Multi-element network reveals the mystery of species adaptation and coexistence

Jiahui Zhang¹, Tingting Ren², Junjie Yang³, Li Xu¹, Mingxu Li⁴, Yunhai Zhang⁵, Xing-Guo Han⁶, and Nianpeng He⁷

¹Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences

²Institute of Botany, Chinese Academy of Sciences

³Institute of Botany Chinese Academy of Sciences

⁴Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences

⁵State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing CN

⁶State Key Laboratory of Vegetation and Environmental Change

⁷Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences

May 5, 2020

Abstract

Plant biochemical reactions are dependent on the combined action of multiple elements. However, it remains unclear how these elements co-vary to adapt to environmental change. Here, we propose a novel concept of the multi-element network (MEN) including the mutual effects between elements to more effectively explore the alterations in response to long-term nitrogen (N) deposition simulations. MENs were constructed with 18 elements and were species specific. Macroelements were more stable, but microelements were more susceptible to N deposition. Interestingly, higher MEN plasticity determined increased relative aboveground biomass (species importance) for different species in one functional group under simulated N deposition. Furthermore, the association between MEN plasticity and species importance was consistently verified along a dry–wet transect. In summary, MENs provide a novel approach for exploring the adaptation strategies of plants and to better predict community composition under altering nutrient availability or environmental stress associated with future global climate change.

Hosted file

20200216-multiple element network-mainfile_zjh.docx available at https://authorea.com/users/ 299099/articles/428496-multi-element-network-reveals-the-mystery-of-species-adaptationand-coexistence