varies in different tissues and during different diseases. Some genes are expressed at a specific
stage of a given disease, while some genes continue to play a role throughout the process. We analyzed all
the pathways in the three subnetworks to identify the most critical pathways in each network by examining
highly shared genes. We propose a KP score to evaluate key pathways, which is calculated as follows:

Where denotes the number of nodes on a pathway within a subnetwork, denotes the number of intersection
nodes between pathway and subnetwork , denotes the length of the longest pathway within the subnetwork
that satisfies the conditions, denotes location weight score of the intersection gene within the pathway,
denotes whether the gene at this position is an intersection gene, if yes, then the value of is 1, if not, the
value of is 0, upstream genes get higher scores.

Survival analysis

In this study, we constructed three subnetworks for HCC, HCV samples and normal samples, and identified
key pathways from the subnetworks. We next investigated whether the key regulators could distinguish HCC
patients with good or poor outcomes. From these data, we obtained TCGA HCC dataset mRNA expression,
miRNA expression and clinical information. Next, we used the K-means method (K=2) to cluster all patients
into two groups based on the mRNA and miRNA expression. Finally, Kaplan–Meier curve and log-rank tests
were used to evaluate the difference in overall survival time between the two groups of patients.

Results and Discussion

Three diseases-related subnetworks

We used three differentially expressed genes to construct three disaease-related subnetworks based on the
disease background network, which contained 409 TFs, 2300 miRNAs, 10,697 target gene and 48,423 edges.
We then mapped the 247, 237, and 103 differentially expressed genes obtained from the three disease-
related differential expression datasets to the background network to obtain three subnetworks. The HCC-
related TF-miRNA regulatory subnetwork included 228 edges and 169 nodes, including 22 TFs, 95 miRNAs,
and 52 target genes. The HCC-related TF-miRNA regulatory subnetwork included 911 edges and 464
nodes including 46 TFs, 236 miRNAs, and 182 target genes. The HCC-HCV-related TF-miRNA regulatory
subnetwork included 513 edges and 307 nodes, including 29 TFs, 157 miRNAs, and 121 target genes (Fig.
S1).

Gene ontology (GO) and KEGG functional enrichment analyses were performed to identify the significantly
enriched biological processes and pathways in the three subnetworks using DAVID 23online tools to perform
enrichment analysis. The significantly enriched results (FDR<0.05) are shown in Fig. 2. We found that
the significantly enriched biological processes included cell cycle, response to organic substance, positive
regulation of transcription from RNA polymerase II promoter, and positive regulation of RNA metabolic
process. We also found significantly enriched KEGG pathways, such as cell cycle, p53 signaling pathway,
pathways in cancer, metabolism of xenobiotics by cytochrome P450, MAPK signaling pathway and Wnt

3
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signaling pathway. Many of these pathways have previously been implicated in HCC and HCV diseases
24-27.

The risk regulatory pathways and key regulators

The BFS method was used to traverse three subnetworks to obtain all pathways in the network with an
in-degree of 0 to out-degree of 0, with pathway lengths required to be longer than two nodes. The HCC
subnetwork obtained 5,284,069 pathways, the HCC-HCV subnetwork contained 929 pathways, and the HCV
subnetwork contained 235 pathways. Each pathway contained several subnetworks, and elucidating key
regulators that play important roles in the development of the disease requires identifying the most important
of these. To this end, we used KP scores to screen the 5 highest scoring pathways in all the subnetworks
(Table 1). All the regulatory pathways were integrated to obtain a network of HCV and HCC processes.
From this network, we found that HCV-related genes were mainly enriched in the upstream nodes of the
network (green background in Fig. 3), while the genes affecting HCC and HCV were mainly enriched in the
middle regions of the network (yellow background in Fig. 3). Finally, genes related to HCC appeared in the
downstream regions of the network (violet background in Fig. 3). The network structure also reflected the
role of inflammation in carcinogenesis, as many genes associated with inflammatory factors linked nodes in
the HCC and HCV networks. To test whether abnormal expression of some core genes at the center of the
network affected patient outcome, we examined hsa-miR-155-5p , FOXM1 ,EZH2 more closely.

EZH2 and hsa-miR-155-5p are key regulators

We further analyzed the core genes in the network, and found thatFOXM1 , EZH2 , E2F1 and hsa-miR-93-
5p were significantly correlated with the occurrence of HCC in HCV patients (Fig. S2). Out of these genes,
EZH2 was the most downstream and directly regulated the hub node for hsa-miR-155-5p within the network
(Fig. S3). This indicated that EZH2 may be an important gene implicated in the transition from HCV to
HCC. Other research has found that EZH2 and hsa-miR-155-5p may play important roles in the progression
of both HCC and HCV 28-31, which fits with works indicating that hsa-miR-155-5p participates in HCV-
induced HCC processes 32,33. High expression ofEZH2 and hsa-miR-155-5p has also been shown to correlate
with the severity of HCC 34,35. Our network analysis indicated that hsa-miR-155-5p not only plays a key
regulatory role in HCC, but also plays a role in hepatitis-induced liver cancer. Research investigating the
effects of controlling the expression ofEZH2 and hsa-miR-155-5p in HCV patients may yield new treatment
options.

In order to study the correlation of EZH2 andhsa-miR-155-5p expression with HCC survival rate, we com-
pared the expression of these two genes in normal samples versus disease samples. Interestingly, we found
that both EZH2 and hsa-miR-155-5pwere expressed significantly higher in tumor samples compared with
normal tissue. Between the two, we found that EZH2 was strongly correlated with the survival of patients
(Fig. 4), indicating that it may be important for early diagnosis and risk prediction.

Conclusions

It is currently thought that a number of different factors influence HCV-induced HCC. However, due to the
lack of appropriate models or data, it is difficult to determine the specific role of HCV in the malignant
transformation of liver cells. In order to identify and characterize these mechanisms, researchers have con-
ducted genomic, transcriptomic and epigenomic studies. These studies have revealed gene mutations and
gene expression changes that play a role in the development of hepatitis-induced liver cancer. Genomic
research has found that long-term hepatitis virus infection causes significant damage, even after eradication
of hepatitis virus. Our transcriptomic data indicated that abnormal expression of certain genes and miRNAs
is predictive of which patients will later develop HCC. These genes may represent biomarkers which could
enable significantly earlier detection of HCC. HCC is not only caused by hepatitis 36. Therefore, more studies
are needed to determine whether genes correlated with HCV-induced cancer are also correlated with liver
cancer caused by other factors.
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Figure Legends

Fig. 1 Illustration of the framework for mining regulatory pathways and key regulators by constructing
HCV-induced HCC networks.

Fig. 2 A, B and C. The HCC, HCC-HCV and HCV-related TF-miRNA regulatory network GO and KEGG
functional enrichment analysis. The numbers represent gene counts for each pathway/GO term within the
network. The Q-value represents the Bonferroni-corrected p-value in gene enrichment analysis. The rich
factor represents the ratio of the number of genes in the subnetworks to the total number of genes in the
pathways/GO terms. (A) Disease-related background network. (B) HCC-related TF-miRNA regulatory
subnetwork. (C) HCC-HCV-related TF-miRNA regulatory subnetwork. (D) HCV-related TF-miRNA reg-
ulatory subnetwork.

Fig. 3 The key TF-miRNA regulatory network. The orange nodes represent target genes, the blue nodes
represent TFs, and the green nodes represent miRNAs. Different border colors represent the gene source of
different subnetworks.

Fig. 4 EZH2 gene differential expression significantly correlated with the overall survival of HCC patients.

Table 1 The KP score of predicted pathways from the three disease-associated subnetworks.

Type Pathway

HCC NR4A1-E2F1-hsa-miR-93-5p-EZH2-hsa-miR-155-5p-E2F2-hsa-miR-92a-3p-CDK1
HCC NR4A1-E2F1-hsa-miR-93-5p-EZH2-hsa-miR-155-5p-E2F2-hsa-miR-92a-3p-HIST1H2AM
HCC hsa-miR-26b-5p-FOXM1-hsa-miR-200b-3p-EZH2-hsa-miR-155-5p-CDKN2A-hsa-miR-141-3p-CDC25C
HCC STAT3-FOXM1-hsa-miR-200a-3p-EZH2-hsa-miR-155-5p-PLK1-hsa-miR-141-3p-CDC25C
HCC STAT3-FOXM1-hsa-miR-200a-3p-EZH2-hsa-miR-155-5p-PLK1-hsa-miR-141-3p-CDC25C
HCC-HCV MYC-FOXM1-hsa-miR-200b-3p-MYB-hsa-miR-155-5p-CHD8
HCC-HCV MYC-FOXM1-hsa-miR-200a-3p-MYB-hsa-miR-155-5p-RAP1B
HCC-HCV MYC-FOXM1-hsa-miR-200b-3p-MYB-hsa-miR-155-5p-RAP1B
HCC-HCV MYC-FOXM1-hsa-miR-200a-3p-MYB-hsa-miR-155-5p-SLC39A14
HCV hsa-miR-155-5p-CBFB-APC
HCV hsa-miR-155-5p-CBFB-hsa-miR-221-3p-BBC3
HCV hsa-miR-155-5p-CBFB-hsa-miR-221-3p-GJA1
HCV hsa-miR-124-3p-NR4A1-E2F1
HCV hsa-miR-93-5p-NR4A1-E2F1
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Figure 1

8



P
os

te
d

on
A

u
th

or
ea

6
M

ar
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

35
38

63
.3

38
58

93
0

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 2
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